Scalable Directory Organization for Tiled CMP Architectures

Alberto Ros, Manuel E. Acacio, José M. Garcia
Departamento de Ingenieria y Tecnologia de Computadores
Universidad de Murcia
{a.ros, neacaci o, j ngarci a}@li tec. um es

Abstract a directory-based protocol, since protocols based on broad
casting requests are not power-efficient due to the tremen-

Although directory-based cache coherence protocols are dous number of messages that they would generate.
the best choice when designing chip multiprocessor archi- Directory-based protocols reduce power consumption
tectures (CMPs) with tens of processor cores on chip, thecompared to broadcast-based protocols by keeping track of
memory overhead introduced by the directory structure maythe sharers of each block in a directory structure. In a tra-
not scale gracefully with the number of cores. In this work, ditional directory organization, each directory entry pee
we show that a directory organization based on duplicating track of the sharers of the corresponding memory block
tags, which are distributed among the tiles of a tiled CMP through a simple bit-vector (one bit per private cache)c&in
with a fine-grained interleaving, is scalable. That is to,say this structure does not scales with the number of cores, many
the size of each directory bank is independent on the numbelpproaches aimed at improving its scalability have been pro
of tiles of the system. Moreover, based on this directorgorg posed. However, they do not bring perfect scalability and
nization we propose and evaluate the implicit replacementsusually reduce the directory memory overhead by compress-
mechanism which leads to savings of up to 32% in terms ofing coherence information, which in turn results in extna-(u
number of messages in the interconnection network. necessary) coherence messages and therefore wasted energy

Another alternative to the bit-vector scheme which keeps th
Keywords: Tiled chip multiprocessors, cache coherence, di- same sharing information is to duplicate the tags of all pri-
rectory organization, scalability, implicit replacement vate caches. This scheme has been recently used in CMPs as
Piranha [4] or Niagara 2 [20].

In tiled CMPs, the directory structure is distributed be-
tween the L2 cache banks, usually included in the L2 tags’
portion. In this way, each tile keeps the sharing inforntatio
of the blocks mapped to the L2 cache bank that it contains.

Tiled CMP architectures [21, 24] have recently emerged Since the directory must be stored on chip to allow for short
as a scalable alternative to current small-scale CMP dgsign cache miss latencies and CMP designs are constrained by
(e.g. the dual-core IBM Power 6 [10]), and future CMPs that area, the directory area should represent a small fracfion o
will integrate tens of cores on chip will be probably designe the total chip area. Moreover, a hard to scale directory-orga
as arrays of identical or close-to-identical building lec nization could limit the use of the same tile to CMPs with a
(tiles) connected over a switched direct network (see fer ex small range of tiles.
ample the Intel Tera-Scale Computing Project [3, 22]). In In this work, we show that a directory organization based
most current proposals, each tile contains at least oné leveon duplicating tags, which are distributed among the tifes o
of cache memory that is private to the local core (the L1 in a tiled CMP with a fine-grained interleaving, is scalable. In
this work), and the first level of shared cache (commonly, particular, we show that the size of each directory bank does
the L2 cache) is physically distributed between the tiles of not depend on the number of tiles. In this organization, each
the system. Private caches are kept coherent in hardware bgirectory entry stores the tag of the block allocated in the
using a cache coherence protocol. corresponding entry of the private cache, a valid bit and an

In CMP architectures, the cache coherence protocol is aownership bit. If the ownership bit is set the cache is known
key component since it adds requirements of area and poweto be the owner of the block. In this way, the size of each
consumption to the final design, and therefore, could estri directory bank is:* (I; +2), wherec is the number of entries
severely its scalability. When the number of cores is large, of the last level private cache if the private caches araiincl
the best way of keeping cache coherence is by implementingsive or the aggregate number of entries of all private caches

1 Introduction

if they are non-inclusive, an is the size of the tag field. To only a small fraction of the memory blocks can be stored in
ensure that each directory entry is associated with ong entr the private caches at a particular moment of time.

of some private cache, and vice versa, the directory inter- ynfortunately, these two set of techniques result in extra

leaving must be defined taking the less significant bits of the cgherence messages being sent or increased cache miss rates

memory address [9], as we discuss in Section 3. providing scalability in terms of memory at the expense of
Secondly, this directory organization allows us to modify performance or power (as a consequence of an increase in

the coherence protocol in order to remove extra the messagegetwork traffic), thus making them not very suitable fordile
caused by replacements. We have named this technique agmp architectures.

implicit replacements Since each cache entry is associated
to a directory entry (the same way to0) is not necessary tha
the requesting tile sends a message to the directory infigrmi

about the replacement. The directory knows which block is

t The idea of having duplicate tags has also been used in
distributed shared-memory multiprocessors, for exaniple,
Nandaet al. in Everest [15]. In Everest, the directory struc-
ture or complete and concise remote (CCR) directory keeps

_bemg replaced when the re_que_st_ for a new block arnves tothe state information (tag and state) of the memory blocks
it. We have found that the implicit replacements technique . :
belonging to the local home that are cached in the remote

. o .
Ieads 0 savings of up to 32% in the number of messages "hodes. In this way, CCR directory contains the same amount
the interconnection network (12% on average).

The rest of the paper is organized as follows. In Section 2 than memory as a sparse directory and keeps the same infor-

we present a review of the related work. The directory orga- matl_on _than a blt-ve(_:tor directory. However,_the number of
RSN ; : ’ entries in the CCR directory grows linearly with the number

nization is discussed in Section 3. The proposed cachecoherOf nodes in the system

ence protocol is described in Section 4. Section 5 introsluce ' o

the methodology employed in the evaluation. In Section 6we ~ Subsequently, other proposals have used a similar scheme

study the area requirements of our proposal. Section 7 show£0r implementing the directory structure in CMPs [4, 6, 20].

the performance results obtained by our proposal. And fi- N Piranha [4] a directory structure that keeps a duplicate

nally, Section 8 concludes the paper. copy of the L1 tags is used to avoid the use of snooping at
L1 caches. However, the directory is centralized which is a
2 Reated Work bottleneck for large-scale systems.

On the other hand, some proposals for tiled CMPs adds

Directory-based cache coherence protocols have beer?it'\{ecmrs o the 1.2 tags to_indicate_ which L1 caches hav_e
used for long in shared-memory multiprocessors. Unfortu- copies of the block [8]. This technique saves an _extra .d"
nately, the size of the directory structure does not scale wi rectpry strugture when the L1 and L2 caches are inclusive.
the number of nodes of the syste@(@:m) when bit-vectors Again, the plt-vector used to keep track of the sharers does
keep track of the sharers of every memory block). In this not scale with the number of tiles.
work, we study a directory organization for tled CMPs that ~ In [9], the directory interleaving is studied to reduce the
addresses this problem. Firstly, we review some of the previ Size of a distributed directory that stores a linked listoiy-
ous proposa|s to reduce directory storage, and then, we com€rs to the sharers of each cache block. An interleavinggakin
ment the proposals on which our work is based. the less significant bits of the memory address allows each

Some proposals reduce the width of directory entries by directory bank to have the same number of entries than the
using compressed sharing codes instead of a bit-vector. Fopumber of entries of the last-level private cache. Unfortu-
example,coarse vectoris based on using each bit of the nately, the list of pointers has long latency accesses.
sharing code for a group of K processors (a bit is set if at Recently, in [13] different directory organizations have
least one of the processors in the group caches the memorpeen studied for tiled CMPs which demonstrate that the orga-
block). Another compressed sharing codes tastate [2] nization for the directory is a crucial aspect when designin
(also called superset schem@pay-tristate[14] or binary large-scale CMPs.
tree with subtree§l]. Other authors propose to have a lim-
ited number of pointers per entry, which are chosen for cov-
ering the common case [5, 19], and overflow situations are3 Directory Organization
handled by broadcasting invalidation messages.

Other proposals try to reduce the directory height by com-
bining several entries into a single oréréctory entry com- In this section we study how to adapt a directory orga-
bining) [18]. An alternative way is to organize the directory nization based on duplicate tags to scalable tiled CMPs. In
structure as a cachepiarse directory[16, 7], or include this the first subsection, we discuss how the directory interleav
information in the tags of private caches [17], thus redgcin ing affects the scalability of the directory structure. het
the height of the directory down to the height of the private second subsection, we describe the structure of the digecto
caches. All these proposals are based on the observation thand how the sharing information can be obtained from it.

Iy

S

|y

C

che tag

cache set

offset

Llnﬁ

Private Cache (Tile 0)

Private Cache (Tile n-1)

I

I S

I p—

cache tag

cache se

offset

Private Cache (Tile 0)

Llnﬁ

Private Cache (Tile n-1)

Set Tag Data Set Tag Data Set Tag Data Set Tag Data
0000/ 1000... 0000/ 0000... 0000 1000... 0000| 0000...
0001/ 0000... 0001/ 0001... 0001)0000... ,6001] 0001...
0010 10041... - 0010 0001... 0010 1001... 00/10 0001...
1111/ 0000\ 1111/ 1001... 1114 0000... | 111{ 1001...

bffectory (TiIe/O’}/

Directory (Tile n—-1)

Dir&ctory (Tile-0)~_/

\ Directory (Tile n—1)

Set \\\Tag _Dir Set Tag Dir. Inf. Set \Tag Di ™~ o \set Tag Dir. Inf.
ooog \\' # | 000 0000 w0000

ooo1)\ ' ~ |- 0001 0001, vy 0001

o010 | ¥+ 0010 0010, b P 0010\

\ j ¥ A v ! N

1111 ¥~ 1111 1111 Tiel Tilez 1112 ©

Figure 1. Granularity of directory interleaving and its effect on directory size.

3.1 Directory Interleaving ares anda, respectively, the number of entries required by
each directory to keep the information of the cached blocks
In tiled CMPs, the shared L2 cache is distributed among mapped to it is: * s x a. In particular, each directory must
all the tiles in the system. In this way, each tile is in charge haves sets ofn * a ways each one. Therefore, the order re-

of handling the requests for a particular region of the total quired by this structure i©(n * s x a), or O(n * c¢), wherec
shared cache. This tile is called themetile for the memory is the number of entries of each last level private cache.
blocks that it handles. An important decision when design- Otherwise, if thd,, bits belong to the cache set field, the
ing the memory hierarchy of tiled CMPs is the granularity shared L2 cache is split in a great amount of small regions
of both the shared L2 cache and the directory interleaving.(fine-grained interleaving), as shown in Figure 1 (rightj-U
Cache and directory interleaving may be different. Howgver der this configuration, each entry of each L1 cache maps to
this policy incurs in extra coherence messages among the difonly one entry of the directory. Therefore, the number of
ferent banks of the distributed shared cache thus making theentries required by each directory will Bex a. In particu-
coherence protocol less efficient and more complex. Therear, each directory bank must hayén sets ofn * a ways
fore, it is desirable that both shared L2 cache and directoryeach one. The order required by this structui@(s), which
have the same interleaving. scales with the number of nodes of the system.

The shared L2 cache can be easily distributed among the Therefore, our organization uses an interleaving where the
tiles of the CMP by takindogon (I,,) bits of the block ad- 1, bits belong to the cache set fields. When the number of
dress, where is the number of tiles of the system (physi- tilesn is greater than the number of sets of the L1 caghe
cal address mapping). The position of these bits defines thehe number of entries required by the directory.ig a, but
granularity of the interleaving, and as shown in Figure &, th this is not the common case. In any case, the order of the
number of entries that each directory bank must have to beentries needed by the directoryi§max{s,n} x a), that is
able to keep the sharing information of those cached blocksto say, the number of entries completely scales for values of
belonging to it. s larger than values of.

In Figure 1 we can observe two alternative ways of dis-
tributing the shared L2 cache and their consequences. Look3.2 Duplicate Tags
ing at the address of a memory block we can distinguish three
main fields: the blocloffset(l;) which represent the size of
blocks stored in cache, tleache sefl,) in which the block

In the previous section we have described how the number
of entries of the directory can scale with the number of tiles
must be stored and tlwache tag!;) used to identify a block However, the size of the entries used to keep the directery in
stored in a cache. formation does not scale with the number of tiles ((En)

If the I,, bits belong to the cache tag field, the shared L2 for the bit-vector, 00O (p*logan) whenp pointers are used to
cache is split into huge continuous regions (coarse-gdaine locate the cached copies). In this section we propose te stor
interleaving). Under this configuration, all the blocksretb the tag of the block and two bits in each directory entry. The
in the private caches could map to the same directory bankfirst bit is the valid bit. If this bit is set the block is known
This situation is shown in Figure 1 (left). Assuming that to be stored in the cache entry associated with this dingctor
the number of sets and the associativity of the private Gache entry. Remember that each directory entry is associatdd wit

I, I Ly

N
Cache (l)l cache tag | ca}:he set offset |
t Sl
n
H
l jﬁ |)
Directory (j) | directory tag | direftory set | offset |
- N 1 | y—

Figure 2. Mapping between cache entries and

. h (a) Traditional replacements.
directory entries.

® DATA/ACK
only one cache entry. This bit is used to locate all the copies
of the block on a write miss. The second bit is the owner- e
ship bit and when it is set the cache entry is known to have ACK/WrB

the ownership of the block. This bit is used to implement a
MOESI protocol. (1)

Since we only store the tag of the block and two more GET/PUT
bits in each directory entry, and the tag bits keep invariant
with the number of tiles, the size of the directory maintains
constant as the number of cores of the CMP grows. The total (b) Implicit replacements.
size of each directory bank s« (I; + 2).

The associativity of the directory can be reduced from Figure 3. Differences between the proposed
n * a to a by taking the number of the tile in which the block coherence protocol and a traditional coher-
is cached as part of the set bits. In this way, the number of ence protocol.
sets grows fron/n to s. Figure 2 shows how cache entries
are mapped to directory entries, to achieve this small asso4 Implicit replacements
ciativity. We can see thdy, bits of the directory set are used
to identify the tile that holds the copy inits private L1 cach The proposed directory organization allows us to modify
and, bits of the cache set are used to identify the home di- e coherence protocol to remove the messages caused by re-
rectory. In this way, each directory bank has the same num-y|acements. This is achieved by performing the replacesnent

ber of sets and ways than the L1 private cache. Although inj, 4 implicit way along with the requests which cause them,
the scheme thg, bits are the less significant ones of the set 55 shown in Figure 3.

field, they can be any set of bits of that field. There are two main factors that allows the presented direc-
Considering this mapping, all the coherence information tory organization to support implicit replacements. st

for a particular block can be found in the following way. To due to the fine-grained directory interleaving we ensure tha
know whether a block is stored in a particular cache it is nec- the evicted block and the requested block map to the same
essary to find the tag in the directory set whose identifier is home, and therefore, the same directory bank. If a coarse-
obtained by changing thig bits that identify the home direc- grained interleaving was chosen these blocks could map to
tory with thel,, bits that identify the tile which contains that different directory banks. Secondly, each cache entry-is as
cache. If the tag is found and the valid bit is set, the block sociated with only one directory entry (the same way t0o),
is held in that cache. If the ownership bit is set, that cache and vice versa. In this way, both the directory and the re-
is the owner of the block. By searching this information in questing cache know the address of both the requested and
the corresponding directory entries the complete directory the evicted block and it is not necessary to attach the asldres
information is obtained. If thé, bits are the less significant, of the evicted block to the request messages. Note that the
the search can be performed by readingpnsecutive sets of size of coherence messages does not change. It is only nec-

2]
FWD/ACK

the directory bank. essary to add a field indicating the way within the set of the
Updating the directory information only requires modify- requested block (2 bits in our case).
ing few bits. On a write miss, the corresponding valid bits In Figure 3(a), we can see how a replacement is usu-

are unset and the directory entry for the new owner is set withally performed. When a block must be stored in cache and
the tag of the block and both the valid and the ownership bitsthe corresponding set is full, an old block must be evicted.
are set. Adding a new sharer only requires writing the tag of In current directory protocols evictions of shared bloctes a
the block in the corresponding directory entry and settirggt usually performed transparently without informing theedir
valid bit. tory. Later, we will explain why when the directory is or-

ganized with duplicate tags, this kind of replacements must

inform the directory. On the other hand, evictions of privat Table 1. System parameters.

. h 16-tiled CMP
or owned blocks must store the dirty data in the next cache Cache hierarchy Non-inciusive
i ici i Cache block size 64 bytes
!evel. For simplicity these w_rltebacks (_:ouk_j be performed SpiitL11& D eaches 39KD, Away
in a tree-hop transaction as illustrated in Figure 3(a})lef L1 cache hit time 4 cycles
First, the cache asks the home tile permissiowtibteback Shared unified L2 cache 8MB (512KBttile), 4-way
K . . L2 cache hit time 6 + 9 cycles (tag + data)
the block (PUT). Then the home tile confirms the transaction Memory access time 160 cycles
(ACK), and finally the block is sent to the next cache level Network topology 4x4 Mesh
. . On-chip link latency (one hop)| 2 cycles
(WrB). Figure 3(a) (right) shows a cache-to-cache transfer Off-chip link latency (one hop)| 20 cycles

miss. Requests (GET) are sent to the home tile to get the
directory information, and then are forwarded (FWD) to the with a bit-vector for each entry. This protocols has silent
owner cache where the data is provided (DATA), or the data evictions of shared blocks. The rest of protocols organize
is directly provided from the L2 cache in the home tile. Fi- the directory as duplicate tags. DupTag-Shevictions of
nally, the requesting cache informs the home tile that aeroth Shared blocks incurs in tree-hop transactions.DupTag
cache miss for this memory block can be processed (ACK). these evictions are silent as in the base directory protocol
Figure 3(b) shows how the implicit replacements are per- Finally, DupTag-Implicitis the protocol that implements the
formed along with the requests that cause them. On eacHmplicit replacements mechanism.
cache miss a MSHR entry (Miss Status Hold Register) is The eight scientific applications used in our simulations
allocated with the information about the request. More- cover a variety of computation and communication patterns.
over, another MSHR entry must be allocated for the evicted Barnes (8192 bodies, 4 time steps), FFT (256K complex dou-
block (if any). The former entry needs to keep a pointer to bles), Ocean (258x258 ocean), Radix (1M keys, 1024 radix),
the later one. Moreover, the particular way within the set Raytrace (teapot), Volrend (head-scaleddown4) and Water-
where the new block will be stored is specified in the each NSQ (512 molecules, 4 time steps) are from the SPLASH-2
coherence message. When the GET/PUT message reach&nchmark suite [23]. Unstructured (Mesh.2K, 5 time steps)
the home tile, another two MSHR entries must be allocatedis @ computational fluid dynamics application. We account
(as usually), one of them pointing to the other. Finally, for the variability in multithreaded workloads by doing mul
when the data arrives to the requesting cache (DATA/ACK) tiple simulation runs for each benchmark in each configura-
both MSHRs are deallocated and the writeback is performedtion and injecting random perturbations in memory systems
(ACK/WrB), thus allowing the directory processing the sub- timing for each run. The experimental results reportedi th
sequent requests for both blocks. paper correspond to the parallel phase of each program.
Finally, it is necessary to inform the directory about evic-
tions of shared blocks in some protocols like Piranha [4] 6 Directory Memory Overhead
which uses duplicate tags. This is because before adding a

new entry to the directory an old entry must be deallocated | his section we study the directory memory overhead of

if the number qf entries of the directpry is the same than theOur proposed organization compared to some of the schemes
number of entries of the caches. This can be avoided by tak-egcrined in the related work. Figure 4 shows this overhead
ing into account the way within the set that the block is going as a function of the number of tiles in the system. The di-
to use. rectory organizations shown in the graph &ieVector L2
Inclusive Duplicate TagsBit-Vector + FGI, Coarse Vector
5 Simulation Environment (K=4) + FGI, Limited pointers (3) + FGJ and finally our
proposal Duplicate Tags + FG). The characteristics of all

We evaluate our proposal with full-system simulation us- these schemes are described below. The overhead of the di-
ing Virtutech Simics [11] extended with Multifacet GEMS rectory structure has been calculated for the values shown i
[12]. GEMS provides a detailed memory system timing Table 1.
model which accounts for all protocol messages and state In the graph, we plot results for several directory organi-
transitions. We simulate a 16-tled CMP system with one zations.Bit-Vector L2 Inclusivas currently used in the pro-
level of private cache and a logically shared and physically posed tiled CMPs in which the L1 and the L2 are inclusive
distributed L2 cache. Table 1 shows the values of the main(the L2 contains all blocks held in the L1s). The directory
parameters of this system. is stored in the tags’ part of the L2 cache, thus removing the

We have implemented all the coherence protocols evalu-need of tags for the directory structure. Apart from forcing
ated in Section 7. These implementations have been exhausdnclusion and using a bit-vector sharing code (it could use a
tively checked using a tester program provided by GEMS other compressed sharing code), the main drawback of this
that checks all race conditions to raise any incoherence. Th scheme is that it needs the same number of entries than the
Bit-Vectorprotocol organizes the directory as a tagged cachelL2 cache.

100]|

_— Bit-Vector EReqlngsvs&Rephes
1 i
3 = Duptag oh B Replacements
X - r DupTag
= _— = 5 i~ DupTag-Implicit
® 10 - *
2 =1 =
o - \va
3 m P § A ®Duplicate Tags
> 1 $ —V A ¥ Bit-Vector + FGI
9]
s —» -A-Coarse vector

. iﬁffj***f s - (K=4) + FGI
S »-Limited pointers
> 01 (3) + FGI
i3] < Duplicate Tags
[
£ < < < < < < *Fe

16 32 64 128 256 512

Number of tiles

o@“\ag ® ta o ‘a‘!\@ce \}‘\s\‘o“‘\“eé 40\‘6(\6 «0‘2“6& N‘e‘&e
Figure 4. Directory memory overhead as a Figure 5. Reductions in the number of coher-
function of the number of tiles. ence messages.
The problem of usin@uplicate Tagswith coarse-grained The number of coherence messages of each one of the

interleaving (or a dynamic mapping) is that the number of evaluated protocols has been normalized with respectés a tr
entries needed for each directory bank to allocate the-infor ditional directory-based protocol that uses a bit-vechars
mation of all the cached blocks does not scale, as explainedng code Bit-Vector protocol). Compared to this protocol,
in Section 3.1. the implicit replacements mechanism reduces the number of
When fine-grained interleaving (FGI) is considered, the coherence messages up to 32% for Radix (12% on average).
number of entries of the directory bank is reduced to the Moreover, if we consider th®upTag-Shprotocol our pro-
number of L1 cache entries. As a consequence,Bite posal can save 29% of coherence messages on average. Fi-
Vector + FGl organization requires less storage than the pre-nally, the DupTagprotocol slightly reduces the number of
vious schemes, but still remains non-scalableCdarse Vec- ~ coherence messages comparefiitevectormainly since the
tor (K=4) + FGI the sharing code is compressed by using number of invalidations is reduced. This is because when a
one bit per each group of four tiles. The bit is set if at least New tag is allocated in the duplicate tag directory, the atd t
one of the four tiles holds a copy of the block. Again the area is removed thus implicitly informing to the directory of the
of the directory structure is reduced, but it does not sdale. ~ evictions of shared blocks, and therefore most of the invali
Limited pointers (3) + FGlonly three pointers are used to dations that find the block evicted from cacheBiit-Vector

identify the caches that share each memory block. Whenare removed ifbupTag
the number of sharers is higher than three, writes are per-

fo_rmed by broa_dcasting invalidatio.n messages (a broadcasg Conclusions

bit is also required per entry). This organization scales as

O(3 * logan). However, differently from the proposed orga- In thi K h h di ization based
nization, compressed sharing codes incur in extra coherenc n this work, we show that a directory organization base

messages since they do not store precise information abou?n_duD"C""ting tag_s, whiph are qlistrik_)uted among the tifes o
all the caches that hold blocks. a tiled CMP following a fine-grained interleaving is scatabl

Finally, we can see that by combining fine-grained inter- We show that the size of each directory bank does not depend

leaving with duplicate tagduplicate Tags + FG) we can on the numbe_r oftiles in th_e system. . .
achieve a completely scalable directory organization tvhic The total size of each directory bank in the studied orga-

keeps the same information than a bit-vector directory. nization isc « (I; + 2), wherec is the number of entries of
the private L1 cache if the cache hierarchy is inclusive er th

. aggregate number of entries of private L1 caches if the cache
7 Evaluation Results hierarchy is non-inclusive, aridis the size of the tag field.
Since the structure of each directory bank does not change
In this section, we evaluate the results in terms of num- with the number of tiles, the same building block can be used
ber of coherence messages removed. Regarding performander systems with different number of tiles, thus making the
(execution time), all the protocols achieve similar resulib design of large-scale CMPs possible.
particular, our protocol is able to remove all coherence-mes We have redesigned the cache coherence protocol to take
sages caused by L1 replacements, without loosing any perfull advantage of this directory organization. In partal
formance. In Figure 5 we can observe the percentage of messince each directory entry is mapped to only one cache entry,
sages saved by our proposal. we can perform the replacements in an implicit way along

with the requests which cause them, thus saving up to 32% [9] J. Kong, P.-C. Yew, and G. Lee. Minimizing the directory
in the number of coherence messages (12% on average), and

consequently reducing power consumption. To achieve this,
the block must be mapped taking into consideration the way

within the set in which it is stored (the same way in the pri-
vate cache as in the directory).
Finally, as our protocol knows the way where the block

must be stored, more power consumption could be saved forjy 5
associative caches if accesses to other ways within theeset a

removed.

Acknowledgements

This work has been jointly supported by Spanish MEC
under grant “TIN2006-15516-C04-03", European Comis-

sion FEDER funds under grant “Consolider Ingenio-2010 [13]
CSD2006-00046" and European Comission funds under

Network of Excellence HIPEAC. A. Ros is supported by a

research grant from Spanish MEC under the FPU national

plan (AP2004-3735).

References

(1]

(2]

(5]

(6]

M. E. Acacio, J. Gonzéalez, J. M. Garcia, and J. Duato. A
Two-Level Directory Architecture for Highly Scalable cc-
NUMA Multiprocessors.|[EEE Transactions on Parallel and
Distributed Systemd4.6(1):67-79, Jan. 2005.

A. Agarwal, R. Simoni, J. L. Hennessy, and M. Horowitz. An

[10]

[12]

[14]

[15]

[16]

Evaluation of Directory Schemes for Cache Coherence. In [17]

15th Int’l. Symp. on Computer Architecture (ISCA'88ages
280-289, May 1988.

M. Azimi, N. Cherukuri, D. N. Jayasimha, A. Kumar,
P. Kundu, S. Park, I. Schoinas, and A. S. Vaidya. Integra-
tion challenges and tradeoffs for tera-scale architestimeel
Technology Journall1(3):173-184, Aug. 2007.

L. A. Barroso, K. Gharachorloo, R. McNamara,
A. Nowatzyk, S. Qadeer, B. Sano, S. Smith, R. Stets,

(18]

[19]

and B. Verghese. Piranha: A scalable architecture based on[20]

single-chip multiprocessing. @7th Int’l Symp. on Computer
Architecture (ISCA’0Q)pages 12-14, June 2000.

D. Chaiken, J. Kubiatowicz, and A. Agarwal. LimitLESS
Directories: A Scalable Cache Coherence Scheme4thin
Int'l Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOJI&0es 224—
234, Apr. 1991.

J. Chang and G. S. Sohi. Cooperative caching for chip mul-
tiprocessors. 1r83rd Int'l Symp. on Computer Architecture
(ISCA’06) pages 264-276, June 2006.

[7]1 A. Gupta, W.-D. Weber, and T. C. Mowry. Reducing mem-

(8]

ory traffic requirements for scalable directory-based eaxh
herence schemes. Int'l Conference on Parallel Processing
(ICPP’90), pages 312-321, Aug. 1990.

J. Huh, C. Kim, H. Shafi, L. Zhang, D. Burger, and S. W.
Keckler. A NUCA substrate for flexible CMP cache sharing.
In 19th Int'l Conference on Supercomputing (ICS'0bages
31-40, June 2005.

[21]

[22]

(23]

[24]

size for large-scale shared-memory multiprocess&@kCE -
Transactions on Information and Systerg88-D(11):2533—
2543, Nov. 2005.

H. Q. Le, W. J. Starke, J. S. Fields, F. P. O’'Connell, D. Q.
Nguyen, B. J. Ronchetti, W. M. Sauer, E. M. Schwarz, and
M. T. Vaden. IBM POWERG6 microarchitecturdB8M Journal

of Research and DevelopmeB1(6), Nov. 2007.

P. S. Magnusson, M. Christensson, J. Eskilson, D. Fors-
gren, G. Hallberg, J. Hogberg, F. Larsson, A. Moestedt, and
B. Werner. Simics: A full system simulation platforrEEE
Computer 35(2):50-58, Feb. 2002.

M. M. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty,
M. Xu, A. R. Alameldeen, K. E. Moore, M. D. Hill, and
D. A. Wood. Multifacet’s general execution-driven multi-
processor simulator (GEMS) toolsétomputer Architecture
News 33(4):92-99, Sept. 2005.

M. R. Marty and M. D. Hill. Virtual hierarchies to supgor
server consolidation. 184th Int'l Symp. on Computer Archi-
tecture (ISCA’07)pages 46-56, June 2007.

S. Mukherjee and M. D. Hill. An Evaluation of Directoryd?
tocols for Medium-Scale Shared-Memory Multiprocessors.
In 8th Int'l Conference on Supercomputing (ICS'9pages
64—74, July 1994.

A. K. Nanda, A.-T. Nguyen, M. M. Michael, and D. J. Joseph
High-Throughout Coherence Control and Hardware Messag-
ing in Everest.IBM Journal of Research and Development
45(2):229-244, Mar. 2001.

B. O’Krafka and A. Newton. An Empirical Evaluation of
Two Memory-Efficient Directory Methods. 1i7th Int.
Symp. on Computer Architecture (ISCA'9pages 138-147.
IEEE/ACM, June 1990.

A. Ros, M. E. Acacio, and J. M. Garcia. A novel lightweig
directory architecture for scalable shared-memory mudtip
cessors. Inllth Int'l Euro-Par Conferencevolume 3648,
pages 582-591, Aug. 2005.

R. Simoni.Cache Coherence Directories for Scalable Multi-
processors PhD thesis, Stanford University, 1992.

R. Simoni and M. Horowitz. Dynamic Pointer Allocation
for Scalable Cache Coherence DirectoriesIniti Symp. on
Shared Memory Multiprocessingages 72-81, Apr. 2001.
Sun Microsystems, Inc., Santa Clara, CA 95054.
OpenSPARCTM T2 System-On-Chip (SOC) Microar-
chitecture SpecificatigrDec. 2007.

M. B. Taylor, J. Kim, and J. Miller, et al. The raw micro-
processor: A computational fabric for software circuitsl an
general purpose program$EEE Micro, 22(2):25-35, May
2002.

S. Vangal, J. Howard, and G. Ruhl, et al. An 80-tile 1f2@ts
network-on-chip in 65nm cmos. IEEE Int'l Solid-State Cir-
cuits Conference (ISSCHeb. 2007.

S. C.Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Guptee T
SPLASH-2 programs: Characterization and methodological
considerations. 122nd Int'l Symp. on Computer Architecture
(ISCA'95) pages 24-36, June 1995.

M. Zhang and K. Asanovic. Victim replication: Maximizj
capacity while hiding wire delay in tiled chip multiprocess.

In 32nd Int'l Symp. on Computer Architecture (ISCA’05)
pages 336-345, June 2005.

