
Scalable Directory Organization for Tiled CMP Architectures

Alberto Ros, Manuel E. Acacio, José M. Garcı́a
Departamento de Ingenierı́a y Tecnologı́a de Computadores

Universidad de Murcia
{a.ros,meacacio,jmgarcia}@ditec.um.es

Abstract

Although directory-based cache coherence protocols are
the best choice when designing chip multiprocessor archi-
tectures (CMPs) with tens of processor cores on chip, the
memory overhead introduced by the directory structure may
not scale gracefully with the number of cores. In this work,
we show that a directory organization based on duplicating
tags, which are distributed among the tiles of a tiled CMP
with a fine-grained interleaving, is scalable. That is to say,
the size of each directory bank is independent on the number
of tiles of the system. Moreover, based on this directory orga-
nization we propose and evaluate the implicit replacements
mechanism which leads to savings of up to 32% in terms of
number of messages in the interconnection network.

Keywords: Tiled chip multiprocessors, cache coherence, di-
rectory organization, scalability, implicit replacements.

1 Introduction

Tiled CMP architectures [21, 24] have recently emerged
as a scalable alternative to current small-scale CMP designs
(e.g. the dual-core IBM Power 6 [10]), and future CMPs that
will integrate tens of cores on chip will be probably designed
as arrays of identical or close-to-identical building blocks
(tiles) connected over a switched direct network (see for ex-
ample the Intel Tera-Scale Computing Project [3, 22]). In
most current proposals, each tile contains at least one level
of cache memory that is private to the local core (the L1 in
this work), and the first level of shared cache (commonly,
the L2 cache) is physically distributed between the tiles of
the system. Private caches are kept coherent in hardware by
using a cache coherence protocol.

In CMP architectures, the cache coherence protocol is a
key component since it adds requirements of area and power
consumption to the final design, and therefore, could restrict
severely its scalability. When the number of cores is large,
the best way of keeping cache coherence is by implementing

a directory-based protocol, since protocols based on broad-
casting requests are not power-efficient due to the tremen-
dous number of messages that they would generate.

Directory-based protocols reduce power consumption
compared to broadcast-based protocols by keeping track of
the sharers of each block in a directory structure. In a tra-
ditional directory organization, each directory entry keeps
track of the sharers of the corresponding memory block
through a simple bit-vector (one bit per private cache). Since
this structure does not scales with the number of cores, many
approaches aimed at improving its scalability have been pro-
posed. However, they do not bring perfect scalability and
usually reduce the directory memory overhead by compress-
ing coherence information, which in turn results in extra (un-
necessary) coherence messages and therefore wasted energy.
Another alternative to the bit-vector scheme which keeps the
same sharing information is to duplicate the tags of all pri-
vate caches. This scheme has been recently used in CMPs as
Piranha [4] or Niagara 2 [20].

In tiled CMPs, the directory structure is distributed be-
tween the L2 cache banks, usually included in the L2 tags’
portion. In this way, each tile keeps the sharing information
of the blocks mapped to the L2 cache bank that it contains.
Since the directory must be stored on chip to allow for short
cache miss latencies and CMP designs are constrained by
area, the directory area should represent a small fraction of
the total chip area. Moreover, a hard to scale directory orga-
nization could limit the use of the same tile to CMPs with a
small range of tiles.

In this work, we show that a directory organization based
on duplicating tags, which are distributed among the tiles of
a tiled CMP with a fine-grained interleaving, is scalable. In
particular, we show that the size of each directory bank does
not depend on the number of tiles. In this organization, each
directory entry stores the tag of the block allocated in the
corresponding entry of the private cache, a valid bit and an
ownership bit. If the ownership bit is set the cache is known
to be the owner of the block. In this way, the size of each
directory bank isc∗ (lt +2), wherec is the number of entries
of the last level private cache if the private caches are inclu-
sive or the aggregate number of entries of all private caches

if they are non-inclusive, andlt is the size of the tag field. To
ensure that each directory entry is associated with one entry
of some private cache, and vice versa, the directory inter-
leaving must be defined taking the less significant bits of the
memory address [9], as we discuss in Section 3.

Secondly, this directory organization allows us to modify
the coherence protocol in order to remove extra the messages
caused by replacements. We have named this technique as
implicit replacements. Since each cache entry is associated
to a directory entry (the same way too) is not necessary that
the requesting tile sends a message to the directory informing
about the replacement. The directory knows which block is
being replaced when the request for a new block arrives to
it. We have found that the implicit replacements technique
leads to savings of up to 32% in the number of messages in
the interconnection network (12% on average).

The rest of the paper is organized as follows. In Section 2
we present a review of the related work. The directory orga-
nization is discussed in Section 3. The proposed cache coher-
ence protocol is described in Section 4. Section 5 introduces
the methodology employed in the evaluation. In Section 6 we
study the area requirements of our proposal. Section 7 shows
the performance results obtained by our proposal. And fi-
nally, Section 8 concludes the paper.

2 Related Work

Directory-based cache coherence protocols have been
used for long in shared-memory multiprocessors. Unfortu-
nately, the size of the directory structure does not scale with
the number of nodes of the system (O(nm) when bit-vectors
keep track of the sharers of every memory block). In this
work, we study a directory organization for tiled CMPs that
addresses this problem. Firstly, we review some of the previ-
ous proposals to reduce directory storage, and then, we com-
ment the proposals on which our work is based.

Some proposals reduce the width of directory entries by
using compressed sharing codes instead of a bit-vector. For
example,coarse vectoris based on using each bit of the
sharing code for a group of K processors (a bit is set if at
least one of the processors in the group caches the memory
block). Another compressed sharing codes aretristate [2]
(also called superset scheme),Gray-tristate [14] or binary
tree with subtrees[1]. Other authors propose to have a lim-
ited number of pointers per entry, which are chosen for cov-
ering the common case [5, 19], and overflow situations are
handled by broadcasting invalidation messages.

Other proposals try to reduce the directory height by com-
bining several entries into a single one (directory entry com-
bining) [18]. An alternative way is to organize the directory
structure as a cache (sparse directory) [16, 7], or include this
information in the tags of private caches [17], thus reducing
the height of the directory down to the height of the private
caches. All these proposals are based on the observation that

only a small fraction of the memory blocks can be stored in
the private caches at a particular moment of time.

Unfortunately, these two set of techniques result in extra
coherence messages being sent or increased cache miss rates,
providing scalability in terms of memory at the expense of
performance or power (as a consequence of an increase in
network traffic), thus making them not very suitable for tiled
CMP architectures.

The idea of having duplicate tags has also been used in
distributed shared-memory multiprocessors, for example,by
Nandaet al. in Everest [15]. In Everest, the directory struc-
ture or complete and concise remote (CCR) directory keeps
the state information (tag and state) of the memory blocks
belonging to the local home that are cached in the remote
nodes. In this way, CCR directory contains the same amount
than memory as a sparse directory and keeps the same infor-
mation than a bit-vector directory. However, the number of
entries in the CCR directory grows linearly with the number
of nodes in the system.

Subsequently, other proposals have used a similar scheme
for implementing the directory structure in CMPs [4, 6, 20].
In Piranha [4] a directory structure that keeps a duplicate
copy of the L1 tags is used to avoid the use of snooping at
L1 caches. However, the directory is centralized which is a
bottleneck for large-scale systems.

On the other hand, some proposals for tiled CMPs adds
bit-vectors to the L2 tags to indicate which L1 caches have
copies of the block [8]. This technique saves an extra di-
rectory structure when the L1 and L2 caches are inclusive.
Again, the bit-vector used to keep track of the sharers does
not scale with the number of tiles.

In [9], the directory interleaving is studied to reduce the
size of a distributed directory that stores a linked list of point-
ers to the sharers of each cache block. An interleaving taking
the less significant bits of the memory address allows each
directory bank to have the same number of entries than the
number of entries of the last-level private cache. Unfortu-
nately, the list of pointers has long latency accesses.

Recently, in [13] different directory organizations have
been studied for tiled CMPs which demonstrate that the orga-
nization for the directory is a crucial aspect when designing
large-scale CMPs.

3 Directory Organization

In this section we study how to adapt a directory orga-
nization based on duplicate tags to scalable tiled CMPs. In
the first subsection, we discuss how the directory interleav-
ing affects the scalability of the directory structure. In the
second subsection, we describe the structure of the directory
and how the sharing information can be obtained from it.

l bl sl t

offsetcache setcache tag

l n

l bl sl t

offsetcache setcache tag

l n

0000

1111

 ...
0010

0001

1000...

0000...

 ...
1001...

0000...

Set Tag Data

0000

1111

 ...
0010

0001

0000...

1001...

 ...
0001...

0001...

Set Tag Data

0000

1111

 ...
0010

0001

Set Tag Dir. Inf.

0000

1111

 ...
0010

0001

Set Tag Dir. Inf.

Directory (Tile 0)

 ...

 ...

Private Cache (Tile 0) Private Cache (Tile n−1)

Directory (Tile n−1)

0000

1111

 ...
0010

0001

1000...

0000...

 ...
1001...

0000...

Set Tag Data

0000

1111

 ...
0010

0001

0000...

1001...

 ...
0001...

0001...

Set Tag Data

0000

1111

 ...
0010

0001

Set Tag Dir. Inf.

0000

1111

 ...
0010

0001

Set Tag Dir. Inf.

Directory (Tile 0)

 ...

Private Cache (Tile 0) Private Cache (Tile n−1)

Directory (Tile n−1)

 ...

Tile 1 Tile 2

Figure 1. Granularity of directory interleaving and its effect on directory size.

3.1 Directory Interleaving

In tiled CMPs, the shared L2 cache is distributed among
all the tiles in the system. In this way, each tile is in charge
of handling the requests for a particular region of the total
shared cache. This tile is called thehometile for the memory
blocks that it handles. An important decision when design-
ing the memory hierarchy of tiled CMPs is the granularity
of both the shared L2 cache and the directory interleaving.
Cache and directory interleaving may be different. However,
this policy incurs in extra coherence messages among the dif-
ferent banks of the distributed shared cache thus making the
coherence protocol less efficient and more complex. There-
fore, it is desirable that both shared L2 cache and directory
have the same interleaving.

The shared L2 cache can be easily distributed among the
tiles of the CMP by takinglog2n (ln) bits of the block ad-
dress, wheren is the number of tiles of the system (physi-
cal address mapping). The position of these bits defines the
granularity of the interleaving, and as shown in Figure 1, the
number of entries that each directory bank must have to be
able to keep the sharing information of those cached blocks
belonging to it.

In Figure 1 we can observe two alternative ways of dis-
tributing the shared L2 cache and their consequences. Look-
ing at the address of a memory block we can distinguish three
main fields: the blockoffset(lb) which represent the size of
blocks stored in cache, thecache set(ls) in which the block
must be stored and thecache tag(lt) used to identify a block
stored in a cache.

If the ln bits belong to the cache tag field, the shared L2
cache is split into huge continuous regions (coarse-grained
interleaving). Under this configuration, all the blocks stored
in the private caches could map to the same directory bank.
This situation is shown in Figure 1 (left). Assuming that
the number of sets and the associativity of the private caches

ares anda, respectively, the number of entries required by
each directory to keep the information of the cached blocks
mapped to it isn ∗ s ∗ a. In particular, each directory must
haves sets ofn ∗ a ways each one. Therefore, the order re-
quired by this structure isO(n ∗ s ∗ a), or O(n ∗ c), wherec
is the number of entries of each last level private cache.

Otherwise, if theln bits belong to the cache set field, the
shared L2 cache is split in a great amount of small regions
(fine-grained interleaving), as shown in Figure 1 (right). Un-
der this configuration, each entry of each L1 cache maps to
only one entry of the directory. Therefore, the number of
entries required by each directory will bes ∗ a. In particu-
lar, each directory bank must haves/n sets ofn ∗ a ways
each one. The order required by this structure isO(c), which
scales with the number of nodes of the system.

Therefore, our organization uses an interleaving where the
ln bits belong to the cache set fields. When the number of
tiles n is greater than the number of sets of the L1 caches,
the number of entries required by the directory isn ∗ a, but
this is not the common case. In any case, the order of the
entries needed by the directory isO(max{s, n} ∗ a), that is
to say, the number of entries completely scales for values of
s larger than values ofn.

3.2 Duplicate Tags

In the previous section we have described how the number
of entries of the directory can scale with the number of tiles.
However, the size of the entries used to keep the directory in-
formation does not scale with the number of tiles (i.e.O(n)
for the bit-vector, orO(p∗log2n) whenp pointers are used to
locate the cached copies). In this section we propose to store
the tag of the block and two bits in each directory entry. The
first bit is the valid bit. If this bit is set the block is known
to be stored in the cache entry associated with this directory
entry. Remember that each directory entry is associated with

l bl sl t

l bl sl t

l n

l n

offset

offsetcache setcache tag

directory setdirectory tagDirectory (j)

Cache (i)

Figure 2. Mapping between cache entries and
directory entries.

only one cache entry. This bit is used to locate all the copies
of the block on a write miss. The second bit is the owner-
ship bit and when it is set the cache entry is known to have
the ownership of the block. This bit is used to implement a
MOESI protocol.

Since we only store the tag of the block and two more
bits in each directory entry, and the tag bits keep invariant
with the number of tiles, the size of the directory maintains
constant as the number of cores of the CMP grows. The total
size of each directory bank isc ∗ (lt + 2).

The associativity of the directory can be reduced from
n ∗ a to a by taking the number of the tile in which the block
is cached as part of the set bits. In this way, the number of
sets grows froms/n to s. Figure 2 shows how cache entries
are mapped to directory entries, to achieve this small asso-
ciativity. We can see thatln bits of the directory set are used
to identify the tile that holds the copy in its private L1 cache,
andln bits of the cache set are used to identify the home di-
rectory. In this way, each directory bank has the same num-
ber of sets and ways than the L1 private cache. Although in
the scheme theln bits are the less significant ones of the set
field, they can be any set of bits of that field.

Considering this mapping, all the coherence information
for a particular block can be found in the following way. To
know whether a block is stored in a particular cache it is nec-
essary to find the tag in the directory set whose identifier is
obtained by changing theln bits that identify the home direc-
tory with theln bits that identify the tile which contains that
cache. If the tag is found and the valid bit is set, the block
is held in that cache. If the ownership bit is set, that cache
is the owner of the block. By searching this information in
the correspondingn directory entries the complete directory
information is obtained. If theln bits are the less significant,
the search can be performed by readingn consecutive sets of
the directory bank.

Updating the directory information only requires modify-
ing few bits. On a write miss, then corresponding valid bits
are unset and the directory entry for the new owner is set with
the tag of the block and both the valid and the ownership bits
are set. Adding a new sharer only requires writing the tag of
the block in the corresponding directory entry and setting the
valid bit.

21

H

OR

4

3

FWDGET

ACK

DATAR

H

2

1

3 ACK

PUT

WrB

Replacement Request

(a) Traditional replacements.

2

H

4
R

1

3

O

GET/PUT

ACK/WrB

DATA/ACK

FWD/ACK

(b) Implicit replacements.

Figure 3. Differences between the proposed
coherence protocol and a traditional coher-
ence protocol.

4 Implicit replacements

The proposed directory organization allows us to modify
the coherence protocol to remove the messages caused by re-
placements. This is achieved by performing the replacements
in an implicit way along with the requests which cause them,
as shown in Figure 3.

There are two main factors that allows the presented direc-
tory organization to support implicit replacements. Firstly,
due to the fine-grained directory interleaving we ensure that
the evicted block and the requested block map to the same
home, and therefore, the same directory bank. If a coarse-
grained interleaving was chosen these blocks could map to
different directory banks. Secondly, each cache entry is as-
sociated with only one directory entry (the same way too),
and vice versa. In this way, both the directory and the re-
questing cache know the address of both the requested and
the evicted block and it is not necessary to attach the address
of the evicted block to the request messages. Note that the
size of coherence messages does not change. It is only nec-
essary to add a field indicating the way within the set of the
requested block (2 bits in our case).

In Figure 3(a), we can see how a replacement is usu-
ally performed. When a block must be stored in cache and
the corresponding set is full, an old block must be evicted.
In current directory protocols evictions of shared blocks are
usually performed transparently without informing the direc-
tory. Later, we will explain why when the directory is or-

ganized with duplicate tags, this kind of replacements must
inform the directory. On the other hand, evictions of private
or owned blocks must store the dirty data in the next cache
level. For simplicity these writebacks could be performed
in a tree-hop transaction as illustrated in Figure 3(a) (left).
First, the cache asks the home tile permission towriteback
the block (PUT). Then the home tile confirms the transaction
(ACK), and finally the block is sent to the next cache level
(WrB). Figure 3(a) (right) shows a cache-to-cache transfer
miss. Requests (GET) are sent to the home tile to get the
directory information, and then are forwarded (FWD) to the
owner cache where the data is provided (DATA), or the data
is directly provided from the L2 cache in the home tile. Fi-
nally, the requesting cache informs the home tile that another
cache miss for this memory block can be processed (ACK).

Figure 3(b) shows how the implicit replacements are per-
formed along with the requests that cause them. On each
cache miss a MSHR entry (Miss Status Hold Register) is
allocated with the information about the request. More-
over, another MSHR entry must be allocated for the evicted
block (if any). The former entry needs to keep a pointer to
the later one. Moreover, the particular way within the set
where the new block will be stored is specified in the each
coherence message. When the GET/PUT message reaches
the home tile, another two MSHR entries must be allocated
(as usually), one of them pointing to the other. Finally,
when the data arrives to the requesting cache (DATA/ACK)
both MSHRs are deallocated and the writeback is performed
(ACK/WrB), thus allowing the directory processing the sub-
sequent requests for both blocks.

Finally, it is necessary to inform the directory about evic-
tions of shared blocks in some protocols like Piranha [4]
which uses duplicate tags. This is because before adding a
new entry to the directory an old entry must be deallocated
if the number of entries of the directory is the same than the
number of entries of the caches. This can be avoided by tak-
ing into account the way within the set that the block is going
to use.

5 Simulation Environment

We evaluate our proposal with full-system simulation us-
ing Virtutech Simics [11] extended with Multifacet GEMS
[12]. GEMS provides a detailed memory system timing
model which accounts for all protocol messages and state
transitions. We simulate a 16-tiled CMP system with one
level of private cache and a logically shared and physically
distributed L2 cache. Table 1 shows the values of the main
parameters of this system.

We have implemented all the coherence protocols evalu-
ated in Section 7. These implementations have been exhaus-
tively checked using a tester program provided by GEMS
that checks all race conditions to raise any incoherence. The
Bit-Vectorprotocol organizes the directory as a tagged cache

Table 1. System parameters.
16-tiled CMP

Cache hierarchy Non-inclusive
Cache block size 64 bytes
Split L1 I & D caches 32KB, 4-way
L1 cache hit time 4 cycles
Shared unified L2 cache 8MB (512KB/tile), 4-way
L2 cache hit time 6 + 9 cycles (tag + data)
Memory access time 160 cycles
Network topology 4x4 Mesh
On-chip link latency (one hop) 2 cycles
Off-chip link latency (one hop) 20 cycles

with a bit-vector for each entry. This protocols has silent
evictions of shared blocks. The rest of protocols organize
the directory as duplicate tags. InDupTag-Sh, evictions of
shared blocks incurs in tree-hop transactions. InDupTag,
these evictions are silent as in the base directory protocol.
Finally, DupTag-Implicitis the protocol that implements the
implicit replacements mechanism.

The eight scientific applications used in our simulations
cover a variety of computation and communication patterns.
Barnes (8192 bodies, 4 time steps), FFT (256K complex dou-
bles), Ocean (258x258 ocean), Radix (1M keys, 1024 radix),
Raytrace (teapot), Volrend (head-scaleddown4) and Water-
NSQ (512 molecules, 4 time steps) are from the SPLASH-2
benchmark suite [23]. Unstructured (Mesh.2K, 5 time steps)
is a computational fluid dynamics application. We account
for the variability in multithreaded workloads by doing mul-
tiple simulation runs for each benchmark in each configura-
tion and injecting random perturbations in memory systems
timing for each run. The experimental results reported in this
paper correspond to the parallel phase of each program.

6 Directory Memory Overhead

In this section we study the directory memory overhead of
our proposed organization compared to some of the schemes
described in the related work. Figure 4 shows this overhead
as a function of the number of tiles in the system. The di-
rectory organizations shown in the graph areBit-Vector L2
Inclusive, Duplicate Tags, Bit-Vector + FGI, Coarse Vector
(K=4) + FGI , Limited pointers (3) + FGI, and finally our
proposal (Duplicate Tags + FGI). The characteristics of all
these schemes are described below. The overhead of the di-
rectory structure has been calculated for the values shown in
Table 1.

In the graph, we plot results for several directory organi-
zations.Bit-Vector L2 Inclusiveis currently used in the pro-
posed tiled CMPs in which the L1 and the L2 are inclusive
(the L2 contains all blocks held in the L1s). The directory
is stored in the tags’ part of the L2 cache, thus removing the
need of tags for the directory structure. Apart from forcing
inclusion and using a bit-vector sharing code (it could use an-
other compressed sharing code), the main drawback of this
scheme is that it needs the same number of entries than the
L2 cache.

Figure 4. Directory memory overhead as a
function of the number of tiles.

The problem of usingDuplicate Tagswith coarse-grained
interleaving (or a dynamic mapping) is that the number of
entries needed for each directory bank to allocate the infor-
mation of all the cached blocks does not scale, as explained
in Section 3.1.

When fine-grained interleaving (FGI) is considered, the
number of entries of the directory bank is reduced to the
number of L1 cache entries. As a consequence, theBit-
Vector + FGIorganization requires less storage than the pre-
vious schemes, but still remains non-scalable. InCoarse Vec-
tor (K=4) + FGI the sharing code is compressed by using
one bit per each group of four tiles. The bit is set if at least
one of the four tiles holds a copy of the block. Again the area
of the directory structure is reduced, but it does not scale.In
Limited pointers (3) + FGIonly three pointers are used to
identify the caches that share each memory block. When
the number of sharers is higher than three, writes are per-
formed by broadcasting invalidation messages (a broadcast
bit is also required per entry). This organization scales as
O(3 ∗ log2n). However, differently from the proposed orga-
nization, compressed sharing codes incur in extra coherence
messages since they do not store precise information about
all the caches that hold blocks.

Finally, we can see that by combining fine-grained inter-
leaving with duplicate tags (Duplicate Tags + FGI) we can
achieve a completely scalable directory organization which
keeps the same information than a bit-vector directory.

7 Evaluation Results

In this section, we evaluate the results in terms of num-
ber of coherence messages removed. Regarding performance
(execution time), all the protocols achieve similar results. In
particular, our protocol is able to remove all coherence mes-
sages caused by L1 replacements, without loosing any per-
formance. In Figure 5 we can observe the percentage of mes-
sages saved by our proposal.

barnes fft
ocean

radix

raytra
ce

unstru
ctured

volrend

waternsq

Average
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

N
or

m
al

iz
ed

 c
oh

er
en

ce
 m

es
sa

ge
s

Requests&Replies
Invalidations
Replacements

Figure 5. Reductions in the number of coher-
ence messages.

The number of coherence messages of each one of the
evaluated protocols has been normalized with respect to a tra-
ditional directory-based protocol that uses a bit-vector shar-
ing code (Bit-Vectorprotocol). Compared to this protocol,
the implicit replacements mechanism reduces the number of
coherence messages up to 32% for Radix (12% on average).
Moreover, if we consider theDupTag-Shprotocol our pro-
posal can save 29% of coherence messages on average. Fi-
nally, theDupTagprotocol slightly reduces the number of
coherence messages compared toBit-Vectormainly since the
number of invalidations is reduced. This is because when a
new tag is allocated in the duplicate tag directory, the old tag
is removed thus implicitly informing to the directory of the
evictions of shared blocks, and therefore most of the invali-
dations that find the block evicted from cache inBit-Vector
are removed inDupTag.

8 Conclusions

In this work, we show that a directory organization based
on duplicating tags, which are distributed among the tiles of
a tiled CMP following a fine-grained interleaving is scalable.
We show that the size of each directory bank does not depend
on the number of tiles in the system.

The total size of each directory bank in the studied orga-
nization isc ∗ (lt + 2), wherec is the number of entries of
the private L1 cache if the cache hierarchy is inclusive or the
aggregate number of entries of private L1 caches if the cache
hierarchy is non-inclusive, andlt is the size of the tag field.

Since the structure of each directory bank does not change
with the number of tiles, the same building block can be used
for systems with different number of tiles, thus making the
design of large-scale CMPs possible.

We have redesigned the cache coherence protocol to take
full advantage of this directory organization. In particular,
since each directory entry is mapped to only one cache entry,
we can perform the replacements in an implicit way along

with the requests which cause them, thus saving up to 32%
in the number of coherence messages (12% on average), and
consequently reducing power consumption. To achieve this,
the block must be mapped taking into consideration the way
within the set in which it is stored (the same way in the pri-
vate cache as in the directory).

Finally, as our protocol knows the way where the block
must be stored, more power consumption could be saved for
associative caches if accesses to other ways within the set are
removed.

Acknowledgements

This work has been jointly supported by Spanish MEC
under grant “TIN2006-15516-C04-03”, European Comis-
sion FEDER funds under grant “Consolider Ingenio-2010
CSD2006-00046” and European Comission funds under
Network of Excellence HiPEAC. A. Ros is supported by a
research grant from Spanish MEC under the FPU national
plan (AP2004-3735).

References

[1] M. E. Acacio, J. González, J. M. Garcı́a, and J. Duato. A
Two-Level Directory Architecture for Highly Scalable cc-
NUMA Multiprocessors.IEEE Transactions on Parallel and
Distributed Systems, 16(1):67–79, Jan. 2005.

[2] A. Agarwal, R. Simoni, J. L. Hennessy, and M. Horowitz. An
Evaluation of Directory Schemes for Cache Coherence. In
15th Int’l. Symp. on Computer Architecture (ISCA’88), pages
280–289, May 1988.

[3] M. Azimi, N. Cherukuri, D. N. Jayasimha, A. Kumar,
P. Kundu, S. Park, I. Schoinas, and A. S. Vaidya. Integra-
tion challenges and tradeoffs for tera-scale architectures. Intel
Technology Journal, 11(3):173–184, Aug. 2007.

[4] L. A. Barroso, K. Gharachorloo, R. McNamara,
A. Nowatzyk, S. Qadeer, B. Sano, S. Smith, R. Stets,
and B. Verghese. Piranha: A scalable architecture based on
single-chip multiprocessing. In27th Int’l Symp. on Computer
Architecture (ISCA’00), pages 12–14, June 2000.

[5] D. Chaiken, J. Kubiatowicz, and A. Agarwal. LimitLESS
Directories: A Scalable Cache Coherence Scheme. In4th
Int’l Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS IV), pages 224–
234, Apr. 1991.

[6] J. Chang and G. S. Sohi. Cooperative caching for chip mul-
tiprocessors. In33rd Int’l Symp. on Computer Architecture
(ISCA’06), pages 264–276, June 2006.

[7] A. Gupta, W.-D. Weber, and T. C. Mowry. Reducing mem-
ory traffic requirements for scalable directory-based cache co-
herence schemes. InInt’l Conference on Parallel Processing
(ICPP’90), pages 312–321, Aug. 1990.

[8] J. Huh, C. Kim, H. Shafi, L. Zhang, D. Burger, and S. W.
Keckler. A NUCA substrate for flexible CMP cache sharing.
In 19th Int’l Conference on Supercomputing (ICS’05), pages
31–40, June 2005.

[9] J. Kong, P.-C. Yew, and G. Lee. Minimizing the directory
size for large-scale shared-memory multiprocessors.IEICE -
Transactions on Information and Systems, E88-D(11):2533–
2543, Nov. 2005.

[10] H. Q. Le, W. J. Starke, J. S. Fields, F. P. O’Connell, D. Q.
Nguyen, B. J. Ronchetti, W. M. Sauer, E. M. Schwarz, and
M. T. Vaden. IBM POWER6 microarchitecture.IBM Journal
of Research and Development, 51(6), Nov. 2007.

[11] P. S. Magnusson, M. Christensson, J. Eskilson, D. Fors-
gren, G. Hallberg, J. Hogberg, F. Larsson, A. Moestedt, and
B. Werner. Simics: A full system simulation platform.IEEE
Computer, 35(2):50–58, Feb. 2002.

[12] M. M. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty,
M. Xu, A. R. Alameldeen, K. E. Moore, M. D. Hill, and
D. A. Wood. Multifacet’s general execution-driven multi-
processor simulator (GEMS) toolset.Computer Architecture
News, 33(4):92–99, Sept. 2005.

[13] M. R. Marty and M. D. Hill. Virtual hierarchies to support
server consolidation. In34th Int’l Symp. on Computer Archi-
tecture (ISCA’07), pages 46–56, June 2007.

[14] S. Mukherjee and M. D. Hill. An Evaluation of Directory Pro-
tocols for Medium-Scale Shared-Memory Multiprocessors.
In 8th Int’l Conference on Supercomputing (ICS’94), pages
64–74, July 1994.

[15] A. K. Nanda, A.-T. Nguyen, M. M. Michael, and D. J. Joseph.
High-Throughout Coherence Control and Hardware Messag-
ing in Everest. IBM Journal of Research and Development,
45(2):229–244, Mar. 2001.

[16] B. O’Krafka and A. Newton. An Empirical Evaluation of
Two Memory-Efficient Directory Methods. In17th Int.
Symp. on Computer Architecture (ISCA’90), pages 138–147.
IEEE/ACM, June 1990.

[17] A. Ros, M. E. Acacio, and J. M. Garcı́a. A novel lightweight
directory architecture for scalable shared-memory multipro-
cessors. In11th Int’l Euro-Par Conference, volume 3648,
pages 582–591, Aug. 2005.

[18] R. Simoni.Cache Coherence Directories for Scalable Multi-
processors. PhD thesis, Stanford University, 1992.

[19] R. Simoni and M. Horowitz. Dynamic Pointer Allocation
for Scalable Cache Coherence Directories. InInt’l Symp. on
Shared Memory Multiprocessing, pages 72–81, Apr. 2001.

[20] Sun Microsystems, Inc., Santa Clara, CA 95054.
OpenSPARCTM T2 System-On-Chip (SOC) Microar-
chitecture Specification, Dec. 2007.

[21] M. B. Taylor, J. Kim, and J. Miller, et al. The raw micro-
processor: A computational fabric for software circuits and
general purpose programs.IEEE Micro, 22(2):25–35, May
2002.

[22] S. Vangal, J. Howard, and G. Ruhl, et al. An 80-tile 1.28tflops
network-on-chip in 65nm cmos. InIEEE Int’l Solid-State Cir-
cuits Conference (ISSCC), Feb. 2007.

[23] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. The
SPLASH-2 programs: Characterization and methodological
considerations. In22nd Int’l Symp. on Computer Architecture
(ISCA’95), pages 24–36, June 1995.

[24] M. Zhang and K. Asanovic. Victim replication: Maximizing
capacity while hiding wire delay in tiled chip multiprocessors.
In 32nd Int’l Symp. on Computer Architecture (ISCA’05),
pages 336–345, June 2005.

