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Abstract. In many-core CMP architectures, the cache coherence proto-
col is a key component since it can add requirements of area and power
consumption to the final design and, therefore, it could restrict severely
its scalability. Area constraints limit the use of precise sharing codes to
small- or medium-scale CMPs. Power constraints make impractical to
use broadcast-based protocols for large-scale CMPs.

Token-CMP and DiCo-CMP are cache coherence protocols that have
been recently proposed to avoid the indirection problem of traditional
directory-based protocols. However, Token-CMP is based on broadcast-
ing requests to all tiles, while DiCo-CMP adds a precise sharing code to
each cache entry. In this work, we address the traffic-area trade-off for
these indirection-aware protocols. In particular, we propose and evalu-
ate several implementations of DiCo-CMP which differ in the amount of
coherence information that they must store. Our evaluation results show
that our proposals entail a good traffic-area trade-off by halving the traf-
fic requirements compared to Token-CMP and considerably reducing the
area storage required by DiCo-CMP.

1 Introduction

Current chip multiprocessors (CMPs) have a relatively small number of cores,
which are typically connected through a shared medium, i.e., a bus or a cross-
bar (e.g., the dual-core IBM Power6 [1] and the eight-core Sun T2 [2]). How-
ever, CMP architectures that integrate tens of processor cores (usually known
as many-core CMPs) are expected for the near future [3], making undesirable el-
ements that could compromise the scalability of these designs. For example, the
area required by a shared network becomes impractical as the number of cores
grows [4]. Therefore, tiled CMPs designed as arrays of replicated tiles connected
over a point-to-point network are a scalable alternative to current small-scale
CMP designs and they will help in keeping complexity manageable.

In these architectures, each tile contains at least one level of private caches
which are kept coherent by using a cache coherence protocol. The cache coher-
ence protocol is a key component since it adds requirements of area and power
consumption, which can condition systems scalability. Although a great deal of
attention was devoted to scalable cache coherence protocols in the last decades
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in the context of shared-memory multiprocessors, the technological parameters
and constrains entailed by many-core CMPs demand new solutions to the cache
coherency problem [5]. One of these constrains is the use of unordered networks,
that prevent from using the popular snooping-based cache coherence protocol.

Two traditional cache coherence protocols aimed to be used with unordered
networks are Hammer [6], implemented in the AMD OpteronTM, and Directory
[7]. Hammer avoids keeping coherence information at the cost of broadcasting
requests to all cores. Although it is very efficient in terms of area requirements, it
generates a prohibitive amount of network traffic, which translates into excessive
power consumption. On the other hand, Directory reduces network traffic com-
pared to Hammer by storing in a directory structure precise information about
the private caches holding memory blocks. Unfortunately, this storage could
become prohibitive for many-core CMPs [3]. Since neither the network traffic
generated by Hammer nor the extra area required by Directory scale with the
number of cores, a great deal of attention was paid in the past to address this
traffic-area trade-off [8,9,10].

On the other hand, these traditional cache coherence protocols introduce the
well-known indirection problem. In both protocols, the ordering point for the
requests to the same memory block is the home tile. Therefore, all cache misses
must reach this ordering point before performing coherence actions, a fact that
introduces extra latency in the critical path of cache misses. Recently, Token-
CMP [11] and DiCo-CMP [12] protocols have been proposed to deal with the
indirection problem. These indirection-aware protocols avoid the access to the
home tile through alternative serialization mechanisms. Token-CMP only cares
about requests ordering in case of race conditions. In those cases, a persistent
requests mechanism is responsible for ordering the different requests. In DiCo-
CMP the ordering point is the tile that provides the block in a cache miss
and indirection is avoided by directly sending the requests to that tile. These
indirection-aware protocols reduce the latency of cache misses compared to Ham-
mer and Directory, which translates into performance improvements. Although
Token-CMP entails low memory overhead, it is based on broadcasting requests
to all tiles, which is clearly non-scalable. Otherwise, DiCo-CMP sends requests
to just one tile, but it adds a bit-vector field that keeps track of sharers to each
cache entry, which does not scale with the number of cores.

The aim of this work is to address the traffic-area trade-off of indirection-aware
protocols for many-core tiled CMPs. Although this trade-off has been widely
studied for traditional protocols, in this work we consider protocols that try to
avoid indirection. Particularly, we perform this study by relaxing the accuracy
of the sharing codes used in DiCo-CMP. The other important contribution of
this work is the evaluation of the state of the art in cache coherence protocols
for future many-core CMPs in a common framework.

We have implemented and evaluated several cache coherence protocols based
on the direct coherence concept which differ in the amount of coherence infor-
mation that they store. Particularly, DiCo-LP-1, which only stores the identity
of one sharer along with the data block, and DiCo-NoSC, which does not store
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any coherence information along with the data caches, are the best alternatives.
DiCo-LP-1 presents a good traffic-area trade-off by requiring slightly more area
than Token-CMP (1% for 32 cores, and same complexity order –O(log2n)–) and
slightly increasing network traffic compared to DiCo-CMP (11% on average for
32 cores). DiCo-NoSC does not need to modify the structure of caches to add
any extra field and, therefore, introduces less area requirements than Token-
CMP (4% for 32 cores). However, it increases network traffic by 35% compared
to DiCo-CMP, but still halving the traffic when compared to Token-CMP.

The rest of the paper is organized as follows. Section 2 discusses the cache co-
herence protocols that could be be used in many-core CMPs. DiCo-CMP and the
implementations evaluated in this work are described in Section 3. Section 4 focus
on the evaluation methodology. Section 5 shows performance results. In Section 6
we present the related work. Finally, Section 7 concludes the paper.

2 Background on Cache Coherence Protocols

This section describes the cache coherence protocols proposed in the literature
aimed to be used in systems with unordered networks. We describe their imple-
mentation for a tiled CMP, in which each tile includes private L1 caches (both
instruction and data caches) and a slice of the L2 cache. The L2 cache is phys-
ically distributed and logically shared among the different processing cores (L2
NUCA architecture [13]). Each memory block is assigned to a particular cache
bank (or tile) which is called its home bank (or home tile). We focus on the
cache coherence protocol employed for avoiding inconsistencies between data
stored in the L1 caches. We also assume that caches use MOESI states, and
that L1 and L2 caches are non-inclusive. We classify these cache coherence pro-
tocols into traditional protocols, in which cache misses suffer from indirection,
and indirection-aware protocols, which try to avoid the indirection problem.

2.1 Traditional Protocols

In traditional protocols, the requests issued by several cores to the same block
are serialized through the home tile, which enforces cache coherence. Therefore,
all requests must be sent to the home tile before coherence actions can be per-
formed. Then, the request is forwarded to the corresponding tiles according to
the coherence information (or it is broadcast if the protocol does not maintain
any coherence information). All processors that receive the forwarded request
answer to the requesting core by sending either an acknowledgment (invalidat-
ing the block in case of write misses) or the requested data block. The requesting
core can access the block when it receives all the acknowledgment and data mes-
sages. The access to the home tile introduces indirection, which causes that cache
misses take three hops in the critical path.

Examples of these traditional protocols are Hammer and Directory. As com-
mented in the introduction, Hammer has the drawback of generating a consider-
able amount of network traffic. On the other hand, directory protocols that use
a precise sharing code to keep track of cached blocks introduce an area overhead
that does not scale with the number of cores.
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Hammer-CMP. Hammer is the cache coherence protocol used by AMD in
their Opteron systems. Like snooping-based protocols, Hammer does not store
any coherence information about the blocks held in private caches and it relies
on broadcasting requests to solve cache misses. The advantage with respect to
snooping-based protocols is that Hammer targets systems that use a point-to-
point interconnection. However, the ordering point in this protocol is the home
tile, a fact that introduces indirection for every cache miss. In this work we
evaluate an implementation of the AMD’s Hammer protocol for tiled CMPs, that
we call Hammer-CMP. As an optimization for tiled CMPs, our implementation
adds a small structure to each home tile which stores the tag of the blocks that
are held in the private L1 caches. This optimization avoids off-chip accesses when
the block can be obtained on-chip, and uses a small structure whose size does
not increase with the number of cores.

Directory-CMP. The directory-based protocol that we have implemented is
similar to the intra-chip coherence protocol used in Piranha [14]. This protocol
avoids broadcasting requests by storing in the home tile precise information
about the state of each block in the private caches. This information consists in
a full-map (or bit-vector) sharing code employed for keeping track of the sharers,
and a pointer identifying the owner tile, i.e., the tile that provides the data block.
The bit-vector field allows the protocol to send invalidation messages just to the
caches currently sharing the block. The owner field is used in a MOESI protocol
to avoid forwarding requests to all sharers on read misses. In this way, requests
are only forwarded to the tile that provides the block. This precise directory
information allows the protocol to reduce considerably network traffic compared
to Hammer-CMP.

2.2 Indirection-Aware Protocols

Recently, new cache coherence protocols have been proposed to avoid the indirec-
tion problem of traditional protocols. Token-CMP avoids indirection by broad-
casting requests to all tiles and maintains coherence through a token counting
mechanism. Although the area required to store the tokens of each block is rea-
sonable, network requirements are prohibitive for may-core CMPs. On the other
hand, DiCo-CMP keeps traffic low by sending requests to only one tile. How-
ever, coherence information used by its previous implementations [12] include
bit-vector sharing codes, which are not scalable in terms of area requirements.

Token-CMP. Token coherence is a framework for designing coherence proto-
cols whose main asset is that it decouples the correctness substrate from the
performance policies. Token coherence protocols avoid both the need of a totally
ordered network and the introduction of indirection. They keep cache coher-
ence by assigning T tokens to every memory block, where one of the T is the
owner token. Then, a processor can read a block only if it holds at least one
token for that block. On the other hand, a processor can write a block only if it
holds all tokens for that block. Token coherence avoids starvation by issuing a
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Table 1. Summary of cache coherence protocols

Traditional Indirection-aware
Traffic-intensive Hammer-CMP Token-CMP
Area-demanding Directory-CMP DiCo-CMP

persistent request when a processor detects potential starvation. In this paper,
we evaluate Token-CMP [11], which is a performance policy aimed to achieve
low-latency cache-to-cache transfer misses. Token-CMP uses a distributed arbi-
tration scheme for persistent requests, which are issued after a single retry to
optimize the access to contended blocks.

DiCo-CMP. Direct coherence protocols where proposed both to avoid the in-
direction problem of traditional directory-based protocols and to reduce the
traffic requirements of token coherence protocols. In direct coherence, the or-
dering point for the requests to a particular memory block is the current owner
tile of the requested block. In this way, the tile that must provide the block in
case of a cache miss is the one that keeps coherence for that block. Indirection is
avoided by directly sending requests to the corresponding owner tile instead to
the home one. In this paper we evaluate DiCo-CMP [12], an implementation of
direct coherence for CMPs. Particularly, we implement the base policy presented
that work because it is the policy that incurs in less area and traffic requirements
and it obtains similar execution times than Token-CMP.

2.3 Summary

Table 1 summarizes the described protocols. Hammer-CMP and Token-CMP
are based on broadcasting requests on every cache miss. Although the storage
required to keep coherence in these protocols is small, they generate a prohibitive
amount of network traffic. On the other hand, Directory-CMP and DiCo-CMP
achieve more efficient utilization of the interconnection network at the cost of
increasing storage requirements compared to Hammer-CMP and Token-CMP.

3 Traffic-Area Trade-Off in Direct Coherence Protocols

3.1 DiCo-CMP Basis and Storage Requirements

As previously discussed, traditional protocols introduce indirection in the crit-
ical path of cache misses. Figure 1(a) (left) gives an example of a cache miss
suffering from indirection in Directory-CMP. When a cache miss takes place it is
necessary to access the home tile to obtain the directory information and order
the requests before performing coherence actions (1 Get). In case of a cache-
to-cache transfer, the request is subsequently sent to the owner tile (2 Fwd)
where the block is provided (3 Data). As it can be observed, the miss is solved
in three hops. Moreover, other requests for the same block cannot be processed
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Fig. 1. Behavior and tile design of Directory-CMP and DiCo-CMP

by the directory until it receives the unblock message (3 Unbl). As shown in
Figure 1(a) (right), DiCo-CMP sends directly the request to the owner tile (1
Get). In this way, data is provided by it (2 Data), thus requiring only two hops
to solve the miss. This is achieved by assigning the task of keeping cache co-
herence and ensuring ordered accesses to the owner tile. Therefore, DiCo-CMP
extends the tags’ part of the L1 data caches with a bit-vector field (L2 caches
already include this field in Directory-CMP) to allow the protocol to keep track
of sharers of a block along with its owner copy. In contrast, DiCo-CMP does not
need the directory structure in the home tile that traditional directory protocols
require. Additionally, by keeping together the owner block and the directory in-
formation, control messages between them are not necessary, thus saving some
network traffic.

On the other hand, the drawback of DiCo-CMP is that the owner tile can
change on write misses and, therefore, finding it could be difficult in some cases.
Hence, DiCo-CMP needs two extra hardware structures that are used to record
the identity of the owner cache of every memory block: the L1 coherence cache
and the L2 coherence cache, as shown in Figure 1(b).

– L1 coherence cache (L1C$): The information stored in this structure is used
by the requesting core to directly send local requests to the owner tile. There-
fore, this structure is located close to each processor’s core. Although DiCo-
CMP can update this information in several ways, we consider in this work
the base policy presented in [12], in which this information is updated by
using the coherence messages sent by the protocol, i.e., invalidation and data
messages.

– L2 coherence cache (L2C$): Since the owner tile can change on write misses,
this structure is responsible for tracking the owner cache for each block
allocated in any L1 cache. The L2C$ replaces the directory structure required
by Directory-CMP and it is accessed each time a request fails to locate the
owner tile. Therefore, this information is updated through control messages
whenever the owner tile changes.
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3.2 DiCo-CMP Cache Coherence Protocol

When a processor issues a request that misses in its private L1 cache, the request
is directly sent to the owner tile in order to avoid indirection. The identity of
the potential owner tile is obtained from the L1C$, which is accessed at the time
that the cache miss in detected. If there is a hit in the L1C$, the request is sent
to the owner tile. Otherwise, the request is sent to the home tile, where the L2C$
will be accessed to get the identity of the current owner tile.

If the request is received by a tile that is not the current owner of the block,
it is simply re-sent to the home tile, where the L2C$ is accessed. Then, in case
of a hit in the L2C$, the request is sent to the current owner tile. In absence
of race conditions the request will reach the owner tile. If there is a miss in the
L2C$ the request is solved by providing the block from main memory, where, in
this case, a valid copy of the block resides. In this case, a new entry pointing to
the current L1 owner tile has to be allocated in the L2C$.

If the request reaches the owner tile, the miss can be immediately solved. If the
owner is the home tile all requests (reads and writes) are solved by deallocating
the block from the home tile and allocating it in the L1 cache of the requester.
Again, the identity of the new owner tile is stored in the L2C$.

When the owner is the L1 cache, read misses are completed by sending a
copy of the block to the requester and adding it to the sharing code field. Write
misses are solved by sending invalidation messages to all the tiles sharing the
block and by sending the data block to the requester. Acknowledgement messages
are collected at the requesting cache as in all protocols evaluated in this work.

Finally, since the L2C$ must store up-to-date information regarding the owner
tile, every time that the owner tile changes, a control message is sent to the L2C$
indicating the identity of the new owner. These messages must be processed
by the L2C$ in the very same order in which they were generated. Otherwise,
the L2C$ could fail to store the identity of the current owner. The order is
guaranteed by sending an acknowledgement from the L2C$ to the new owner.
Until this message is not received by the new owner, it cannot give the ownership
to another tile. Note that these two control messages are not in the critical path
of the current miss.

3.3 Reducing Storage Requirements for DiCo-CMP

DiCo-CMP needs two structures that keep the identity of the tile where the
owner copy of the block resides. These two structures does not compromise
scalability because they have a small number of entries and each one stores a
tag and a pointer to the owner tile (log2n bits, where n is the number of cores).
The L2C$ is necessary to solve cache misses in DiCo-CMP, since ensures that
the tile that keeps coherence for each block can always be found. On the other
hand, the L1C$ is necessary to avoid indirection in cache misses and, therefore,
it is essential to obtain good performance.

Apart from these structures, DiCo-CMP also adds a full-map sharing code to
each cache entry. Since the memory overhead of this field can become prohibitive
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for many-core CMPs, we study some alternatives that differ in the amount of
coherence information stored. These alternatives have at least area requirements
of order O(log2n), due to the L1C$ and the L2C$. The particular compressed
sharing code employed only impacts on the number of invalidations sent for write
misses, because in DiCo-CMP cache misses are solved from the owner tile and,
therefore, read misses are never broadcast. Next, we comment on the alternatives
evaluated in this work.

DiCo-CV-K is a DiCo-CMP protocol that reduces the size of the sharing
code field by using a coarse vector [10]. In a coarse vector, each bit represents a
group of K tiles, instead of just one. A bit is set when at least one of the tiles
in the group holds the block in its private cache. Therefore, if one of the tiles
in the group holds the block, all tiles belonging to that group will receive an
invalidation message. Particularly, we study two configurations using a coarse
vector sharing code with values for K of 2 and 4. Although this sharing code
reduces the memory required by the protocol, its size still increases linearly with
the number of cores.

DiCo-LP-P employs a limited pointers sharing code [9]. In this scheme, each
entry has a limited number of P pointers for the first P sharers of the block.
Actually, since DiCo-CMP always stores the information about the owner tile in
the L2C$, the first pointer is employed to store the identity of the second sharer
of the block. When the sharing degree of a block is greater than P + 1, write
misses are solved by broadcasting invalidations to all tiles. However, this kind of
misses is not very frequent since the sharing degree of applications is usually low
[7]. The overhead of this sharing code is O(P × log2n). In particular, evaluate
this protocol with a value for P of 1.

Finally, DiCo-NoSC (no sharing code) does not maintain any coherence in-
formation along with the owner block. In this way, this protocol does not need to
modify the structure of data caches to add any field. This lack of information im-
plies broadcasting invalidation messages to all tiles upon write misses, although
this is only necessary for blocks in shared state because the owner tile is always
known in DiCo-CMP. This scheme incurs in more network traffic compared to
DiCo-CV-K or DiCo-LP-P. However, it incurs in less traffic than Hammer-CMP
and Token-CMP. Hammer-CMP requires broadcasting requests on every cache
miss, and what is more expensive in a network with multicast support, every
tile that receives the request answers with a independent control message. On
the other hand, although Token-CMP avoids unnecessary acknowledgements, it
also relies on broadcasting requests for all cache misses.

4 Simulation Environment

We perform the evaluation using the full-system simulator Virtutech Simics [15]
extended with Multifacet GEMS 1.3 [16], that provides a detailed memory sys-
tem timing model. Since the network modeled by GEMS 1.3 is not very precise,
we have extended it with SICOSYS [17], a detailed interconnection network sim-
ulator. We simulate CMP systems with 16 and 32 tiles to show that our proposals
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Table 2. System parameters

GEMS Parameters SICOSYS Parameters
Processor frequency 4 GHz Network frequency 2 GHz
Cache hierarchy Non-inclusive Topology 4x4 & 8x4 Mesh
Cache block size 64 bytes Switching technique Wormhole, Multicast
Split L1 I & D caches 128KB, 4 ways, 4 hit cycles Routing technique Deterministic X-Y
Shared unified 1MB/tile, 4 ways, Data message size 4 flits

L2 cache 7 hit cycles Control message size 1 flit
L1C$ & L2C$ 512 sets, 4 ways, 2 hit cycles Routing time 2 cycles
Directory cache 512 sets, 4 ways, 2 hit cycles Link latency (one hop) 2 cycles
Memory access time 200 cycles Link bandwidth 1 flit/cycle

scale with the number of cores. Table 2 shows the values of the main parameters
used for the evaluation, where cache latencies have been calculated using the
CACTI 5.3 tool [18] for 45nm technology. We also have used CACTI to measure
the area of the different structures needed in each one of the evaluated protocols.
In this study, we assume that the length of the physical address is 44 bits, like
in the SUN UltraSPARC-III architecture [19].

The ten applications used in our simulations cover a variety of computa-
tion and communication patterns. Barnes (8192 bodies, 4 time steps), FFT
(256K points), Ocean (258x258 ocean), Radix (1M keys, 1024 radix), Ray-
trace (teapot), Volrend (head) and Water-Nsq (512 molecules, 4 time steps)
are scientific applications from the SPLASH-2 benchmark suite [20]. Unstruc-
tured (Mesh.2K, 5 time steps) is a computational fluid dynamics application.
MPGdec (525 tens 040.m2v) and MPGenc (output of MPGdec), are multime-
dia applications from the APLBench suite [21]. We account for the variability in
multithreaded workloads by doing multiple simulation runs for each benchmark
in each configuration and injecting random perturbations in memory systems
timing for each run.

5 Evaluation Results

5.1 Impact on Area Overhead

First, we compare the memory overhead introduced by coherence information
for all the protocols considered in this work. Although some protocols can en-
tail extra overhead as a consequence of the additional mechanisms that they
demand (e.g., timeouts for reissuing requests in Token-CMP), we only consider
the amount of memory required to keep coherence information. Figure 2 shows
the storage overhead introduced by these protocols in terms of both number of
bits and estimated area, varying the number of cores from 2 to 1024.

Although the original Hammer protocol does not require coherence informa-
tion, our optimized version for CMPs adds a new structure to the home tile.
This structure is a 512-set 4-way cache that contains a copy of the tags for
blocks stored in the private L1 caches but not in the shared L2 cache. However,
this structure introduces a slight overhead which however keeps constant when
the number of cores increases.
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Fig. 2. Overhead introduced by the coherence protocols evaluated in this work

Directory-CMP stores the directory information either in the L2 tags, when
the L2 cache holds a copy of the block, or in a distributed directory cache, when
the block is stored in any of the L1 caches but not in the L2 cache. Since the
information is stored by using a bit-vector, the number of required bits is n and,
consequently, the width of each entry grows linearly with the number of cores.

Token-CMP keeps the token count for any block stored both in the L1 and
L2 caches, which requires log2(n + 1) bits (the owner-token bit and non-owner
token count). These additional bits are stored in the tags’ part of both cache
levels. Therefore, Token-CMP has an acceptable scalability in terms of area.

DiCo-CMP stores directory information for owner blocks stored in any L1 or
L2 cache. Therefore, a full-map sharing code is added to each cache line. More-
over, it uses two structures that store the identity of the owner tile, the L1C$ and
the L2C$. Each entry in these structures contains a tag and an owner field, which
requires log2n bits. Hence, this is the protocol with more area requirements.

In this work, we propose to reduce this overhead by introducing compressed
sharing codes in DiCo-CMP. DiCo-CV-2 and DiCo-CV-4 save storage compared
to DiCo-CMP but they are still non-scalable. In contrast, DiCo-LP-1, which only
adds a pointer for the second sharer of the block (the first one is given by the
L2C$) has better scalability –O(log2n)–. Finally, DiCo-NoSC, which does not
require to modify data caches to add coherence information, is the implementa-
tion of DiCo with less overhead (although it still has order O(log2n) due to the
presence of the L1 and L2 coherence caches), at the cost of increasing network
traffic. Finally, we can see that a small overhead in the number of required bits
results in a major overhead when the area of the structures is considered.

5.2 Impact on Network Traffic

Figure 3 compares the network traffic generated by the protocols discussed pre-
viously for the 16-core and the 32-core configurations. Each bar plots the number
of bytes transmitted through the interconnection network normalized with re-
spect to Hammer-CMP.
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Fig. 3. Normalized network traffic

As expected, Hammer-CMP introduces more network traffic than the other
protocols due to the lack of coherence information, which implies broadcasting re-
quests to all cores and receiving the corresponding acknowledgements. Directory-
CMP reduces considerably traffic by adding a bit-vector that filters unnecessary
invalidations. Token-CMP generates more network traffic than Directory-CMP,
because it relies on broadcast, and less than Hammer-CMP, because it does
not need to receive acknowledgements from tiles without tokens (i.e., the tiles
that do not share the block). However, for some applications, like MPGdec and
MPGenc, Token-CMP generate more traffic than Hammer-CMP for the 32-core
configuration. This increase is due to two main factors. First, in Hammer-CMP,
read misses that found the data block in the L2 cache do not broadcast requests
whereas Token-CMP always needs to broadcast read requests. Second, the high
contention found in these applications increases the amount of reissued persis-
tent requests in Token-CMP. Finally, we can also observe that DiCo-CMP has
similar traffic requirements than Directory-CMP.
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Fig. 4. Traffic-area trade-off

In general, we can see that compressed sharing codes increase network traffic.
However, the increase in traffic is admissible. Even DiCo-NoSC, which does not
keep track of sharers, generates an acceptable amount of network traffic (36%
less traffic than Token-CMP for 16 cores and 50% for 32 cores). As previously
commented, DiCo-NoSC stores in the L2C$ a pointer to the owner block which
prevent read misses of broadcasting requests, as happens in Hammer-CMP and
Token-CMP.

5.3 Traffic-Area Trade-Off

Figure 4 shows the traffic-area trade-off for all the protocols evaluated in this
work. The figure also differentiates between traditional and indirection-aware
protocols. We can see that, in general, the base protocols aimed to be used with
tiled CMPs do not have a good traffic-area trade-off: both Hammer-CMP and
Token-CMP are constrained by traffic while both Directory-CMP and DiCo-
CMP are constrained by area.

However, the use of different compressed sharing codes for DiCo-CMP can lead
to a good compromise between network traffic and area requirements. The DiCo-
CV approaches have low traffic overhead but the area requirements considerably
increase with the number of cores. Both DiCo-LP-1 and DiCo-NoSC are very
close to an ideal protocol with the best of the base protocols. The difference is
that DiCo-LP-1 is more efficient in terms of generated traffic while DiCo-NoSC
is more efficient in terms of area requirements. Particularly, DiCo-LP-1 requires
slightly more area than Token-CMP (1% for 32 cores, and same complexity order
–O(log2n)–) and slightly increases network traffic compared to DiCo-CMP (11%
on average for 32 cores). On the other hand, DiCo-NoSC does not need to modify
the structure of caches to add any extra field and, therefore, introduces less area
requirements than Token-CMP (4% for 32 cores), but with the same complexity
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Fig. 5. Normalized execution times

order –O(log2n)–. However, it increases network traffic by 35% compared to
DiCo-CMP, but still halving the traffic when compared to Token-CMP.

5.4 Impact on Execution Time

Figure 5 plots the average execution times for the applications evaluated in this
work normalized with respect to Hammer-CMP. Compared to Hammer-CMP,
Directory-CMP improves performance for all applications as a consequence of an
important reduction in terms of network traffic. Moreover, on each miss Hammer-
CMP must wait for all the acknowledgement messages before the requested block
can be accessed. On the contrary, in Directory-CMP only write misses must wait
for acknowledgements.

On the other hand, indirection-aware protocols reduce average execution time
when compared to traditional protocols. Particularly, Token-CMP obtains av-
erage improvements of 16% compared to Hammer-CMP and 4% compared to
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Directory-CMP for 16 cores. Similar improvements are obtained with DiCo-
CMP. For 32 cores, the average improvements of indirection-aware protocols
becomes more significant. On the other hand, when DiCo-CMP employs com-
pressed sharing codes, the execution time increases. However, it remains close to
DiCo-CMP, except for DiCo-NoSC mainly when a 32-core CMP is
considered.

6 Related Work

DiCo-CMP was recently proposed by Ros et al. [12] to avoid the indirection
of traditional coherence protocols in tiled CMPs. This protocol adds a bit-
vector sharing code to each cache entry (particularly, in the tags part), thus
compromising scalability. In this work, we propose and evaluate several imple-
mentations of DiCo-CMP that use compressed sharing codes to scale gracefully
with the number of cores and do not require a prohibitive amount of network
traffic.

Snoopy protocols do not introduce indirection because they are based on
a totally-ordered interconnection network. Unfortunately, these interconnection
networks are not scalable. Some proposals have focused on using snoopy proto-
cols with arbitrary network topologies. Martin. et al. [22] present a technique
that allows SMPs to utilize unordered networks (with some modifications to
support snooping). Bandwidth Adaptive Snooping Hybrid (BASH) [23] is an
hybrid coherence protocol that dynamically decides whether to act like snoopy
protocols (broadcast) or directory protocols (unicast) depending on the available
bandwidth. In contrast, the protocol presented in this work does not changes dy-
namically, but only broadcast requests for a small number of cache misses, thus
obtaining network traffic reductions.

Cheng et al. [24] adapt already existing coherence protocols for reducing en-
ergy consumption and execution time in CMPs with heterogeneous networks.
In particular, they assume a heterogeneous network comprised of several sets
of wires, each one with different latency, bandwidth, and energy characteristics,
and propose to send each coherence message through a particular set of wires
depending on its latency and bandwidth requirements. Our proposals are or-
thogonal to this work and the ideas presented in [24] could also be applied to
direct coherence protocols.

Martin et al. propose to use destination-set prediction to reduce the band-
width required by a snoopy protocol [25]. Differently from our proposals, this
approach is based on a totally-ordered interconnect, which is not suitable for
large-scale tiled CMPs. Regarding indirection avoidance, Cheng et al. propose
to convert 3-hop read misses into 2-hop read misses for memory blocks that
exhibit the producer-consumer sharing pattern [26] by using extra hardware to
detect when a block is being accessed according to this pattern. In contrast, di-
rect coherence obtains 2-hops misses for read, write and upgrade misses without
taking into account sharing patterns.
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7 Conclusions

Tiled CMP architectures have recently emerged as a scalable alternative to cur-
rent small-scale CMP designs, and will be probably the architecture of choice
for future many-core CMPs. On the other hand, although a great deal of at-
tention was devoted to scalable cache coherence protocols in the last decades in
the context of shared-memory multiprocessors, the technological parameters and
power constrains entailed by CMPs demand new solutions to the cache coher-
ence problem. New cache coherence protocols, like Token-CMP and DiCo-CMP,
have been recently proposed to cope with the indirection problem of traditional
protocols. However, neither Token-CMP nor DiCo-CMP scale efficiently with
the number of cores.

This work addresses the traffic-area trade-off of indirection-aware cache coher-
ence protocols through several implementations of direct coherence for CMPs.
We evaluate several cache coherence protocols that differ in the amount of coher-
ence information that they store. Particularly, DiCo-LP-1, which only stores the
identity of one sharer along with the data block, and DiCo-NoSC, which does
not store any coherence information in the data caches, are the alternatives that
achieve a best compromise between traffic and area. Note that both approaches
include the coherence caches required by direct coherence protocols. DiCo-LP-1
presents a good trade-off by requiring slightly more area than Token-CMP (1%
for 32 cores and same order –O(log2n)–) and slightly increasing network traf-
fic compared to DiCo-CMP (11% for 32 cores). DiCo-NoSC does not need to
modify the structure of caches and, therefore, has less area requirements than
Token-CMP (4% for 32 cores), but with the same complexity order –O(log2n)–.
However, it increases network traffic by 35% compared to DiCo-CMP, but still
halving the traffic when compared to Token-CMP. Finally, DiCo-LP-1 improves
execution time compared to DiCo-NoSC due to reductions in network traffic.
Finally, we believe that both alternatives can be considered for many-core tiled
CMPs depending on the particular system constraints.
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