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Abstract Maintaining coherence across hundreds or even thousands of cores
is not an easy task. Among all of the proposed solutions until now, directory-
based cache coherence has been advocated as the most feasible way of beating
the scalability hurdles that arise at such large scale. Thanks to the knowledge
accumulated during the last four decades, there is general consensus on the
impact of most of the design aspects of directory coherence on performance,
energy consumption and cost. However, there is one subtle design point for
which we have observed some divergences in contemporary research works
on cache-coherent multicores. Specifically, while some recent works assume a
silent replacement policy for evictions of clean data in the last-level private
caches, others implement just the opposite, that we call a noisy replacement
policy, and even others do not mention how these evictions are managed. In
this work we put this important aspect into the spotlight, demonstrating that
the way in which evictions of clean data are managed can have important
influence on the performance and energy consumption of a directory-based
cache coherence protocol. We show that the noisy replacement policy leads to
a significant increase of the total traffic (around 20% in several cases, 9.6%
on average) compared with the silent policy. Given the important fraction
of the total power budget that the on-chip interconnection network of future
manycores is expected to consume, assuming the silent replacement policy for
clean data will lead to non-negligible energy savings. Moreover, and what is
more important, we have observed that depending on the particular directory
structure used, assuming silent replacements could affect performance or not.
This means that the use of noisy replacements is not justified in all cases,
since it would increase unnecessarily network traffic without leading to any
performance advantages.
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1 Introduction and motivation

Today’s mainstream multicore processors offer the shared-memory abstraction
as the low-level programming paradigm. Programming systems with shared
memory has been popular due to its similarity to single-threaded program-
ming, easy mapping of certain classes of algorithms and the widespread avail-
ability of applications based on POSIX Threads and OpenMP. Additionally,
operating systems has been traditionally built on the shared-memory abstrac-
tion. Unless a radical change happens (something really improbable as of to-
day), this trend will continue at least in the immediate future [1]. Communica-
tions in these multicore architectures occur by writing to and reading from the
shared memory. In order to reduce average latency of memory accesses in these
architectures, as well as pressure on shared resources (interconnection network
and shared cache levels), every processor core in these designs is equipped with
one or more levels of private caches. A cache coherence protocol implemented
in hardware is responsible for ensuring that every processor core gets always
the most recent version of every memory block, avoiding incoherences and thus
making caches functionally invisible to software [2].

With the rapid increase in the number of cores that are integrated on chip,
the design of an efficient and scalable coherence protocol is not an easy task.
Maintaining coherence across hundreds or even thousands of cores gives birth
to some critical concerns that do not appear when the number of cores is low
and that affects directly the cost of the final design. Also, communications
in such large-scale multicores occur under the control of the cache coherence
protocol, which gives it a leading role in determining both overall performance
and energy requirements. Due to the increasing importance of cache coherence
in the multicore era, many proposals have appeared recently in the literature
trying to defeat the scalability hurdles that traditional approaches have. Most
solutions towards scalable cache coherence involve the use of a distributed
directory structure that holds information about which private caches maintain
copies of which memory blocks. Misses at the last-level private caches are
therefore sent to the corresponding directory module, which will perform the
required coherence actions (e.g., invalidation of sharers on a write miss).

Since first proposed in the late 1970s [3], directory-based cache coherence
solutions have been popular both in academia and in the commercial arena [2,
4]. This way, over the years, profound knowledge has been accumulated about
the implications on performance, energy consumption and cost of many design
decisions regarding this kind of protocols. However, although nowadays there
is general consensus about the impact of most of the design aspects of directory
coherence, there is one subtle design point for which we have observed some
divergences in contemporary literature. It has to do with how evictions1 of

1 Along this work, we use the terms “replacement” and “eviction” interchangeably.
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clean data in the last-level private caches are managed. Particularly, we have
found2 that some recent works assume in these situations a silent replacement
policy [5–8], i.e., the corresponding directory module is not notified, while
others implement just the opposite [9–13], that we call a noisy replacement
policy, and even others do not mention how these evictions are managed [14,
15].

In this work we put this important aspect into the spotlight, demonstrating
that the way in which evictions of clean data are managed can have important
influence on the performance and energy consumption of a directory cache
coherence protocol. Specifically, we show that the silent replacement policy
can save a significant percentage of the total traffic budget (more than 25%
in several cases, 9.6% on average) compared with the noisy one. Since the on-
chip interconnection network of some contemporary multicore architectures
has been shown to consume an important fraction of the total power budget
(approaching 40% [16]) and future on-chip networks in many-core processors
are estimated to consume hundreds of watts of power [17], assuming thus the
silent replacement policy for clean data will lead to non-negligible energy sav-
ings. Moreover, and what is more important, we have observed that depending
on the particular directory structure used, assuming silent replacements could
affect performance or not. This means that the use of noisy replacements is
not justified in all cases, since it would increase unnecessarily network traffic
without leading to any performance advantages. To elaborate on this, we show
different use cases in which it is better to apply each policy.

The rest of the manuscript is organized as follows. We start by discussing in
Section 2 the pros and cons of assuming silent and noisy replacement policies
for clean data. Subsequently, in Section 3 we present the simulation envi-
ronment and the use cases that are analyzed. Then, in Section 4 we report
detailed results in terms of execution time and network traffic, demonstrating
the importance of correctly managing clean data evictions. Finally, Section 5
contains the main conclusions of this work.

2 Evictions of clean data: silent versus noisy

Every time a cache miss happens, the requested block is brought to cache.
But, if there is no room for the block in the cache, an existing block has to
be evicted to make room3. The replaced block may have been modified locally
(a dirty block) or not (a clean block). On a replacement of a dirty block,
the next cache level must be updated with the new data. Differently, on a
replacement of a clean block, data at the next cache level does not need to

2 We have performed a revision of most papers on cache coherence appeared in the last
five editions of the proceedings of ISCA, HPCA, PACT and MICRO conferences, and we
have found that, out of 36 papers, noisy replacements are assumed in 14, silent replacements
in 8, and 14 papers do not mention the used policy.

3 Consequently, replacements are almost as frequent as cache misses once the cache hier-
archy is warmed up.
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Fig. 1: Example of silent evictions of clean data.
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Fig. 2: Example of noisy evictions of clean data.

be updated although, as we explain in this section, it may be desirable to
inform the directory about clean evictions at the private cache level so that
the sharing information of the block can be updated.

Thus, an important decision when designing a directory-based cache coher-
ence protocol is how to handle evictions of clean data. One option is to replace
the data block without informing the directory (known as a silent eviction).
The other option is to inform the directory about the replacement (what we
call a noisy eviction).

2.1 Examples of silent and noisy evictions

Two examples of the behavior of silent and noisy evictions are shown in Fig-
ures 1 and 2, respectively. Without loss of generality, the examples consider
two local caches and a single directory bank tracking the blocks stored in the
caches. In both cases, the initial situation (a) is the same: there are two caches
holding clean copies of the block A and the directory tracks their identity in a
sharers field. This field could be implemented using a bit-vector or any other
exact sharing code.

In Figure 1, evictions are performed in a silent way. Column (b) shows
the eviction of block A from local cache 2. For this, no message needs to be
exchanged between any nodes. The local cache simply discards the data. The
directory, therefore, keeps considering that local cache 2 still has the data.

It is important to remember that no incorrect behaviour will happen if the
directory does not have exact information about the set of sharers as long as
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the sharing code includes all current sharers. That is, it can include also nodes
that are not currently sharing the block). If the directory needs to invalidate
the sharers of the block, those nodes will receive an (unnecessary) invalidation
message which will need to be answered but it does not affect correctness (it
leads to extra traffic and latency as we will explain in next subsection).

Column (c) of the same Figure 1 shows another silent eviction for the same
block, this time from local cache 1. In the end, the entry for block A is kept
in the directory even though no local cache is using that block anymore.

On the other hand, Figure 2 illustrates how to perform the two same evic-
tions in a noisy way. In this case, messages need to be exchanged between the
directory and the replacing cache. First, an eviction notification is sent to the
directory. On receiving this, the directory updates the sharing information of
the block removing local cache 2 from the set of sharers. Finally, the directory
acknowledges local cache 2 about the replacement and the transaction finishes.

Again, column (c) of Figure 2 shows a second replacement for the same
block which is carried out exactly as the previous one. But, unlike in Figure 1,
since noisy replacements are being used this time, the directory updates the
sharing information of the block and when it notices that there are no more
cached copies of block A, it frees the directory entry occupied by that block.

2.2 Consequences of clean data eviction policy

The first consequence of the silent-versus-noisy eviction decision is the amount
of network traffic generated by the cache coherence protocol. Informing the
directory about the eviction of a clean block entails two control messages, as
shown in Figure 2. Observe that although two control messages would also be
required for invalidating a replaced clean copy if evictions are instead silent,
this would only be paid for written blocks and blocks whose directory entry
is evicted from the directory structure. Therefore, read-only blocks or clean
blocks that are replaced often will benefit from a silent eviction policy. Since
we have observed that these situations are frequent, the extra traffic generated
by noisy evictions can represent a large fraction of the overall coherence traffic.

The second consequence of implementing noisy evictions for clean data is
the accuracy of the directory information. This affects the coherence protocol
in two different ways. On one hand, the number of copies tracked by the direc-
tory is reduced. This means that upon a write miss or a directory replacement
fewer invalidation messages are issued, and consequently fewer acknowledg-
ments need to be received. Issuing fewer invalidations reduces both traffic
requirements and write miss latency. Reporting replacements of clean data
could be also beneficial when each directory entry can only track a limited
number of sharers (i.e. limited pointers sharing codes), since it would natu-
rally recycle directory information, saving overflow situations that otherwise
may arise. On the other hand, and more importantly, the directory occupation
is reduced because directory entries for blocks that have been evicted from all
the local caches can be deallocated. Reducing the pressure in the directory
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Fig. 3: Example of a write miss under different eviction policies.

leads to fewer directory replacements and, consequently, fewer invalidations
which leads to fewer cache misses.

The effect of having accurate directory information when handling write
misses is depicted in Figure 3. Assume for example that a write miss happens
for block A after the two replacements shown in Figures 1 and 2. In the
case of silent replacements (Figure 3a), the directory has to send invalidation
messages to the L1 caches even though they do not hold any copy of the block
at that moment because the directory was not notified when the block was
evicted, thus generating traffic and incurring in extra latency in the critical
path of the write miss. However, in the case of noisy replacements (Figure 3b),
the directory does not need to perform unnecessary invalidations and it can
directly give permission to write to the requesting cache.

There is a third consequence of the eviction policy mentioned by Sorin et
al. [2] related to the implementation complexity of the protocol. Silent evictions
allow a race condition when a block is requested just after having been evicted
from the same cache. If soon after that the cache receives an invalidation due
to a write request of another node, there is no straightforward way to know
if the invalidation should take place before or after receiving the requested
data. This complexity is the reason why Sorin et al. opt for noisy evictions.
However, although complex solutions to determine the most appropiate way
to solve this race may increase the protocol complexity, there is a very simple
option which is to always invalidate the data when it arrives. Since this race
happens rarely, more efficient solutions are not necessary. Thus, in practice
both evictions policies require similar complexity, and as a consequence of
this, we believe that the appropriate choice should be driven by performance.

2.3 When to use silent or noisy evictions

From the previous examples we can deduce that both kinds of eviction policies
have advantages and drawbacks. Silent evictions can reduce coherence traffic
due to replacements, while noisy evictions can reduce write miss latency and
improve directory efficiency by requiring fewer directory entries. The best pol-
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icy depends both on the application characteristics and on the cache coherence
protocol employed.

The drawbacks of silent evictions are the extra invalidations when handling
write misses and the extra directory evictions caused by the reduced precision
of the sharing information. Read-only data, therefore, will benefit from silent
evictions if they are frequently evicted and re-fetched before the directory
needs to replace the corresponding entry. Similarly, read-write data would be
favored by the silent evictions if the number of read misses per cache is much
larger than the number of write misses. Otherwise, noisy evictions may be
preferable due to the lower latency of write misses.

The properties of the cache coherence protocol employed have even more
importance to take a decision about the use of silent or noisy replacements.
For example, a linked-list protocol [18–20] would not be able to employ silent
replacements in any case because the list of sharers needs to be updated [21].
Similarly, a token-based protocol [22,23] cannot use silent invalidations either
because the tokens held by a sharer need to be transferred to the directory.

The decision becomes specially relevant for protocols that employ directory
caches where the number of entries used per block depends on the number of
sharers (e.g., dynamic pointer allocation [24] or SCD [13]). In these cases, the
better precision provided by noisy replacements can allow for better directory
usage and, consequently, reduce the number of directory replacements and the
amount of information each directory entry must track. This is less important
in more traditional directories because, in that case, directory entries can be
deallocated only when the number of sharers reaches zero.

3 Evaluation Methodology

We evaluate the use of silent and noisy replacements for different cache coher-
ence protocols using the PIN [25] and GEMS 2.1 [26] tools, which have been
connected in a similar way as described by Monchiero et al. [27]. In particular,
PIN obtains the instructions executed and the memory references performed
by them along with all the synchronization primitives employed in the applica-
tions, while in GEMS we model an in-order core that issues memory requests
to the GEMS’ memory hierarchy to calculate the access latency for each pro-
cessor request. We model the interconnection network with the SiCoSys [28]
simulator.

The simulated architecture corresponds to a single chip multiprocessor
(tiled -CMP) with 64 cores. The directory and the shared L2 cache banks are
distributed following a per-block interleaving across the 64 tiles. The memory
controllers are placed on chip (one per tile) and access and off-chip banked
memory. The remaining simulation parameters are shown in Table 1.

We evaluate the impact that the implementation of evictions of clean data
has on two configurations of a 64-core CMP architecture. The first one employs
a sparse directory using non-scalable bit-vectors in each directory entry as the
sharing code (first bar in all graphs of Section 4 assumes silent evictions and
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Table 1: System parameters.

Memory parameters
Block size 64 bytes
L1 cache (data & instr.) 32 KiB, 4 ways
L1 access latency 1 cycle
L2 cache (shared) 256 KiB/tile, 16 ways
L2 access latency 6 cycle
Cache organization Inclusive
Directory information Sparse with 512 entries, 4 ways (100% coverage)
Memory access time 160 cycles

Network parameters
Topology 2-D mesh (8×8)
Switching and Routing Wormhole and X-Y
Message size 4 flits (data), 1 flit (control)
Link time 2 cycles
Bandwidth 1 flit per cycle

second bar noisy ones). The second configuration implements the recently
proposed SCD directory architecture [13] (third bar assumes silent evictions
and fourth bar noisy ones).

Both coherence protocols implement local caches with MESI states. Our
evaluation considers only clean-versus-noisy evictions of blocks in S (shared)
state. We assume that the E (exclusive) state is implemented as an ownership
state, and therefore, silent evictions are not possible [2]. Additionally, the
number of replacements in E state compared to S state is negligible, as it is
shown in the evaluation. Alternatively, the E state can be implemented as a
non ownership state (e.g., like OpenPiton [29]) which would allow using silent
replacements too.

Our simulations consider representative applications from both the Splash-
2 [30] and the PARSEC 2.1 [31] benchmark suites. Barnes, Cholesky, FFT,
Ocean, Radix, Raytrace, Volrend, and Water-NSQ use the input sizes used
in the Splash-2 paper. Bodytrack, Canneal, Streamcluster, and Swaptions are
from the PARSEC 2.1 suite and use the simmedium input sizes. We have
accounted for the variability of parallel applications as discussed in [32]. To
do so, we have performed a number of simulations for each application and
configuration inserting random variations in each main memory access. All
results in this work correspond to the parallel part of the applications.

4 Results

The aim of our evaluation is to show the impact of silent versus noisy evictions.
The evaluation is performed on two directory organizations (BitVector and
SCD) where the election of the eviction policy can affect the performance in
different ways.
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Fig. 4: L1 replacements per instruction, categorized.

Frequency and characterization of L1 replacements. Our first anal-
ysis focuses on the frequency of L1 cache replacements considering each type
of evicted block. For each application, Figure 4 plots the number of L1 cache
replacements per instruction executed. Replacements are classified in four cate-
gories: Dirty, CleanExclusive, CleanSharedNoisy, and CleanSharedSilent. Dirty
replacements correspond to blocks in M (modified) state. CleanExclusive re-
placements correspond to blocks in E state. Replacements of blocks in S state
are labeled as CleanSharedNoisy when the protocol implements noisy evictions
or as CleanSharedSilent when the protocol implements silent evictions.

On average, blocks in E state are not involved in a significant fraction of the
replacements. Exceptions are applications like Canneal and FFT. However,
most of the L1 cache replacements (67% for SCD and 73% for a bit-vector
directory, on average) correspond to blocks in S state. This is the first indicator
of the importance that implementing this kind of replacements in the most
efficient way may have. Also, we see an increase of L1 replacements in some
cases when using noisy replacements. This is a consequence of the reduction
in directory replacements when using the noisy policy that we explain in the
following paragraph (i.e., with silent evictions more blocks are invalidated due
to directory replacements before they need to be evicted from L1).

Frequency of directory replacements. Noisy evictions increase the ac-
curacy of the information at the directory by removing from the set of tracked
sharers those nodes that evict the block from their local cache. In a traditional
sparse directory using a bit-vector sharing code, directory entries are only deal-
located when the count of sharers reaches zero. However, in directories where
the sharing code is distributed among different entries, like in SCD, the use
of noisy replacements helps to reduce directory pressure because it allows to
deallocate some entries as soon as they become useless, which will reduce the
directory occupancy. With the aim of analyzing this effect, Figure 5 plots the
number of directory replacements per instruction executed. On average, when
using noisy replacements the number of directory replacements can be reduced
by 41% for a bit-vector directory and by 66% for a SCD directory.

Impact on L1 write miss latency. Another expected effect of noisy
replacements is the reduction in the latency of write misses because fewer in-
validations need to be sent. Figure 6 plots the latency of write misses with each
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protocol. Each bar in this figure has been split in five parts: the time spent
in accessing the L1 cache (At L1 ); the time spent while the requests travels
from the L1 to the L2 (To L2 ) required to access the directory information;
the time spent waiting until the L2 can attend the miss (At L2 ), mostly due
to on-going transactions on the same memory block; the time spent waiting
to receive the data from main memory (Main memory) in case the requested
block is not present in any on-chip cache; and the time spent since the moment
that the L2 sends the data or forwards the request until the requester receives
the data and every required acknowledgment and the miss is resolved (To L1 ).
In fact, we only see very small variations in latency: it decreases very slightly
for some benchmarks in the case of the bit-vector directory and increases also
very slightly for other benchmarks in the case of SCD. This is so because in
practice the number of invalidations per miss is similar and, moreover, all in-
validations are sent in parallel and only the processing of the acknowledgments
actually benefits, because it needs to be done serially by the requester. On the
other hand, the additional traffic and directory replacements explain the slight
increase in latency.

Impact on L1 read miss latency. On the other hand, the effect on
the latency of read misses can be seen in Figure 7. Read misses are handled
exactly the same whether noisy or silent evictions are used, and any differences
in latency should be explained primarily by the different traffic that travels
through the network and by the different number directory replacements due to
the increased accuracy led by the noisy replacements policy with respect to the
silent replacements one. For example, the read miss latency of Streamcluster
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Fig. 7: L1 read miss latency.

with SCD is reduced when using noisy replacements versus silent replacements.
This is because the At L2 time is smaller, which happens as a consequence that
there are fewer directory replacements keeping the directory controller busy.
As in the case of writes, on average we see that the differences are minimal,
with an almost insignificant increase in the case of noisy replacements.

Impact on network traffic. The major impact of the replacement policy
for clean data is on network traffic. An increase in traffic will directly trans-
late into an increase in energy consumption in the interconnection network.
Figure 8 shows the coherence traffic measured in flits and normalized with re-
spect to a bit-vector implementing silent evictions. Traffic has been divided in
the following categories: data messages due to cache misses (Data), data mes-
sages due to replacements (WBData), control messages due to cache misses
(Control), control messages due to replacements (WBControl). We see that,
although a protocol with silent replacements generates in some cases a bit more
control messages due to cache misses, a protocol with noisy replacements gen-
erates always significantly more control messages due to replacements. In the
case of the bit-vector protocol, noisy evictions almost always increase traffic
overall (except in FTT and Radix ), but the increase is less sharp in the case of
SCD and there are more exceptions (FTT and Radix again, but also Canneal,
Cholesky, LU, and Streamcluster). This is because noisy evictions can reduce
the number of directory replacements (as shown in figure 5). These directory
replacements require the invalidation of any copy of the block in any local
cache, so cutting down on them reduces cache misses which in turn reduces
the amount of control messages and, more importantly, data messages (which
are longer in size). On average, the noisy evictions policy increases the to-
tal network traffic by 9.6% for a bit-vector directory and by 4.1% for a SCD
directory.

Impact on accesses to directory and L1 cache. The replacement
policy also affects the number of accesses that need to be performed to the
directory and the L1 cache, as can be seen in Tables 2 and 3. An increase
in accesses to these cache structures will increase the energy consumption in
the cache hierarchy. In general, noisy replacements increase the number of
accesses to the directory because the directory needs to be accessed to update
the sharing code on each replacement. Silent replacements slightly increase the
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Barnes Bodytrack Canneal Cholesky FFT Ocean LU
L1 Dir L1 Dir L1 Dir L1 Dir L1 Dir L1 Dir L1 Dir

BV-silent 638.15 11.45 2018.81 41.43 513.02 54.84 425.18 6.49 8.55 0.37 222.67 13.45 247.76 1.41
BV-noisy 637.31 21.02 2005.31 71.55 506.34 58.67 425.04 7.24 8.57 0.37 223.68 14.14 248.07 1.67
SCD-silent 651.46 12.13 2008.81 42.26 518.79 58.85 429.38 7.19 8.53 0.35 223.76 13.81 248.09 1.65
SCD-noisy 636.35 21.11 2000.59 71.42 510.31 60.86 423.13 7.27 8.68 0.36 220.15 14.23 247.92 1.76

Radiosity Radix Raytrace Streamcluster Swaptions Volrend WaterNSQ
L1 Dir L1 Dir L1 Dir L1 Dir L1 Dir L1 Dir L1 Dir

BV-silent 802.49 2.93 21.66 1.45 550.09 10.77 3661.11 111.15 3085.28 85.45 1885.78 9.60 145.40 2.59
BV-noisy 803.82 4.28 21.04 1.45 555.38 15.69 3599.33 137.62 3084.93 98.86 1900.07 16.63 145.23 3.72
SCD-silent 794.79 2.93 20.36 1.37 570.57 12.49 3762.59 134.15 3084.14 85.60 1885.26 11.17 145.73 2.62
SCD-noisy 799.82 4.41 20.16 1.33 561.61 15.42 3606.13 127.52 3084.15 98.87 1902.15 16.54 145.21 3.74

Table 2: Millions of accesses per application to the directory and L1 cache
structures.

L1 Cache Directory
BV-silent 1016.14 25.24
BV-noisy 1011.72 32.35
SCD-silent 1025.16 27.61
SCD-noisy 1011.88 31.77

Table 3: Millions of accesses (average) to the directory and L1 cache structures.

number of accesses to the L1 cache due to extra invalidation messages received
upon write or directory eviction. The total number of accesses, dominated by
L1 caches, does not vary significantly for any directory scheme and replacement
policy (cache accesses are traded by almost the same number of directory
accesses). Considering that the accesses to the L2 caches do not vary, we can
conclude that the energy consumption in the memory hierarchy is not affected
to a great extent by the eviction policy (we assume that directory accesses have
a similar cost to L1 accesses, which is true if both have the same associativity
and number of entries).

Impact on execution time. We also show the impact on execution time
of the replacement policy in Figure 9. All results have been normalized again
to a bit-vector implementing silent evictions. On average, the use of noisy re-
placements does not affect at all the performance of a bit-vector directory when
compared to silent replacements. Since noisy replacements increase traffic re-
quirements by 9.6%, we can conclude that coherence protocols using bit-vector
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Fig. 9: Execution time.

directories are better implemented with silent replacements. The effect in the
average execution time of SCD is very small: noisy replacements reduce the
execution time by 1.5% at the cost of a 4.1% increase in traffic. Therefore, us-
ing noisy replacements in a protocol like SCD may be justified if the designer
wants to achieve the maximum performance regardless of energy efficiency.

Scalability. To conclude the evaluation, we have also performed simula-
tions of the replacement policies for smaller systems (i.e., 16 cores), although
we do not plot the results for the sake of brevity. For a 16-core system using a
bit-vector directory, noisy replacements do not affect the execution time while
they increase traffic requirements by 8% on average and up to 24% in the
worst case (Water-NSQ). In the case of SCD, noisy replacements obtain also
the same execution time as silent replacements, while traffic increases by 1.6%
on average and up to 17% in the worst case (Water-NSQ). This shows that
noisy replacements in SCD become more useful for higher core counts, and
that the differences in execution time between the two policies are also more
important when the system scales to higher core counts.

5 Conclusions

In this work we focus on a frequently downplayed design aspect of a directory-
based cache coherence protocol: the way that evictions of clean data are man-
aged. We discuss the two alternatives that are possible (managing them silently
versus noisily), highlighting the pros and cons of each one. Then, we consider
two scenarios in which each policy would be preferable, and compare them tak-
ing into account performance (execution time) and amount of network traffic.

We found that, depending on the characteristics of the directory structure,
this aspect may have negligible effect on performance or can impact execution
time. The latter happens when the resources of the directory limit the number
of shares per entry or the total number of addresses that can be present in the
directory. In all cases, the noisy replacement policy increases network traffic
when compared to the silent one.

The main conclusion of this study is that a cache coherence protocol imple-
menting bit-vector directories should also implement silent evictions, which is
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not always the preferred option in the literature, while cache coherence proto-
cols implementing a directory with a sharing code that uses a variable number
of directory entries can benefit from noisy evictions.

Specifically, we find out that assuming the noisy replacements policy for
a bit-vector directory is not justified at all. It would increase network traffic
more than 25% in several cases (9.6% on average) without benefiting execution
time in any way. The fact that all sharers must have replaced their copies of the
block before the directory entry can be deallocated leaves very few opportu-
nities in which a directory entry can actually be reused thanks to the eviction
notifications. Conversely, the fact that many clean blocks are replaced several
times by each processor before invalidation (due to write misses or evictions
of directory entries) creates so much extra traffic that at the end noisy evic-
tions would result in increased energy consumption. This way, one important
conclusion we would like to draw is that studies that use a bit-vector directory
as the baseline to compare with should assume the silent replacements policy.
Otherwise, they would be comparing against a sub-optimal baseline.

On the other hand, we see that the ability of noisy evictions of increasing
the accuracy of the information at the directory structure has balsamic ef-
fects in some applications for directories where the sharing code is distributed
among different entries, like in SCD. In these cases, the use of noisy replace-
ments helps to reduce directory pressure since it allows to deallocate some
entries as soon as they become useless (the few sharers they were tracking
have replaced their copy of the block). This translates into noticeable reduc-
tions in directory occupancy. Thanks to this effect, we have seen that execution
time in SCD can be reduced up to 9.8% (2.7% on average) when the noisy
evictions policy is applied.

To summarize, the aim of this manuscript is to demonstrate that the de-
cision about using silent or noisy evictions depends on the kind of directory
structure being used, and that its effects are noticeable, so that designers
should consider it as a first-class design decision.
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