
FATSEA – An Architectural Simulator for

General Purpose Computing on GPUs

K.E. Østby1, J.L. Aragón1, J.M. Garćıa1, and M. Ujaldón2

1 Computer Engineering and Technology Dept. 2 Computer Architecture Dept.
University of Murcia (Spain) University of Malaga (Spain)

Abstract. We present FATSEA, a functional and performance evalua-
tion simulator written in C++ to handle kernels written in the CUDA
programming language aimed for GPGPU computing. FATSEA takes
a Parallel Thread eXecution (PTX ) code as input, which is a device
independent code format generated by the Nvidia CUDA compiler, to
validate results and estimate performance on Nvidia platforms. This pa-
per shows results on a G80-based architecture for a set of well-known
kernels to illustrate the usefulness of our framework while performing a
preliminary validation for the tool.

1 Introduction

Many-core Graphics Processing Units (GPUs) constitute nowadays a solid com-
petitor for multi-core CPUs on the road towards high-performance computing
on a tight budget. Furthermore, with the addition of new programming envi-
ronments such as CUDA [1] and OpenCL [2], the amount of general purpose
applications that have been ported to GPUs is increasing dramatically. The un-
derstanding of GPUs has been thoroughly researched during this evolution, but
with vendors poorly revealing the underlying microarchitecture, there is still a
long way to walk.

FATSEA (Functional And Timing Simulator for Emerging Architectures) in-
carnates our contribution to shed a light in some of those dark areas. The first
attempts to simulate GPU architectures were made in the context of GPUs con-
sidered as classical rendering devices, where Attila [3] and QSilver [4] constitute
two encouraging examples. From here, the lack of a standardized simulation
infrastructure, including compiler, profiler and benchmarks, is a key limiting
factor for a better understanding of GPUs from a general-purpose perspective
(GPGPU).

In parallel with our infrastructure, three other simulating tools have been
developed as well. First, Barra is an interesting approach based upon the Sys-
temC simulator framework Unisim [5] to provide a G80 functional simulator,
but without accompanying a timing model. It directly executes the binary code,
with the severe implications of not having available some of the unknown in-
structions. Second, GPUSim is a functional and timing GPU simulator based
upon SimpleScalar [6] and is modeled to match the Nvidia 8600GTS architec-
ture. Being closer to our approach, it includes the PTX front-end within the



simulator itself, and therefore lacks of a certain generality and modularity which
favours a fast adaptation to future architectural developments. Finally, Ocelot

[7] is an open source infrastructure developed for understanding data parallel
GPU applications which has recently been upgraded to enable PTX emulation
[8]. However, since the main focus of Ocelot is workload characterizations, the
developers have naturally omitted architectural simulations into their infrastruc-
ture. In that respect, Ocelot is more related to virtual machines than computer
architecture simulators. The mechanics of Ocelot is to use the LLVM [9] infras-
tructure in order to compile PTX into machine code, and executes one block
at the time. Thus, to that manner, FATSEA is closer to Ocelot for being (a)
vendor agnostic, and (b) easily adaptive to future developments and novel ideas,
however, the principal usage of FATSEA is to work as an architectural simulator
such as GPUSim which allows for research on GPU architectural optimizations.
Finally, by introducing the separation between the functional and timing model,
we may also disable the timing model to work as a purely functional simulator.

2 The Tool : FATSEA

The division of labor between the functional and timing model in FATSEA
is performed by a driver which acts as an arbiter for the execution, keeping
track of which events are to occur at a certain cycle. These events are either a
memory request or a memory respond. With the memory transactions kept in a
priority queue, the driver code can schedule the functional part of the simulator
to execute the delta cycles between current time and the incoming event. This
way, the functional side only needs to keep track of a tuple consisting of the
current cycle and the threads in blocked state, in order to ensure timing accurate
execution.

The functional model yielding to the timing model will happen if one out of
two conditions occurs. (1) When it has executed the scheduled amount of cycles
assigned by the driver code, or (2) when the functional module encounters an
instruction which produces a side effect into the system, causing the threads
to evolve to a blocking state. Instructions affecting the timing model such as
load/stores are left to the latency and bandwidth features of a specific memory
system, which can this way be replicated with high fidelity.

On an architectural level, the simulator is currently configured to match a
G80-like architecture, where the GPU consists of a variable amount of multipro-
cessors, connected to an interconnection network holding data requests as seen
in figure 1. The memory hierarchy comprises a shared memory local to each
multiprocessor, and a global device memory including a cache per multiproces-
sor. The current version of the simulator assumes that the amount of threads
in-flight will be enough to hide memory latencies, and since there is no memory
coherence control in modern GPUs, this issue is also ignored by the simulator.

The execution model of FATSEA is inspired by CUDA and OpenCL, where
the concept of blocks and threads are borrowed as a way of scheduling the work-
load amongst the available resources. When a new kernel is scheduled to be



Multiprocessor

Device Memory

Interconnection Network

Local
MemoryMemory

Local
Memory

Local
MemoryMemory

Local Local Local
Memory

Local
Memory Memory

Local

(a) Overall System

Caches

Stream Processors

Shared Memory

C5C0

(b) A single multiprocessor

Fig. 1. A high-level description of the underlying simulated architecture by FATSEA.

FATSEA

Simulator

Configuration ContextCUDA Application

NVCC

Application Kernel

Nvidia Toolchain

PTX Code PTX Compiler

Mem. Sniffer

 

Helper Tools

Memory
Input

Fig. 2. Auxiliary tools developed and its relationship with CUDA modules.

executed, it does so by first uploading the kernel to main memory, and updat-
ing the kernel to address table, keeping track of the location of a kernel with
a given ID in main memory. Afterwards, a set of Blocks are inserted into the
global block queue. The blocks are data structures consisting of the following
tuple (blockid(x,y), kernel ID, number of threads (x,y,z), required resources).
Then, a block scheduler attempts to schedule the blocks onto the available mul-
tiprocessors. When doing so, the block scheduler takes into account the required
resources that the block needs to execute, such as registers, hardware barriers,
and threads. If it finds a multiprocessor with the required amount of resources
available, it dispatches the block onto that multiprocessor, where it is expanded
as a set of lightweight threads, the basic work unit.

To experiment using the simulator framework, several auxiliary tools have
been developed as well (see Figure 2). To start a new project, the CUDA code
has to be written, and parsed through the CUDA nvcc compiler, which generates
the files needed by our framework, namely the PTX code and the CUDA exe-
cutable file. The PTX code is then compiled into an binary instruction format
developed for FATSEA to ensure platform independency. A memory sniffer is
implemented as a library which gets loaded in-front of the CUDA library libcu-
dart. The configuration file contains the values for settings in the simulator, and



Feature Value

Local Memory Size 16 Kb
Global Memory Size 500 Mb
L1 Cache Set Associativity 4
L1 Cache Replacement Policy LRU
L1 Hit Latency 4 cycles
Local Memory Latency 4 cycles
Device Memory Latency 300 cycles
Cores Per Multiprocessor 8 cores
Thread Scheduling Algorithm R. Robin
Table 1. Parameters describing
our target GPU architecture.

Name Block Dim. Grid Dim. Total

MersenneT 128x1 32x1 3968
BlackScholes 128x1 480x1 61440
FFT8 64x1 1-200x1 61-12800
MM 4x4-22x22 1x1 4-484
Sgemmn 16x4 4x1-30x7 256-13440
dwtHaar1D 1-512x1 2-512x1 2-262144
Table 2. PTX Kernel Properties.

the context file controls the execution environment (grid and block size, memory
input files, and more).

3 Experimental Results: Validation

The benchmarks used to validate the GPU simulator and the compiler consists
of the kernels found in table 2. The Fast Fourier Transform (FFT) developed
by Volkov et al. [10] is included due to being a computationally bound kernel.
The Matrix Multiplication (MM) kernel is included in order to investigate the
correctness of a single multiprocessor. Furthermore, the Sgemmn [10] kernel is
an optimized matrix multiplication kernel, included due to its use of local mem-
ory and barriers. Finally, Mersenne Twister (MersenneT), BlackScholes [11] and
dwtHaar1D are all benchmarks from the Nvidia CUDA SDK, and thus repre-
sentative candidates for calculations on GPUs.

The configured architecture used to run the included benchmarks can be
found in figure 1 and table 1. The thread execution model of FATSEA is currently
utilizing a model based upon scoreboards [12], where threads are not placed in
a blocked state until they try to operate on the data requested in a previous
memory transfer. The architecture specified is configured to be similar to the
newer architectures of Nvidia, and the results in figure 3 are compared to the
Tesla C870.

Characteristic of the simulator is that it tends to underestimate the execu-
tion time when the working set is small, or when the benchmarks are not very
dependant on accessing global memory, a phenomenon which is observed in the
BlackScholes benchmark (fig. 3(c)). As can be seen in the Sgemmn (fig. 3(b))
and the MM (fig. 3(d)) benchmarks, when the kernel is utilizing the local mem-
ory or avoids a lot of global memory accesses, the simulator has a tendency to
underestimate the cycle count. Further observable, an uneven working set pro-
duces spikes, as can be seen in the BlackScholes kernel when a variable number
of options are computed. Spikes are generated by kernels doing some initial work
and competing for resources before some of the threads gets terminated without
doing any productive work. This happens in the cases where the problem set is
not suitable for the kernel, nor the architecture.



Seeing how FATSEA underestimates kernels with small working sets, there
are unknown variables in the startup phase of the simulation as well. This might
be due to inaccuracies in the instruction pipeline, since the simulator assumes
an ideal instruction pipeline to avoid hazards that could be introduced by the
PTX code, but that could be further optimized by the Nvidia PTX assembler.
Moreover, as the GPU can avoid pipeline hazards by scheduling the threads in a
round robin fashion, it is an assumption that will work fine whenever the GPU
has sufficient amount of workload. Volkov et al. [10] show that the instruction la-
tency in modern GPUs is about 20 cycles, and thus, in order to hide the pipeline
latency, each multiprocessor only needs 160 different non-blocked threads to be
able to totally hide the pipeline latency in the worst-case scenario. Moreover,
since the simulator tends to overestimate the cycle count where the working
set is large and the kernel involves a lot of memory transfers to global mem-
ory, it suggests that there are some unknown mechanisms such as a prefetching
mechanism with regards to global memory.

0 50 100 150 200
Blocks

0

10000

20000

30000

40000

50000

60000

70000

Cy
cl

es

Tesla C870
FATSEA - 16 multicores

(a) FFT

50 100 150 200 250 300 350 400
Blocks

0
100000
200000
300000
400000
500000
600000
700000
800000
900000

Cy
cl

es

Tesla C870
FATSEA - 16 Multicores

(b) SGEMMN

0 12000 24000 36000
Options

0

50000

100000

150000

200000

250000

300000
Tesla C870
FATSEA - 16 Multicores

(c) BlackScholes

0 75 150 225 300 375
Matrix dimention N*N

0

10000

20000

30000

40000

50000

60000

70000

Cy
cl

es

Tesla C870
FATSEA - 1 Multicore

(d) MM

0 200 400 600 800 1000
Random Numbers per Thread

0
500000

1000000
1500000
2000000
2500000
3000000
3500000
4000000
4500000

Tesla C870
FATSEA - 16 Multicores

(e) Mersenne Twister

0 2000 4000 6000 8000
Threads

0
5000

10000
15000
20000
25000
30000
35000
40000

Tesla C870
FATSEA - 16 Multicores

(f) dwtHaar1D

Fig. 3. Comparing the behaviour of six kernels on a Tesla machine (upper purple) and
FATSEA (lower green). Number of cycles are represented in the vertical axis against
the problem size in the horizontal axis.

4 Conclusions and future work

In this paper, we have presented a new framework for research on GPGPU de-
vices from an architectural viewpoint, which opens the door for further research
on architectural optimizations. Using a small set of benchmarks, we have imple-
mented a well-known GPU architecture according to the freely available docu-
mentation from both industry and academia. We have also demonstrated that



some platform details are still unknown under the hood: the simulated model is
accurate when it comes to benchmarks requiring little memory overhead, but far
from optimal when memory transfers predominate. Our future work will han-
dle the interconnection network, thread scheduling and memory technologies for
endowing FATSEA with a convergence road towards the behaviour of a real
system.

Another direction points to novel mechanisms to further improve the archi-
tecture. For example, one of the pressing matters in modern architectures is the
programming pattern that the lack of global synchronization mechanisms en-
forces. Although it is possible now with the current architectures of Nvidia to
provide a basic global locking mechanism with the atomic instructions available
to the developer, there is no native support for that. Furthermore, a way of
solving data dependencies between blocks would be of great interest, currently
solved by storing to global memory, and then terminating the kernel.

Overall, the challenge arises from the fact that the proposed solution would
have to scale from few multiprocessors to a myriad without imposing too many
changes neither on the current programming model nor the current architecture.

References

1. nVidia: NVIDIA CUDA Compute Unified Device Architecture . (2007) Rev. 1.0.
2. Khronos OpenCL Working Group: The OpenCL Specification, version 1.0.29. (8

December 2008)
3. Moya, V., Gonzalez, C et al.: Shader Performance Analysis on a Modern GPU

Architecture. In: Proc. of the 38th Int. Symp. on Microarchitecture. (2005) 355–
364

4. Sheaffer, J.W., Luebke, D., Skadron, K.: A Flexible Simulation Framework For
Graphics Architectures. In: Proc. of the SIGGRAPH/EUROGRAPHICS Confer-
ence on Graphics Hardware. (2004) 85–94

5. August, D., Chang, J. et al.: Unisim: An open simulation environment and library
for complex architecture design and collaborative development. IEEE Comput.
Archit. Lett. 6(2) (2007) 45–48

6. Austin, T., Larson, E., Ernst, D.: Simplescalar: An infrastructure for computer
system modeling. Computer 35(2) (2002) 59–67

7. Kerr, A., DIamos, G., Yalamanchili, S.: Gpuocelot - A Binary Translator Frame-
work for PTX. (October 2009) http://code.google.com/p/gpuocelot.

8. Kerr, A., DIamos, G., Yalamanchili, S.: A Characterization and Analysis of PTX
Kernels. In: Proc. of Intl. Symposium on Workload Characterization. (Oct. 2009)

9. Lattner, C.: LLVM: An Infrastructure for Multi-Stage Optimization. Master’s
thesis, Computer Science Dept., University of Illinois. (Dec. 2002)

10. Volkov, V., Demmel, J.W.: Benchmarking GPUs To Tune Dense Linear Algebra.
In: Proc. of the 2008 ACM/IEEE Int. Conference on Supercomputing. (2008) 1–11

11. Podlozhnyuk, V.: Black Scholes Option Pricing, ver. 1.0. Nvidia SDK. (Apr. 2007)
12. Hennessy, J., Patterson, D.: Computer Architecture - A Quantitative Approach.

Morgan Kaufmann (2003)


