EFFICIENT, SNOOPLESS, SYSTEM-ON-CHIP COHERENCE

Stefanos Kaxiras!) and Alberto Ros(?
(Muppsala University, Sweden @University of Murcia, Spain

stefanos.kaxiras@it.uu.se, aros@ditec.um.es

ABSTRACT

Coherence in a System-on-Chip (SoC) introduces
complexity and overhead (snooping caches/directory,
state bits, invalidations, etc.) in exchange for a clean
and uniform shared memory model. As it is typical
today, a SoC comprises a variety of cores with local
caches, accelerators with local memories, and some
form of shared last-level cache (LLC), all
interconnected with shared buses. We propose a very
simple coherence protocol, fit for this environment, that
eliminates L1 snooping and its associated complexity
and costs (power). In essence, we remove all
coherence decisions from local caches by simply
determining at the LLC whether data are private or
shared. This makes a write-through policy a practical
and effective alternative to maintain coherence. In the
local caches, we dynamically select between write-
back for private data, or write-through for shared data.
Self-invalidation of the shared data on synchronization
points eliminates the need to snoop, with just a data-
race-free guarantee from software. Our evaluation
shows that this simple protocol outperforms a
traditional snooping protocol while at the same time
significantly reducing L1, shared cache, and bus
energy consumption.

. INTRODUCTION

While the benefits of a coherent memory system,
especially for software development, are well known,
there is significant concern over its cost, especially for
cost-sensitive markets such as most Systems-on-Chip
(SoCs). More importantly, concerns center on the
constant overhead of coherence which, however, may
be desirable only sporadically. It is not surprising that
significant effort has been expended to reduce these
costs, especially storage cost for directory protocols [2,
8, 9, 24], verification cost [1,10, 27], or coherence traffic
and snooping cost (by reducing or filtering coherence)
[14, 21, 29].

We take an alternate approach where there is
practically no cost for when coherence is not needed
and minimal cost when it is needed. We achieve this by
eliminating the need for snoops; indeed, we eliminate
all distributed coherence state in the caches (besides
the rudimentary valid/invalid and clean/dirty states).
Our approach exploits a typical SoC cache hierarchy
organization with many local L1 caches and a shared
last-level cache (LLC).

Our proposal targets multicore/manycore2 and
SoC architectures where the relative cost of coherence
is significant compared to the complexity of the cores.
This includes many accelerators based on simple cores
(e.g., Tilera [6]), but also GPUs coupled to general
purpose cores as most smartphone and tablet
processors are today. We do not envision our proposal

T our approach extends to deeper hierarchies (e.g., with an L2
between the L1 and the LLC), but for clarity, in this paper, we will
only discuss a two-level cache hierarchy.

2 n the interest of brevity, we will use the term multicore to describe
both.

5‘\0\25\@ &
5

O N o o
@® o> \Ca N
O @8 qaf™ N0 W

Q Q 20 N o e
a‘a"\k 2{,&\2"6 «® _@«\db W we@q

Figure 1. Percentage of write misses in a write-through
protocol for private and shared data (cache-line granularity).
for multicores based on few fat complex cores, where
the relative cost of implementing a snooping or
directory protocol is not an issue, and where such

protocols are routinely implemented.

Another advantage of our approach is that it is
interconnect-agnostic, meaning that our coherence
protocol is exactly the same whether implemented over
a bus, a crossbar switch, or a packet-based, point-to-
point, network-on-chip (NoC). This leads to seamless
scaling from low-end to high-end parts or free
intermixing of buses and NoCs on the same chip, e.g.,
in an heterogeneous multicore/manycore chip. In this
paper however, we focus on shared bus
implementations and snooping coherence because
they dominate the SoC implementations. A significant
advantage of our approach for bus-based systems is
that it allows easy scaling to multiple buses. (e.g.,
connecting cores with address-interleaved buses to
multiple LLC banks), since there is no need to snoop
on any bus.

Contributions:

1. We eliminate the need to constantly snoop global
traffic just to track sharing information distributively
at the L1s. Instead, sharing information is tracked
at the LLC which naturally observes the request
traffic from all the L1s. At the LLC we just
determine whether data are private (cached in a
single L1) or shared (cached in several L1s). We
do not keep full directory information.

2. The benefit of a write-through policy is that it
reduces the coherence protocol down to two
states: Valid/Invalid. However, a simple write-
through policy to the LLC would seriously
compromise performance. The observation, that
drives our approach is that most write misses in a
write-though protocol actually come from private
blocks, as Figure 1 shows. Motivated by this
observation, we propose a dynamic write policy
in the L1s: we dynamically select between write-
back and write-through to the LLC depending on
whether data are private or shared, according to
the LLC classification. Write-throughs are
performed by transferring only what is modified
(diffs) in a cache line, allowing multiple
simultaneous writers per line (as long as their
writes constitute false sharing on separate words
and not a true data race).

3. We selectively flush shared data from the L1
caches on synchronization points. Our approach is
a generalization of read-only tear-off copies [14,
17] to all shared data (including written copies).

This step eliminates the need to snoop for

invalidations.

While write-through protocols and self-invalidation
have been proposed separately in the past, we
combine them and, for the first time, make them
practical by applying them dynamically, based on a
run-time classification of data to shared and private at a
cache-line granularity. This leads to the main novel
result that we report in this paper: a minimal coherence
scheme that: i) eliminates snooping ii) uses very simple
protocols for both shared (data-race-free) data and for
private data, differentiating only in the timing of when to
put them back in the LLC, iii) reduces energy
consumption, iv) does not require application
involvement, and v) allows effortless scaling with
multiple buses.

There are two implications of our approach. First,
our protocol does not support sequential consistency
(SC) for data races. This is because without snoops, a
core writing a memory location cannot invalidate any
other cores that may be reading this location. This
violates the definition of coherence but it is actually an
acceptable behavior for a weak consistency memory
model [26]. Thus, our protocol is incoherent for data
races but satisfies the definition of coherence for the
important class of data-race-free (DRF) programs.
Data races are the culprits of many problems in parallel
software and the benefits of data-race-free operation
are well argued by Choi et al. [10]. Thus, similarly to SC
for DRF [3], our approach provides coherency for DRF.

The second implication is that, synchronization
instructions (such as Test&Set, Compare&Swap, or
Load-Linked/Store-Conditional) which inherently rely
on races, require their own protocol for a correct
implementation. We propose an efficient and resource-
friendly synchronization protocol that works without
snoops and in many cases eliminates spinning.
Results. Our approach leads to a very simple
coherence protocol that requires no state bits in the
caches (other than the standard Valid/Invalid and
Dirty/Clean bits), no snoops for reads and writes, and
can lead to significant energy savings with respect to a
standard snooping protocol.

. BACKGROUND AND RELATED WORK
A. Write-Through Caches and Coherence

A write-through policy for L1 caches has the
potential to greatly simplify the coherence protocol [26].
Just two states are needed in the L1 cache (valid and
invalid) and there is no need for a Dirty/Clean bit (so
evictions do not need to write-back). Further, the LLC
always holds the correct data so it can immediately
respond to requests. This means that L1s do not need
to snoop reads or writes on the bus to supply the latest
data. However, invalidation is still required.
Unfortunately, because the number of write-throughs
far exceeds the number of write-backs, this results in
abysmal performance degradation, and significantly
increased traffic and power, as we show in Section VII.

B. Private vs. Shared Data Classification

Recent work realizes the importance of classifying
private and shared data in hardware [25, 13], by the
operating system [12, 16, 11], or by the compiler [18].
The advantage of hardware mechanisms is that they
can work at a cache-line granularity, although the
storage overhead can be prohibitive. To considerably

reduce this overhead, we propose a hardware
classification mechanism in the LLC that limits the
storage to only the cached lines.

C. Self-Invalidation

Dynamic Self invalidation and tear-off copies were
first proposed by Lebeck and Wood as a way to reduce
invalidations in directory-based cc-NUMA systems [17].
The basic idea is that cache blocks can be teared off
the directory (i.e., not registered there) as long as they
are discarded voluntarily before the next
synchronization point by the processor which created
them. As the authors note, this can only be supported
in a weak consistency memory model (for SC, self-
invalidation needs to be semantically equivalent to a
cache replacement).

Self-invalidation was recently used by Kaxiras and
Keramidas in their “SARC Coherence” proposal [14].
They observed that with self-invalidation, writer
prediction becomes straightforward to implement.
Subsequently, Choi et al. took a similar approach to
simplify coherence in their DeNovo approach, but relied
on application-driven directory protocols [10]. In
contrast to our approach, they require significant
feedback from the application which must define
memory regions of certain read/write behavior and then
convey and represent such regions in hardware. This
requires programmer involvement at the application
layer (to define the regions), compiler involvement to
insert the proper self-invalidation instructions, an API to
communicate all this information to the hardware, and
additional hardware near the L1 to store this
information. The heavy reliance of the DeNovo
approach on application involvement prevents us from
replicating their results for a direct comparison. In our
work, for the first time, we use self invalidation to
eliminate the need for L1s to snoop writes on a bus.

IV. PROTOCOL

Our approach boils down to three steps:

1. Classify cache lines in the LLC as private or
shared.

2. Simplify coherence by dynamically using write-
through for shared data. (1) and (2) together
eliminate snoops on reads.

3. Eliminate snoops on writes (invalidation) by
selective flushing of the shared data.

LLC Data Classification. The centerpiece of our

strategy for reducing the complexity of coherence and

eliminating snoops is to distinguish between private
and shared data. For the coherence of the shared data,
we rely on the simplicity of a write-through policy.

However, private data employ a write-back policy,

which can be safely implemented without any further

coherence support.

Cache lines are divided into “Private” and “Shared”
by the LLC, depending on the observed accesses. The
Private/Shared (P/S) classification in the LLC is carried
back to the L1s with the LLC responses. Each line in
the LLC is tagged with a P/S bit and (if it is private) the
ID of the L1 that “owns” it. An LLC line is private when
all accesses to it come from the same L1. If we detect,
a different L1 accessing a private line (i.e., the
requestor is different from the current owner), we
change the line to shared. Before the LCC responds to
the new requestor, the former private owner must
change its classification of the line." We achieve this,

by forcing a snoop in the former owner. As a result of
changing classification, the former owner may perform
a write-back of the line (if dirty). Our classification is
one way (private to shared) for simplicity.

The P/S bit and private owner field exist only for the

LLC lines —they are not saved externally and are lost
upon eviction. This creates the problem of the initial
state when we bring a cache line into the LLC. While
there are different design points depending on whether
the SoC hierarchy is inclusive or non-inclusive, here —
for simplicity— we assume an inclusive hierarchy.
When we evict an LLC line, a forced snoop in all the
L1s (if shared) or in the owner L1 (if private), also
flushes the L1 copies. The solution for a non-inclusive
hierarchy is to establish which L1 (if any) has the line
when we bring a line in the LLC. This forces snoops on
all the L1s.
Dynamic Write Policy. The LLC classification
determines the write policy in the L1. On an L1 miss the
sharing status of a line is unknown. The miss accesses
the LLC and the outcome of the classification (Private
or Shared) is carried back to the L1 with the response.
The write policy is set to write-back (on eviction) for
private lines, and write-through for shared lines.

Because in the L1 we have only two states (Valid
or Invalid) and we differentiate between Private and
Shared, we call the overall family of protocols VIPS.
There is also a standard dirty bit (Dirty/Clean) that is
used by the write policies. The resulting protocol is
compatible with the protocol states defined in ARM
AMBA-4 AXI Coherency Extensions (ACE) [5], as
shown in Table 1.

Table 1. VIPS Protocol States

AMBA-4 | MOESI VIPS Comments
ACE state | state |V/I-P/S-D/C

UniqueDirty M \ P D |Use Write-Back

SharedDirty O \ S D |TRANSIENT: this state is
transient in our protocol and
invisible to the outside (see
Delayed Write-Throughs)

UniqueClean E \ P C |Use Write-Back

SharedClean S \Y S C |Use Write-Through

Invalid | | — — |—

We will just dwell on single point: our proposal is
minimally intrusive in the design of the core, L1 caches,
and the LLC. In fact, it leaves standard L1 caches
unmodified. We assume that each L1 line has the
common Valid/Invalid (V/I) and Dirty/Clean (D/C) bits.
An additional Private/Shared bit (P/S) bit is needed to
store the LLC classification. (Equivalently, the ARM
AMBA-4 ACE states can be used.) The P/S bit controls
whether a write-through will take place. The dynamic
write policy (as well as the P/S bit) can implemented
outside the L1 using standard cache management
functions (“clean line” or “write-back” [5]).

Delayed Write-Throughs. The SharedDirty ACE
state (Table 1) does not exist in our protocols as a
stable state. A write-through policy would immediately
clean the line to a SharedClean state. However, the
obvious optimization to any write-through cache is to
reduce the amount of write-throughs by coalescing as
many writes as possible. In VIPS, the write-through can
be delayed (up to the first synchronization point). In the
meantime, the line can be written multiple times by the

1 Fortunately, this concerns a single, known, L1 (since it was the
private owner).

same core. This corresponds to the ACE
SharedDirty state (or MOESI “Owned” state), but in
our case it is strictly transient. It exists only from the
write miss to the write-through and is invisible to
transactions from other cores —therefore introducing
no complexity to the protocol.

One simple implementation of the delayed write-

through is to insert the address of the line in one of the
core's miss-status holding registers (MSHRs). Each
entry is associated with a timer which causes the write-
through to happen a fixed delay after the initial write.
The write-through also occurs if the entry is replaced or
the MSHRs is flushed.
Invalidation and Snoops on Writes. Our next goal is
to eliminate invalidations, i.e., the snoops on writes. We
have already removed the need for read snooping with
the private-shared classification at the LLC and the
write-through policy for shared data. What is left is to
get rid of the need to snoop on writes just to invalidate
possible L1 copies. Self-invalidation serves exactly this
purpose [17]. Readers, after making a “tear-off’ copy of
a memory location, are allowed to ignore any write
traffic, as long as they promise to invalidate their copy,
on their own, at the next synchronization point they
encounter.

Our approach is similar but with a difference: all
shared data in the L1 caches whether read or written to
—not just data brought in as Read-Only, e.g., as in [17]
and [14]— are tear-off copies. A core encountering a
synchronization point (lock acquire/release, barrier,
wait/signal synchronization, Load-Linked/Store-
Conditional instructions, or memory ordering
instructions such as ARM Data Memory Barrier —
DMB— or Data Synchronization Barrier —DSB)
flushes its shared data from the L1. Since we flush only
shared and not private data, we call this Selective
Flushing, (SF). Implementing selective flushing incurs
very little change to the cache design. Valid bits are
guarded by the per-line P/S bits, which are set,
according to the LLC classification, when a line is
brought into the L1. Subsequently a “flush” signal,
resets all the valid bits guarded by P/S bits in state
Shared. The implementation of the flush s
straightforward with selectively clearable valid bits [23].
As is pointed out in prior work [17,14,10], self-
invalidation, and by extension selective flushing,
implies a weak consistency memory model and only
guarantees SC for DRF programs [3]. Note that there is
always the option of using invalidations (snooping on
writes) in which case a sequential consistent memory
model is supported.

Read-only optimization. Self-invalidation can cause
needless misses on shared data that have not been
modified. Complex techniques to exclude such data
have been previously proposed [17]. In our approach,
we simply tag at the LLC shared cache lines as Read-
Only (RO) if they are not written, and Read-Write (RW)
otherwise. A line stars as RO but transitions to RW on
the first write (there is no reverse transition —except
through eviction). Because the line is shared, all the
L1s must be notified of this change with a forced
snoop. L1 RO cache lines are spared from self-
invalidation.

Multiple Writers & Merge. Even with a DRF
guarantee the lack of invalidations can cause
problems. Consider two concurrent readers, each

holding a valid copy of the same cache line. Assume
that the two readers decide to write two different words
in the cache line —false sharing— without any
intervening synchronization. If their write-throughs
happen at the granularity of a cache line, they can
overwrite each other's new value, leading the system to
an incoherent state. One solution would be to demand
DRF guarantees at the cache-line level but that would
place a heavy burden on software. Our solution is to
perform write-throughs at a word granularity which has
the additional benefit of reducing the amount of data
transferred to the LLC.

Write-throughs at a word granularity require per-
word dirty bits. This allows multiple concurrent writers
on a cache line to write-through to the LLC just the
words they modify but no other. Delayed write-throughs
send their cache-line diffs which are then merged in the
LLC. The important realization here is that immediately
seeing the new values written by other writers is not a
requirement in a weak consistency memory model —
already implied by self-invalidation.

Practically all data, whether shared (data-race-
free) or private, are handled without any state in the
LLC. The main difference is in when dirty data are put
back in the LLC. Private data follow a write-back on
eviction policy, while shared, data-race-free data follow
a delayed (up to a synchronization point) write-through
policy. Synchronization data, however, still require a
blocking protocol, described below in Section E.

The overhead is that we need to track exactly what
has been modified in each dirty line so we can
selectively write back only the modified words to the
LLC. One would assume that this means per-word dirty
bits for every line in the L1. But per-word dirty bits are
needed only for the outstanding delayed write-throughs
and are attached only to those. No additional support is
needed in the L1 or the LLC —other than being able to
update individual words.

E. Synchronization Without Invalidation

Synchronization relies on data races. Instructions
such as Test&Set or Compare&Swap, race to read-
modify-write (RMW) atomically a memory location if a
condition is met (i.e., the “Test” or “Compare” parts).
Otherwise, a copy of the memory location allows a core
to spin locally in its L1 until the condition is changed by
another core. In our approach, because we have no
invalidations, a core cannot “signal” a change in the
condition to the other cores that might be spinning,
endangering forward progress.

To break this impasse we treat synchronization
accesses differently. Synchronization instructions
bypass the L1 and send their requests to the LLC. The
LLC blocks the corresponding lines accordingly.

Regardless of the existence of an L1 copy, atomic
RMW instructions (as well as load-linked/store-
conditional instructions) invariably send a new request
to the LLC. For the atomic RMW instructions, if the line
is unblocked (or “open”) in the LLC, its data are
returned to the core, and if the test succeeds, the line is
written with a new value (indicating, for example, that a
lock is held by a core). Throughout the duration of the
read-modify-write the line is blocked (or “exclusive”) by
the LLC controller; it is only unblocked by an ensuing
write-through. In the interim no other core can complete
any transaction on that line (as core 1 in Figure 2).

| / WT=Unblock(0)
ve o
L,

w 1

?RMW ?Rd(O)Wr(l) ?Wr(())
Figure 2. Atomic RMW transactions for shared lines

Their requests enter a finite queue (bounded by the
number of cores) managed by the LLC controller.

At first sight, bypassing the L1 and re-reading the
LLC seems to make spinning expensive. However, by
delaying the write-throughs of atomic instructions, we
can eliminate spinning by blocking other cores at the
LLC controller. For a short critical section, the write-
through of a Test&Set can be delayed for the whole
duration of the critical section as shown in Figure 2. In
longer critical sections the write-through eventually
completes and spinning resumes by other cores. In this
case, an exponential back off in software can be used
to lessen it.

To maintain the semantics of the load-linked/store-
conditional instructions we implement them differently
than atomic RMW instructions. A load-linked
instruction, blocks the LLC line and sets the private
owner of the line to the issuing core. A store-conditional
from the same core succeeds (and unblocks the line)
only if the private owner field remains unchanged. Any
other interfering core changes the private owner field
thus causing the store-conditional to fail.

VI. EVALUATION METHODOLOGY

The evaluation of the protocols proposed in this
work is carried out with full-system simulation using
Virtutech Simics [19] and the Wisconsin GEMS toolset
[20]. We account for the variability in multi-threaded
workloads by doing multiple simulation runs for each
benchmark and injecting small random perturbations in
the timing of the memory system [4]. The variations are
reflected in all the graphs with error bars.

The values of the main parameters used for the
evaluation are shown in Table2. Through
experimentation we have found that only 16 MSHRs,
with a timeout between 500 and 2000 cycles, are
needed to keep shared data as dirty for enough time to
avoid most write misses. MSHR timeout timers are
cheaply implemented as cache decay hierarchical
counters [15]. Cache latencies, energy consumption,
and area requirements are calculated using the CACTI
6.5 tool [22] assuming a 32nm process technology.
Benchmarks. We evaluate the described protocols
with a wide variety of shared-memory parallel
applications that require coherence. Barnes (16K
particles), Cholesky (tk16), FFT (64K complex
doubles), FMM (16K particles), LU (512x512 matrix),
Ocean (514x514 ocean), Radiosity (room, -ae 5000.0 -
en 0.050 -bf 0.10), Raytrace (teapot), Volrend (head),
Water-Nsq (512 molecules), and Water-Sp (512
molecules) belong to the SPLASH-2 benchmark suite
[28]. Em3d (38400 nodes, 15% remote) is a shared-
memory implementation of the Split-C benchmark.
Tomcatv (256 points, 5 time steps) is a shared-memory
implementation of the SPEC benchmark. x264

Table 2. System Parameters

Processor/Memory Parameters
Processor Frequency & no. of cores: [3GHz, 16 cores
Split L1 | & D caches: 32K, 4—way
Cache Block: 64
MSHR size / timeout: 16 entries, 1000 cycles
L1 cache hit time: 1 (tag) and 2 (tag+data) cycles
Shared unified LLC cache: 8MB, 16-banks (512KB/bank), 16-

way/bank
L2 bank hit time: 2 (tag) and 4 (tag+data) cycles
Off-chip access time: 160 cycles

(simsmall) is from the PARSEC benchmark suite [7].
Data accessed by atomic instructions follow the
synchronization protocol described in Section E. We
simulate the entire applications, but collect statistics
only from start to completion of their parallel part.

VIl. EXPERIMENTAL RESULTS
A. Impact on Snoops

Figure 3 shows the total number of external (non-
core) L1 tag accesses. The accesses correspond to
snoops (top bars) and LLC data responses to misses
(bottom, darker bars). VIPS completely eliminates
coherence snoops, but introduces a new kind of
snoops: forced snoops. These occur in three cases.
The first is when the LLC changes the classification of
a line from private to shared. The second is when the
LLC changes the classification of a line from Read-
Only to Read-Write. The third is the eviction from the
LLC, which also evicts the L1 copies. Forced snoops
affect a single L1 in case of a private block, or all L1s in
case of a shared block. The net result is shown in
Figure 3: in VIPS, forced snoops are (on average) less
than 0.3% of the coherence snoops, but LLC
responses are slightly increased due to selective
flushing (see below). VIPS saves (on average) 87% of
the external (non-core) L1 tag accesses far exceeding
state-of-the-art snoop filtering such as Jetty [21].

B. Selective Flushing

The VIPS-M protocol relies on selective flushing at
synchronization points to keep coherence (and provide
SC) for DRF applications. We only flush lines that are
being shared among different cores and modified by at
least one of the cores. As shown in Figure 4 (top) this
selective flushing prevents about 68.7% on average of
valid lines from being evicted from the cache. This
significantly lessens the number of misses as
consequence of self-invalidations. We can also
observe that 19% of cache lines will be flushed. Most of
them are silently invalidated because their copy is
clean. This happens for lines brought in the cache as
consequence of read misses, or lines that have
performed a write-through (synchronization or DRF
lines). Frequent synchronization results in parts of the
cache already being invalid in the next flush.

Selective flushing prevents significant part of the
cache from being needlessly invalidated and can be
competitive to invalidations. Figure 4 (bottom) shows
the misses in a MESI protocol and in VIPS classified by
the event that caused them. The percentage of cold,
capacity, and conflict misses (Cold-cap-conf), slightly
decreases in VIPS due to the lack of write misses for
DRF lines. For some applications, e.g., FFT, LU,
Em3d, Tomcatv, and x264, the impact of the selective
flushing on the miss rate is negligible. In FFT and LU

1. MESI 2.VIPS-M

\ W Responses [Coherence 4 Forced

Normalized snoops

< J &
%‘“ez\\o\e._,w & W Ooea; a&o._,\w@ \f\‘ac:aq 5

Y 0 0 N o o
P \m\@‘x\ R

Figure 3. Reduction in snoops.

Percentage of blocks

=] 3 N
ot €t et

® o® O SR 20 o ek P
@’d"@\l"\‘\:a\e‘%ﬂ e g&(oﬁ\cﬁ & Psa‘a%

Lines found in the cache upon a selective flushing.

1. MESI 40
S 14 2VIPS |

ERRS RES

SIS B2 2 SO\ RNV S E:
e & \’od"’@&“ e W

QS o &
e o o
Cache misses normalized with respect to MESI.
Figure 4. Impact of Selective Flushing.

2 &
v@i‘@es‘@‘ €W ana‘;p&os* R 0\@:\

- N I s
P a@“\ @ e @@ Ne‘e‘q‘

N
W

1.MESI 2.VIPS. [®BusEL1_procEZZL1_snoops OLLC |

NN\

SO S
,\~\:‘6@ <

® o & W
e

&N 3§ \‘boz

2N 2 o> o
oF g@d\ @ ~ Fo Pﬂz@

&
o
RE \NB\B‘ <o

Figure 5. Normalized execution time and energy

this is because they have only a few barriers, so
selective-flushing is not frequent. In Em3d, Tomcatyv,
and x264 the working set accessed between
synchronization points is much larger than the cache
size (few invalid lines are flushed, as shown in
Figure 4—top), thus, after a synchronization point,
misses are not due to self invalidation. On the other
hand, applications like Radiosity, and Volrend incur
numerous extra misses due to self-invalidation
because of frequent locking. This impacts performance
and energy consumption as we show in next section.
For the remaining applications, the number of misses is
comparable in both protocols.

C. Performance

There are two performance implications in our
approach: The first, positive implication, is that in
contrast to other snooping protocols, we have no
snoops, thus no contention in the L1s from the bus,

competing with the core. Alternatively, for snooping
protocols we would need to have dual tags or multi-
ported tags, which would increase cost. The second,
negative implication, is that read misses are always
delegated to the LLC and cannot be satisfied by cache-
to-cache transfers. Cache-to-cache transfers make
sense when access to the next hierarchy level is very
expensive. However, in a SoC cache hierarchy the
LCC is relatively close. Furthermore, our results
confirm that only a small percentage of read misses (on
average 3.9% in MESI and 7.9% in MOESI) can be
satisfied by cache-to-cache transfers, so the benefit
would be minor. Figure 5 top shows the execution time
(normalized to MESI). On average, our approach is
3.5% faster than MESI.

D. Energy Consumption

Figure 5 bottom, shows the normalized energy
consumption of VIPS compared to MESI We
concentrate on bus and cache hierarchy energy
(derived from Cacti and GEMS). For the cache
hierarchy we show the energy spent on L1 accesses by
the core, external (non-core) L1 tag accesses, and LLC
accesses. Our results show that VIPS can be
significantly more energy efficient. The external (non-
core) L1 tag-access energy is reduced to less than
15% of the corresponding MESI energy. Variations in
the number of misses (due to selective flushing) and
write-through traffic occasionally increase bus and LLC
energy slightly, but in some cases (Cholesky, Ocean,
Water-NSQ, Water-Sp, Em3d, Tomcatv) VIPS is as
efficient or even more efficient than MESI (for the bus
and LLC). Overall, VIPS saves close to 20% of the
energy in the on-chip memory system.

V. CONCLUSIONS

We propose a novel coherence approach, for SoC
memory hierarchies, based on an efficient LLC
classification of data (to private and shared), a dynamic
write policy based on this classification (write-through
for shared and write-back for private data), and
selective flushing of shared data from the L1 caches
upon synchronization. By separating private from
shared data at the cache-line level at the LLC, we
minimize the impact of the write-through policy, since
many of the write-misses are due to private data. We
achieve this by eschewing support for data races,
which are considered harmful [10] and can be
eliminated in malfunctioning programs using data-race
detection approaches [24]. For synchronization,
however, which does exhibit data-race behavior, we
provide efficient extensions to our protocol. Our
approach has several distinct advantages:

+ eliminates all read and write snoops (leaving just a
few LLC-forced snoops for classification purposes)

* incurs practically no overhead (performance or
power) when coherence is not needed (e.g., for
throughput workloads)

* improves performance and energy over standard
snooping protocols for workloads that require
coherence

» allows seamless scaling to multiple buses (since we
do not need to snoop on any of them) and easily
extends to packet-based networks-on-chip.

VI. ACKNOWLEDGMENTS

This work is supported in part, by the Swedish
Research Council UPMARC Linnaeus Centre, the
Spanish MICINN under grant TIN2009-14475-C04-02,
and the EU HEAP Project FP7-ICT- 247615.

VIl. REFERENCES

[1] D. Abts, S. Scott, and D. J. Lilja. So many states, so little time:
Verifying memory coherence in the Cray X1. In 17th Intl
Parallel and Distributed Processing Symp. (IPDPS), Apr. 2003.

[2] M. E. Acacio, et al. A new scalable directory architecture for
large-scale multiprocessors. In 7th HPCA, Jan. 2001.

[3] S. V. Adve, M. D. Hill, Weak ordering—a new definition, 17th
ISCA, May 1990.

[4] A. R. Alameldeen, D. A. Wood “Variability in Architectural
Simulations of Multi-threaded Workloads” In 9th HPCA, 2003.

[5] ARM AMBA-4 AXI Coherency Extensions, ARM 2011.

[6] Shane Bell et al. TILE64 Processor: A 64-Core SoC with Mesh
Interconnect, IEEE Int'l Solid-State Circuits Conf., 2008.

[71 C. Bienia, et al. The PARSEC benchmark suite:
Characterization and architectural implications. In 17th Int'l
PACT, Oct. 2008.

[8] D. Chaiken, J. Kubiatowicz, and A. Agarwal. LimitLESS
directories: A scalable cache coherence scheme. In 4th
ASPLOS, Apr. 1991.

[91 G. Chen. Slid - a cost-effective and scalable limited-directory
scheme for cache coherence. In 5th PARLE, June 1993.

[10] B. Choi, et al. DeNovo: Rethinking the memory hierarchy for
disciplined parallelism. In 20th PACT, Sept. 2011.

[11] B. Cuesta, et al. Increasing the effectiveness of directory
caches by deactivating coherence for private memory blocks.
ISCA 38, 2011.

[12] N. Hardavellas, et al. Reactive NUCA: Near-optimal block
placement and replication in distributed caches. In 36th ISCA,
June 2009.

[13] H. Hossain, et al. POPS: Coherence protocol optimization for
both private and shared data. In 20th PACT, Sept. 2011.

[14] S. Kaxiras and G. Keramidas. SARC coherence: Scaling
directory cache coherence. |IEEE Micro, 30(5):54-65, Sept.
2011.

[15] S. Kaxiras, et al. Cache Decay: Exploiting Generational
Behavior to Reduce Cache Leakage Power. ISCA 2001.

[16] D. Kim, J. A. J. Kim, and J. Huh. Subspace snooping: Filtering
snoops with operating system support. In 19th PACT, Sept.
2010.

[17] A. R. Lebeck and D. A. Wood. Dynamic self-invalidation:
Reducing coherence overhead in shared-memory
multiprocessors. In 22nd ISCA, June 1995.

[18] Y. Li, A. Abousamra, R. Melhem, and A. K. Jones. Compiler-
assisted data distribution for chip multiprocessors. In 19th
PACT, Sept. 2010.

[19] P. S. Magnusson, et al. Simics: A full system simulation
platform. IEEE Computer, 35(2):50-58, Feb. 2002.

[20] M. M. Martin, D. J. Sorin, and B. M. Beckmann, et al.
Multifacet’s general execution-driven multiprocessor simulator
(GEMS) toolset. Computer Architecture News, Sept. 2005.

[21] A. Moshovos, et al. JETTY: Filtering snoops for reduced energy
consumption in SMP servers. In 7th HPCA, Jan. 2001.

[22] N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi.
Cacti 6.0. Technical Report HPL-2009-85, HP Labs, Apr. 2009.

[23] Tadashi Okamoto et al. Memory device having valid bit storage
units to be reset in batch. US Patent 4879687.

[24] B. W. O’Krafka and A. R. Newton. An empirical evaluation of
two memory-efficient directory methods. In 17th ISCA, June
1990.

[25] S. H. Pugsley, et al. SWEL: Hardware cache coherence
protocols to map shared data onto shared caches. In 19th
PACT, Sept. 2010.

[26] D. J. Sorin, M. D. Hill, and D. A. Wood. A Primer on Memory
Consistency and Cache Coherence, Synthesis Lectures on
Computer Architecture. Morgan & Claypool Pub., May 2011.

[27] D. Vantrease, M. H. Lipasti, and N. Binkert. Atomic coherence:
Leveraging nanophotonics to build race-free cache coherence
protocols. In 17th HPCA, Feb. 2011.

[28] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. The
SPLASH-2 programs: Characterization and methodological
considerations. In 22nd ISCA, June 1995.

[29] H. Zhao, et al. SPACE: Sharing pattern-based directory
coherence for multicore scalability. In 19th PACT, Sept. 2010.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /ArialMT
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

