
Turning Centralized Coherence and Distributed
Critical-Section Execution on their Head: A New Approach

for Scalable Distributed Shared Memory

Stefanos Kaxiras, David Klaftenegger, Magnus Norgren, Alberto Ros†, Konstantinos Sagonas
Department of Information Technology, Uppsala University, Sweden
†Computer Engineering Department, University of Murcia, Spain

ABSTRACT
A coherent global address space in a distributed system en-
ables shared memory programming in a much larger scale
than a single multicore or a single SMP. Without dedicated
hardware support at this scale, the solution is a software dis-
tributed shared memory (DSM) system. However, traditional
approaches to coherence (centralized via “active” home-node
directories) and critical-section execution (distributed across
nodes and cores) are inherently unfit for such a scenario.
Instead, it is crucial to make decisions locally and avoid
the long latencies imposed by both network and software
message handlers. Likewise, synchronization is fast if it
rarely involves communication with distant nodes (or even
other sockets). To minimize the amount of long-latency com-
munication required in both coherence and critical section
execution, we propose a DSM system with a novel coherence
protocol, and a novel hierarchical queue delegation lock-
ing approach. More specifically, we propose an approach,
suitable for data-race-free (DRF) programs, based on self-
invalidation, self-downgrade, and passive data classification
directories that require no message handlers, thereby incur-
ring no extra latency. For fast synchronization we extend
Queue Delegation Locking to execute critical sections in large
batches on a single core before passing execution along to
other cores, sockets, or nodes, in that hierarchical order. The
result is a software DSM system called Argo which local-
izes as many decisions as possible and allows high parallel
performance with little overhead on synchronization when
compared to prior DSM implementations.

1. INTRODUCTION
Regardless of scale, the prevailing architectural paradigm

to build shared memory parallel computers is intrinsically
distributed: CPUs are tightly coupled with local memory
in which copies of the data in global memory are cached
and manipulated. This paradigm spans the spectrum from
the ubiquitous multicore (where cores are serviced by their
private caches which are further serviced by a proxy of the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
HPDC’15, June 15–20, 2015, Portland, Oregon, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3550-8/15/06 ...$15.00.
http://dx.doi.org/10.1145/2749246.2749250.

main memory in the form of a large shared last level cache),
to the other end of systems consisting of networked nodes
(processors+memory) where shared memory is implemented
as a software layer that distributes virtual memory across the
nodes (distributed shared virtual-memory or simply DSM).
Hardware DSM can be made to scale well, but at a consider-
able cost [32], and thus it is not the dominating architecture
in large installations. In this work, we re-examine the case
of the software distributed shared memory.

We believe that the way the prevailing shared memory
architectural paradigm is implemented instills it with two
fundamental flaws that restrict its scale. The first is that co-
herence control of shared data is centralized to a single point
in the system, to a directory entry responsible for keeping
coherence for these data. The second is that inherently serial
execution—in particular critical sections using the same lock—
is distributed across the compute nodes, forcing unnecessary
movement of data to where the execution takes place (mi-
gratory sharing [41]). Considering that coherence control of
the migratory data is centralized (as per our previous point),
distributing the serialized execution of critical sections can
only worsen performance and, according to Amdahl’s law,
this effect will be detrimental to scalability.

These two flaws can be safely ignored when the latencies
involved are small. Thus, it is feasible to build an efficient
(single-chip) multicore using hardware directory coherence
and distributed critical section execution, which becomes
only moderately worse with the increased latencies found
in a (single-node) multi-socket board. Industry examples
abound. However, the situation changes dramatically in a
software DSM system consisting of commodity networked
nodes, because of three reasons: i) we are faced with larger
network latencies, ii) software message handlers introduce
further latency on every coherence action, and iii) because
of the increased latencies, critical-section synchronization
becomes a serious bottleneck.

Why now? Historically, when the first DSM systems
appeared both network latency and network bandwidth were
orders of magnitude worse than the corresponding main
memory latency and bandwidth. In that setting, the overhead
of message handler execution was relatively small (compared
to the network latencies) making software coherence possible.
On the other hand, coherence protocols were burdened to
minimize both latency (e.g., hiding latency with relaxed
consistency models [17]) and bandwidth (e.g., by minimizing
data transfer using diffs).

Advances in network technology over the last two decades
closed the latency and bandwidth gap with exponential im-

1992! 1994! 1997! 2000! 2005! 2007! 2009! 2011!
DRAM min Latency (CPU cycles)! 16! 35! 70! 168! 224! 192! 165! 170!
Net. max BW as CPU cycles/KB! 1092! 2731! 3901! 2313! 1311! 655! 211! 111!
Network min Latency (CPU cycles)! 40000! 50000! 30000! 24000! 4160! 4160! 3300! 1700!
CPU speed (MHz)! 200! 500! 1000! 2400! 3200! 3200! 3300! 3400!

10!

100!

1000!

10000!

100000!

Trends:!
DRAM, !
Network Latency !
& Bandwidth !
normalized to CPU !
cycles!

Figure 1: Trends for network bandwidth and latency normal-
ized to CPU speed. (Adapted from Ramesh’s thesis [35].)

provements. Figure 1 plots the trends for the top CPU speed
(in MHz), DRAM latency, network latency, and the inverse
of network bandwidth, all normalized to CPU cycles. The
last metric is interesting with respect to a DSM implementa-
tion because it gives the latency in CPU cycles to transfer a
block of data (e.g., 1 Kbyte). In the past, despite the rapid
growth in network bandwidth, processor speed increased
even faster. Consequently, increasingly more CPU cycles
were needed to transfer a block of data with each passing
year! This trend reversed as network bandwidth continued
to improve rapidly but CPU frequency improvement stalled.
Whereas the evolvement of network bandwidth with respect
to CPU speed was a deterrent for DSM development in the
past, it now is an incentive. On the other hand, whereas
in the early days a DSM was easily realizable with software
message handlers, this is not the case today. As Figure 1
shows, in terms of CPU cycles, network latency improved
from being tens of thousands of CPU cycles (easily over-
shadowing any message handler latency) to just a couple
of thousand CPU cycles (just an order of magnitude worse
than DRAM latency). These technology trends point to the
tradeoffs that we should make today to scale shared memory
to a distributed system: i) trade using more bandwidth to
reduce latency, ii) minimize message handler execution, and
iii) minimize movement of data for dependent computation
(e.g., critical section execution) as network latency is still an
order of magnitude worse than memory latency.

Contributions. Motivated by these tradeoffs, we flip the
way coherence and critical-section execution is done.

• Inspired by recent efforts to simplify coherence in multi-
cores [37, 15], we use self-invalidation (no invalidations
and no write-misses) and self-downgrade (no indirec-
tion via a home directory) to reduce the latency of
servicing each individual miss. Effectively, we are dis-
tributing coherence control, so that coherence decisions
(invalidation and downgrade) are made locally by each
node without communication.

• To reduce the number of self-invalidation misses and
consequently the average access latency, we introduce
a novel home-node directory protocol without message
handlers, where all operations are performed by RDMA
reads and writes, initiated by the requesting core—no
other node is involved in servicing a coherence miss.
This approach increases network traffic, but in return
we achieve a message-handler-free protocol. Further,
we systematically trade bandwidth for latency, e.g., by
prefetching and by avoiding to create and transmit diffs
when we can.

• We consolidate hierarchically the execution of critical
sections that use the same lock (to the core or node that
happens to get the lock first) in order to minimize waste-
ful movement of migratory data. This dramatically
reduces synchronization latency and critical-section
overhead. We achieve this by extending a state-of-the-
art queue delegation locking algorithm [18, 20]. To
take full advantage of this approach some source code
changes are necessary, but the required effort is modest.

The result is a highly scalable DSM system called Argo1 with
a novel coherence protocol (Carina) based on passive classi-
fication directories (Pyxis) and a new locking system (Vela).

Argo is a page-based, user-space, DSM and its prototype
implementation is built on top of MPI. It runs unmodified
Pthreads (data-race-free) shared memory programs and with
some source code modifications, optimizes the locking perfor-
mance of such programs with a novel hierarchical extension
of queue delegation locking [18, 20].

We evaluate the prototype implementation with a set of
seven benchmarks and characterize the effects of our design
decisions. We show that Argo is able to scale the set of
benchmarks to a large number of nodes, competing with
message-passing or Partitioned Global Address Space imple-
mentations, as well as to sustain the performance level of
critical section execution in a distributed environment.

2. BACKGROUND

2.1 Coherence
Of course, we are not the first to note distributed shared

memory problems and aim to address them. A large body
of prior work set the same goals. Regarding the problem
of centralized coherence the line of attack has been to re-
lax the memory consistency, notably going from Sequential
Consistency (SC) [21] to weak memory models that rely on
synchronization to enforce ordering. These memory models
made it possible to relax the constraints on coherence and
ameliorate the centralization problem. We call attention here
to Release Consistency (RC) [10], Lazy Release Consistency
[17], Entry Consistency [2], and Scope Consistency [13], all of
which were invented to optimize the coherence of distributed
shared memory architectures: a hardware architecture for
RC—the DASH prototype [23] built at Stanford—and soft-
ware distributed shared virtual memory systems for the
rest [24, 2, 16]. However, none of these approaches arrived
at a truly distributed coherence solution. Self-invalidation
and self-downgrade (write-through) enables fully distributed
coherence protocol (that theoretically requires no directory).
Practically, however, it is not enough. There is a steep price
to pay for excessive self-invalidation. One of the contribu-
tions of our work is to address this deficiency by introducing
a directory to classify pages according to the number of shar-
ers and the number of writers on each. The novel aspect of
our approach is that the directory is passive, i.e., it is only
accessed by RDMA and does not introduce message handlers
in the system.

PGAS/UPC. Using only RDMA to access shared data
is comparable to Partitioned Global Address Space (PGAS)

1
In ancient times Argo Navis (or simply Argo) was a large constella-

tion in the southern sky that has since been divided into a number of
smaller constellations: Carina (the Hull), Pyxis (the Compass), Vela
(the Sail), among others.

approaches such as Unified Parallel C [40]. For this reason
we will use UPC as a representative base case in our evalua-
tion. In PGAS the address space is logically divided between
processes but the main difference with our approach is that
there is no remote caching. Shared data can of course be
local to a node, but determining this at runtime is costly,
and therefore programmers are advised to cast such point-
ers to local pointers where necessary. Remote accesses are
fine grained, and, similarly to our approach, using a relaxed
memory model [40] each access can be delayed until the next
synchronization point, making it possible to hide the latency
of remote accesses with computation on local data. Without
caching, it is often necessary for UPC programmers to manu-
ally move data from the global address space to thread-local
space in bulk transfers, which is then similar to message
passing paradigms in the way that the programmer needs to
think about communication patterns rather than thinking
about how threads are exploiting locality. Critical sections in
UPC are programmed with UPC-specific lock/unlock primi-
tives, which ensures that all memory operations have been
completed before both the lock and unlock call. Since criti-
cal sections by nature make most threads access and write
non-local data they incur a high penalty in UPC, as each
operation in the critical section is a remote operation without
any possibility to run it locally. We address all these issues
with our approach.

2.2 Synchronization
Over the years, many locking algorithms have been devel-

oped to speed up critical section execution. Traditionally,
these algorithms focus on acquiring and releasing a lock as
quickly as possible, while also considering the time required
for handovers. Queue-based locks, like MCS [28] and CLH [5,
27], reduce cache coherence traffic to achieve higher perfor-
mance on multicore systems. At the same time they order
critical sections without taking the location of data into
consideration, which results in performance degradation on
NUMA systems, due to the higher latency and lower band-
width between processors. On NUMA systems these locks
are outperformed by algorithms that distribute work in a less
fair manner, e.g. the HBO lock [34], the hierarchical CLH
lock [26] or more recently the Cohort lock [7]. They all aim
to hand over the lock to a thread that is “nearby” to exploit
the faster transfer of data to some parts of the system.

Delegation locking is a different approach, which takes this
idea to the extreme by sending operations to where the lock is
held instead of transferring the lock and data to each thread.
This allows data to stay in the caches of a helper thread for
all cache levels, resulting in higher throughput. Algorithms
enabling delegation locking include flat combining [12], re-
mote core locking [25], CC- and H-Synch [8]. Additionally,
some algorithms allow threads that delegate critical sections
to detach the execution, continue with other work, and only
wait for the critical sections’ execution if and when needed.
Of these, detached execution [31] does not perform as well
as other delegation algorithms while Queue Delegation Lock-
ing (QDL) [18, 20] combines a fast delegation method with
the ability to detach execution. It allows to either collect
operations from the entire system concurrently, or (in the
case of a NUMA system) restrict the collection to a single
NUMA node [20]. This Hierarchical Queue Delegation Lock-
ing (HQDL) allows for faster delegation at the cost of less
exploitable parallelism in the system.

In a related approach, Suleman et al. [39] propose consoli-
dating the execution of critical sections (which is inherently
serial) in one fat, fast, and power-hungry core, while dis-
tributing parallel execution on thin and power-efficient cores,
in a heterogeneous multicore consisting of both types of cores.
This addresses Amdahl’s law by speeding up the serial part
of the programs.

2.3 Other Forward-Looking Approaches
A new DSM system that has focused on latency tolerant

programming is Grappa [30]. Similarly to our motivation, the
authors recognize that latency is the critical issue to address,
at the expense of increasing bandwidth demands. Grappa
has, similarly to this paper, tackled the problem of executing
critical sections in the global address space. They use another
synchronization mechanism called flat-combining. Grappa
implements a system where it is possible to send critical
sections to the node where the data the critical section wants
to access is residing in the global address space. However,
Grappa is a new programming paradigm that focuses more
narrowly on throughput computing with a vast number of
threads. We concentrate on offering efficient shared memory
that can run the large library of parallel algorithms that have
been developed over the years.

3. THE ARGO SYSTEM
Similarly to other DSM systems [24, 2, 16, 33], Argo im-

plements shared memory using the facilities provided by the
virtual memory system. Argo is a user-level DSM, imple-
mented entirely in user space on top of MPI. While a custom
network layer tailored to Argo would likely offer greater per-
formance, we opted for the portability and flexibility of MPI
for the prototype implementation.

Argo works on page granularity (4KB) and sets up a shared
virtual address space spanning all nodes. This address space
is first initialized by each node, allocating the same range of
virtual addresses using the mmap system call. These addresses
are then available for allocation using our own allocator.

Argo is a home-based DSM where each virtual page is as-
signed a home node. Currently, virtual pages are interleaved
across nodes so that for a system containing N nodes, node0
serves the lower addresses of the global memory and nodeN−1

serves the higher addresses. While this is a simplistic ap-
proach, we note that more sophisticated data distribution
schemes are orthogonal to what we describe here and are left
for future work.

Each node caches remote pages in a local page cache. Co-
herence must be enforced among all the page caches in the
system. Typically in prior work, a directory would be re-
sponsible to keep a home node’s pages coherent. This means
keeping track of the readers and the writers of every page and
sending invalidation and downgrade messages when necessary.
The most important optimization proposed for such DSM
systems is to relax the memory model and allow consolidation
of coherence traffic on synchronization points [17]. In many
cases, this means that downgrading dirty data necessitates
the creation and transmission of diffs [17].

Our aim is to eliminate the centralized bottleneck of di-
rectories and arrive at a genuinely distributed solution. The
reason is twofold: First, any operation that involves a direc-
tory is costly because of the latencies involved in a DSM.
This is especially true for invalidation and indirection (lo-
cating the last writer and obtaining the latest value of the

data via the directory) where multiple network hops may
be needed. Second, directory operations that involve even
simple state transitions or sending new messages, require
that a message handler be invoked at the directory side to
perform such operations. Potentially a handler is needed
also on the receiving side of a directory message to take an
action there.

Thus, prior DSM systems rely on directories and page
caches that are active agents requiring their own comput-
ing resources to process (receive and respond to) messages.
Whether these active agents are implemented as software mes-
sage handlers that poll the network interface for coherence
messages, or are invoked via interrupts, is of little conse-
quence; they consume resources, introduce latency into every
access, and can easily become bottlenecks and compromise
scalability in the presence of hot spots. Given our analysis
in the introduction, the improvement in network latency has
increased the relative overhead of software message handlers.
Instead, what we would ideally like to do is use remote mem-
ory accesses—RDMA—for all coherence actions without the
need to execute code on the receiving sides. This is perhaps
one of the most significant differences between Argo and
prior DSM systems.

We achieve this goal by relying on self-invalidation and
self-downgrade as the main mechanisms of our coherence.
Self-invalidation means that any node is allowed to read
any data block as long as it promises to self-invalidate this
block before passing a synchronization point. Similarly, self-
downgrade means that a node can freely write any data block
without obtaining any permission from a directory, as long
as it makes the write visible to all other nodes before crossing
a synchronization point.

The significance of this approach in DSM is twofold. First,
self-invalidation eliminates explicit invalidations on writes.
This means that no sharers need to be tracked by a home-
node directory. Second, self-downgrade eliminates directory
indirection on read misses to find the latest version of the
data; instead, the correct data are always found in the home
node on any read miss. This means neither the writers need
to be tracked in the directory, thereby eliminating the need
for a directory altogether.

While on first sight this would seem ideal for a DSM, in
reality self-invalidation can seriously degrade performance
if applied without constraint. This is where our first contri-
bution comes in. We propose a classification directory to
manage self-invalidation. To the best of our knowledge, this
is the first passive directory protocol, i.e., without any mes-
sage handlers (active agents) but using exclusively RDMA
initiated by requestors to perform all protocol actions. This
approach enables a distributed and highly-scalable coherence
solution, which we call Carina.

As with any protocol that is based on self-invalidation, e.g.,
[22, 14, 37, 4], our approach imposes a weak memory model
in which Sequential Consistency (SC) for DRF programs can
be guaranteed when synchronization is fully exposed to the
system [1]. We discuss this in the following section.

3.1 Exposing Synchronization to Carina
We expose program synchronization to the coherence layer

using “fences” in the application programs. Fences are im-
plicit for synchronization primitives in the Argo synchroniza-
tion libraries and no source code modification is needed for
DRF programs using the Argo Pthreads or HQDL libraries.

There are two fences available in Argo: an SI fence for self-
invalidation and an SD fence for self-downgrade. On an
SI fence, all pages in a page cache are invalidated before the
fence completes. On an SD fence, all the writes of modified
pages are made globally visible before the fence completes.

The memory model of Argo corresponds to a weak memory
model if on every synchronization (lock, unlock, signal, wait,
barrier, or even synchronization via spin loops and flags),
we apply both fences. For Release Consistency [10], it is
sufficient to use an SI fence on acquire points and SD fence
on release points. In Section 4 we will show how we use these
fences for the memory model of queue delegation locks.

3.2 Carina: Argo’s Coherence
Unrestricted self-invalidation (and to a lesser extent unre-

stricted self-downgrade) can seriously degrade performance
considering that: i) on each acquire point, all the data cached
in a node are self-invalidated, even if they have not been
modified; and ii) on each release point, all the writes must
be reflected back to the home node, even if they are not sub-
sequently read by another node, or even if further updates to
the data would render exposing these writes to other nodes
premature and unproductive. It is therefore important to
reduce these costs. We achieve this by classifying pages at
home-node classification directories [11, 6, 37].

Any node accessing a page at a home node simply deposits
its ID (separately for reads and writes) in the directory. This
directory information indicates to future accessing nodes
whether:

• the page is Private, P, (only one node is accessing it)
or Shared, S, (more than one node are accessing it)

• the page has No Writers, NW 2 or the page has a
Single Writer, SW, (only one node writes it) or Multiple
Writers, MW, (more than one node write the page).

Note that classification transitions (P→S, NW→SW, and
SW→MW) happen at most once per page, i.e., they are rare.
Also note that this information concerns the global address
space (where potentially everything can be shared) and not
the thread-private space which is not shared across nodes.
Thus, the term “Private” is somewhat of a misnomer here, as
it does not imply perpetual privacy, but temporary privacy
for data declared as shared.

In our current implementation these two types of classifica-
tions are one-way and non-adaptive: from private to shared
and from no-writers to a single-writer to multiple-writers.
However, it is straightforward to extend the classification
to adaptive (reverting back to private or no-writers/single-
writer) using simple “decay” techniques [36], if need arises.
For the workloads we examined, such adaptation was not
deemed necessary and is left for future work.

Table 1 shows the types of classifications we can do. The
first, S, represents the case where no classification is per-
formed in the system and all pages self-invalidate and self-
downgrade. The second, P/S, simply distinguishes between
private and shared pages, while the third, P/S3, further dis-
tinguishes shared pages to NW, SW, and MW, depending on
the number of writers. We use this data classification to filter
self-invalidation, e.g., exclude private pages, or shared pages
without any writer from self-invalidation. While we could
also optimize self-downgrade, we actually chose to do the

2
Equivalently: Read-Only, RO

Classification State SI SD Comment
S:
No classification

S X X All pages shared

P/S: Simple P/S
classification

P — X SD to avoid P→S forced downgrade
S X X

P/S3: Full P/S
and Writer
classification

P — X SD to avoid P→S forced downgrade
S, NW — X
S, SW — (X) X SW does not SI but other nodes do
S, MW X X

Table 1: Three classifications: S, P/S, P/S3. Argo uses the
full P/S3 classification.

tag
readers
0 1 2 3

} # of home
pages

0 1 2 3
writers

Global Mem

tag
readers
0 1 2 3 0 1 2 3

writers

Page
Cache

cores

Home node
Directory

Directory
Cache

tag
readers
0 1 2 3 0 1 2 3

writers

Global Mem

tag
readers
0 1 2 3 0 1 2 3

writers

Page
Cache

cores

a
b
c
d

x
y
w
z

a
b
c
d

x
y
w
z

x

w
b
c c

b
w

x

NODE 0 NODE 1

Figure 2: Directory organization (two nodes). Each node
holds a “home” directory and a directory cache caching the
remote directory entries.

opposite. For example, we chose to self-downgrade private
pages. We do this to eliminate the need for message handlers
to service classification transitions.

Our classification is in line with the philosophy we set forth
in the introduction of trading bandwidth (increase traffic
from self-downgrades) for latency (reducing self-invalidation
and eliminating message handlers). Further, the distinction
between SW and MW allows us to suppress the creation of
diffs (latency) in the case of a single writer, since there can
be no false sharing to corrupt data on downgrade, at the
expense of transmitting more data (bandwidth). However,
this optimization increases the complexity of the protocol
and is left for future work.

3.3 Pyxis: Passive Classification Directory
But how do we implement a coherence protocol so that

no active agents—software message handlers—are needed
to respond to messages or generate new requests? In our
approach the home node directories are simply metadata
structures that are remotely read and written (RDMA) by
the requesting nodes. Information is simply deposited in
the directories for the passive classification of data and all
protocol actions are performed by the requesting node.

Figure 2 shows the directory organization. The directory
is simply a structure holding, for each page, its reader(s) and
its writer(s). There is no explicit state for the page—this is
inferred by the accessing nodes. We use a full map to keep
track of the readers and writers.

When a node (read or write) misses in its page cache it
accesses the directory for the page using a Fetch&Add atomic
operation. This operation sets the node ID in the reader
or writer full map (depending on the miss) and returns the

read

[0][−]

[0,1][−]

[0,1][0]

read[0][−]

[−][−]

[0,1][0,1]

[0,1][−]

[0][−] -> [0,1][−]

data
write

[0,1][0]

P,NW

P -> S,NW

S,NW

S,SW write

[0,1][0,1] S,MW
[0,1][0,1]S,MW

Node 1Node 0

Node 1 causes P -> S and
must correct "owner" Node 0

Home Node
(Dir [r][w])

Figure 3: Overview of P→S and NW→SW→MW. The ex-
ample shows “instant” transitions of state in node 0 (shaded)
which would require a local active agent.

updated reader and writer full maps which are stored locally.
To facilitate notifying a node on a classification change

without a message handler, we keep copies of all remote
directory entries for all the pages in its page cache (Figure 2).3

A node is notified of a directory change by simply updating
its local copy of the directory entry. The update is observed
by the node on its next synchronization or its next request.
I.e., a node’s perception of the home node classification may
be stale until its next synchronization point. This is allowed
simply because of the DRF semantics.

3.4 P/S Classification
Let us see now how this classification can reduce the num-

ber of self-invalidations. Initially all pages start as uninitial-
ized and without any readers or writers. Initialization writes
to the pages do not count and this is a rudimentary form of
adaptation that we implement: at the end of initialization
and the start of the parallel section of the programs the
reader and writer full maps are reset to null.

The first node accessing a page leaves its ID in the directory
(as a reader). A single ID signifies that the page is Private as
shown in Figure 3 for Node 0 when it first reads a page. The
page does not need to be self-invalidated or self-downgraded
as there is no sharing. When a new node (Node 1 in Figure 3)
misses in its page cache and accesses the same page it observes
that there is already a node (Node 0) that considers the page
as private, the “private owner.” The private owner needs to
be notified that the classification has changed and the page
is now shared, which means that:

1. the page should be self-invalidated at any subsequent
synchronization point

2. any updates to this page previously performed by the
private owner (Node 0) need to be made globally visible
and certainly visible to the newcomer node (Node 1)
before the latter continues.

Recall that the directory is passive, i.e., there is no direc-
tory agent to detect the classification change and appropri-
ately notify the private owner. Recall also that the private
owner is also “passive:” it can initiate requests but cannot
respond to such. The burden for this falls on the node that
causes the classification change (e.g., Node 1). Since this
node updates the directory with its ID and in the process

3
For simplicity we keep a full copy of any accessed remote directory.

This is not a significant overhead in the systems we examined, and
one can always “compress” the directory copies to a few bits per entry,
if need be. Essentially, we want to know if a page has a single reader
or single writer; if there is more than one reader or more than one
writer, we do not care to know their identity.

read

[0][−]

[0,1][−]

[0,1][0]

read[0][−]

[−][−]

[0,1][0,1]

[0,1][−]

[0][−] -> [0,1][−]
data

write

[0,1][0]

P,NW

P -> S,NW

P,NW

S,SW

write

[0,1][0,1] S,MW
[0,1][0,1]S,SW

Node 1Node 0

Node 1 causes P -> S and
must correct "owner" Node 0

Home Node
(Dir [r][w])

sync [0,1][0,1]S,MW

[0,1][0,1]INV

Node 0 considers
page as P or SW until sync

[0,1][0]

Figure 4: Deferred invalidation: Node 0 ignores P→S (and
SW→MW) until its next synchronization.

receives the reader and writer full maps, it detects that the
private owner needs to be notified. There is always just a
single node that needs to be notified in the P→S transition.
Since the private owner is known (from the reader full map),
updating it is simply a remote update of its cached copy
of the directory entry. In essence, we use the cached direc-
tory entries in each node to reflect the updates in the home
directory without the need to have active agents in the node.

3.4.1 Deferred Invalidation
The private owner does not need to immediately notice

the P→S transition as shown in Figure 3. There is no
action taken at the time of the transition and this means
that no active agent is needed in Node 0. The transition
will be detected and action taken by Node 0 at its next
synchronization point where it will include the shared page in
the self-invalidation. We call this deferred (self-)invalidation
and show it in Figure 4. In general, a node can consider a page
“private” from the initial read to the next synchronization
(Figure 4), and—as we already noted—this is valid simply
because of the DRF semantics.

3.4.2 Self-Downgrading Private Pages
While deferred invalidation eliminates the need to have

an agent to respond to a directory-cache update, the same
unfortunately is not true for the second requirement of a P→S
transition: obtaining (possible) private-owner modifications
before continuing with the Node 1 access that causes the
P→S transition in the first place. The problematic point is
shown in Figure 3 marked with a grey oval. Normally, this
would require an active agent in Node 0 to stall all local
threads from accessing (potentially modifying) this page,
until the home node and Node 1 are updated with the latest
version of the data. Note that as per the DRF semantics
Node 1 can only expect to see the writes of Node 0 at most
up to the point of Node 0’s last synchronization point. In
addition, from the moment Node 0’s data are made shared,
any further writes must be self-downgraded at Node 0’s next
synchronization point as a diff. The last two points are
critical in making the P→S transition work correctly.

Näıve Solution. A näıve solution would then be to check-
point all modified private pages prior to any synchronization
point and service P→S transitions from these checkpoints.
As we will see in Section 5.1 creating these checkpoints is an
expensive proposition as it significantly delays synchroniza-
tion. The overhead largely invalidates the potential benefit
of PS classification.

read

[0][−]

[0,1][0]

[0][0]

read

[0][−]

[−][−]

[0,1][0]

[0][0] -> [0,1][0]
data

write

[0][0]

P,NW

P -> S,SW
(but I am not
the single writer)

S,SW

P,SW

[0,1][0]P,SW

Node 1Node 0 Home Node
(Dir [r][w])

sync 1 [0][0]P,SW

sync 3

downgrade

[0][0]

write

sync 2 [0,1][0]S,SW

(no SI since I am the
single writer)

write

write

downgrade

sync 4

[0,1][0]S,SW

[0,1][0]INV

Figure 5: Self-downgrade of private pages.

Carina’s Solution. To solve this conundrum, we trade-
off bandwidth for latency. In this case, we self-downgrade
all Private pages at synchronization points as if they were
Shared ! The latency benefit is twofold: 1) private pages
are still excluded from self-invalidation (and do not need
to be re-fetched as long as they remain private) and 2) we
update private owners without active agents. In addition,
checkpointing for diffs happens only on a write miss and its
latency affects only the thread that incurs the write miss.

An example is shown in Figure 5. Node 0 is the private
owner that starts to downgrade once it writes the page. At
synchronization points all its modifications are put back to
the home node. When Node 1 reads, it obtains the latest
data directly from the home node. It does not matter that
Node 0 keeps writing in parallel. As per the DRF semantics
Node 1 is only guaranteed to “see” Node 0’s modifications
prior to sync 1.

3.5 P/S3 Classification
P/S3 classification adds writer classification (NW, SW,

MW) on top of P/S classification. The distinction is mean-
ingful for the shared, S, classification, since as we have ex-
plained the private, P, classification always self-downgrades
and does not self-invalidate. The reason why it matters for
the S classification is that it adds two more opportunities
to eliminate self-invalidation: shared pages with no writers,
and shared pages with a single writer. A comparison of P/S
and P/S3 classification with respect to self-invalidation and
self-downgrade is depicted schematically in Figure 6.

If there are no writers (yet) for a page, it can be considered
as a read-only page and is classified as “No-Writer” (NW).
Any node caching a page may go ahead and write it at any
point without needing to obtain any kind of permission to
do so. This is because of the DRF semantics: nodes will
have no conflicting accesses (i.e., accesses not separated by
synchronization). Therefore, any node can write its cached
page copy at will, considering itself the single writer. If it
is the first time a node writes a page, it deposits its ID at
the directory and obtains the full map of writers to check
whether there are others. We discern the following cases
depending on the home-node state of the page:

• Private, and written by the private owner: In this case,
the page becomes P,SW and starts to self-downgrade
as described earlier (e.g., Figure 5 sync 1).

Sync. point
(Aqc./Rel.)

S,MWS,SWS,NWP
P/S Classification P/S3 Classification

P SSI
SD

Time

SI SDSDSD SD

(No SI) (No SI)(No SI/SD) (No SI)

SI/SD

Figure 6: Trading bandwidth for latency. Self-invalidation
(extra latency) is represented by dashed lines stopping at the
synchronization point. Self-downgrade (extra bandwidth) is
represented by dotted lines stopping at the synchronization
point. Lines that cross the synchronization point do not
require any action.

• Private, but written by a new node: The page transi-
tions both to Shared and SW and the (single) private
owner is notified accordingly.

• Shared, NW: The page is already shared by more than
one node, and this is the first write (that reaches the
home-node directory). In this case all nodes caching
the page must be notified that there is a writer.

• Shared, SW: The page is already shared with a single
writer, written now by a new node. Only the single
writer is notified.

• Shared, MW: The page is shared with multiple writers.
A new writer does not need to take any action.

A single writer node self-downgrades on synchronization.
At downgrade, it checks its local directory cache to see if more
writers have appeared (Figure 5 sync 2). If it is still the only
writer then it does not need to self-invalidate—there are no
other updates to this page! An example is shown in Figure 5
sync 2, where the single writer of a shared page can keep
it after the synchronization. This is an optimization that
works well in a producer-consumers scenario: the producer
creates new data without invalidating its cached page on
synchronization, and the consumers read the data directly
from the home node—no indirection—as they invalidate
their copies on their respective synchronization points (e.g.,
Figure 5 sync 4, the page is S,SW but Node 1 is not the
single writer and must invalidate).

However, if more writers appear then the page transitions
to Multiple Writers (MW) and all nodes must both self-
invalidate and self-downgrade (if they write) this page. The
transition SW→MW is exactly analogous to the P→S tran-
sition. As with the private owner there is initially only one
“single writer” in the home-node directory and only this single
writer needs to be notified (by the second writer) about the
transition. No other node needs to be notified as it makes
no difference: for all other nodes except the single-writer,
the SW and MW states are equivalent and mean both self-
invalidation and self-downgrade (if written). The transition
of the single writer to MW is also deferred : it is discovered
at the single writer’s next synchronization point.

3.6 Additional Techniques

3.6.1 Write Buffers
Downgrading only on synchronization may cause consider-

able traffic (all the “dirty” pages need to be put downgraded

0 100000 200000 300000 400000 500000 600000
Bytes

0

500

1000

1500

2000

2500

M
B/
S

Argo
MPI-RMA

Figure 7: Bandwidth comparison: Argo cache-line read vs
passive one-sided communication in OpenMPI 1.6.4. x-axis
is cache line or MPI message size.

to their corresponding home nodes) and thus is a serious
performance bottleneck. To address this problem we use the
equivalent of a write buffer that drains slowly (and down-
grades pages) as it is filled with new dirty pages. When
a page is marked as dirty we put in a FIFO write buffer
of configurable size. Each time the buffer is full we simply
write back the copy that was first entered in the buffer to
its home node, then setting the memory protection for the
virtual addresses mapping to the cache to read-only, meaning
that any subsequent write to that memory will trigger a new
write miss. Using a write buffer we ensure that all writes
are propagated at a good pace to their home nodes, and
guarantee an upper bound when flushing the write buffer on
synchronization. Again this is an example of trading band-
width for latency: a write buffer increases write–through
traffic but limits the latency of SD fence synchronization.

3.6.2 Prefetching
For underlying communications, our current implementa-

tion (prototype), uses passive one-sided communications of
MPI. A limitation imposed by this choice is that only one
thread can use the interconnect at any point in time to fetch
a page. To mitigate this bottleneck and make better use of
the available bandwidth, upon a cache miss Argo fetches not
only the requested page but a “line” of consecutive pages.
The cache line size and the number of cache lines provided
are user configurable. The cache is direct mapped and maps
each page to a fixed position in the cache using a simple
mapping function. Subsequent threads causing a miss on a
page that is being prefetched as part of a cache line (spatial
locality) have to wait for that request to complete. Figure 7
shows the achievable bandwidth in Argo while reading a
cache line of pages. Clearly, Argo tracks well the MPI data
transfer rate with increased cache line size (x-axis).

4. EFFICIENT SYNCHRONIZATION
Efficient synchronization is of paramount importance in

making Argo perform well, for two reasons: First, while
Argo’s coherence handles DRF accesses with ease, thread
synchronization essentially constitutes a data race. Data
races are problematic in a software DSM, especially in one
that is based on self-invalidation and abolishes software mes-
sage handlers to process (receive and respond to) messages.
To implement data races one has to self-invalidate and self-
downgrade every access involved in a race. Second, syn-
chronization plays a vital role in Argo’s Carina coherence
since it determines the points where Carina self-invalidates
or self-downgrades. Once synchronization is achieved via a

data race, Carina must self-invalidate and/or self-downgrade
(depending on the acquire/release semantics of the achieved
synchronization) all cached data. While Carina aims to
minimize self-invalidation with the P/S3 classification, it is
obvious that programs with intensive synchronization will
suffer considerably more misses than a comparable DSM
using an explicit invalidation protocol.

These two reasons require a complete re-think of syn-
chronization for the Argo system. We discern two types
of synchronization: barrier and lock-based synchronization.
They are treated separately in Argo’s Vela synchronization
system that provides the necessary API for both (among
other primitives such as signal/wait that are not discussed
further due to the limited space in this paper). We will
start with the barrier which is the easiest, and proceed with
lock-synchronization which will be the main focus of this
section.

4.1 Barrier Synchronization
One of the most prevalent synchronization mechanisms

in distributed programming is the barrier. This is due to
barriers being usually among the easiest methods to imple-
ment efficiently. In Argo all that is required is a hierarchical
barrier protocol that first ensures each node has written back
its data, and then that each node can only read the updated
data. To this effect, a node-local barrier is used before a self-
downgrade to ensure that all threads on a node have reached
the barrier. An MPI barrier call is then used to make sure
all the nodes have successfully completed the self-downgrade,
after which they all self-invalidate. Finally, the threads on
each node can be notified to continue their work, which for
simplicity is implemented using another node-local barrier.

4.2 Lock-based Synchronization Using HQDL
Lock-based synchronization is expensive in any DSM, since

it involves frequent long-latency transactions among nodes.
Worse, lock-based synchronization is typically used in critical
sections that access a common dataset. Not only the lock
acquire operations are expensive but also the execution of the
ensuing critical section is penalized if it switches nodes. The
reason is that accessing the same data inside a critical section
necessitates their transfer between nodes; in other words data
accessed in critical sections are migratory. Coalescing the
execution of critical sections on the same node as much as
possible reduces the inter-node transfers of the lock-protected
data and is a beneficial policy on any DSM.

In Argo, there is a further incentive to execute as many
critical sections in one node before being forced to switch.
The reason is the destructive effect of self-invalidation on
the rest of the cached data on nodes (those that are not-
protected by the lock). Argo’s Carina coherence enforces
self-invalidation on synchronization with acquire semantics
and self-downgrade on release. This holds for all data. The
situation is worsened by the fact that Carina implements a
common page cache for all threads running on the same node.
While a common page cache (as opposed to a per-thread or
per-core cache) brings spatial and temporal locality benefits
in the epochs of synchronization-free execution, a synchro-
nization on any thread, self-invalidates or self-downgrades
all other threads’ data.

While this is a interesting problem for further research, in
this paper we approach it by lock-based synchronization that
does not cause global synchronization between each and every

critical section. Similar to how barriers use local barrier calls
before global ones, locking algorithms like cohort locks [7]
(developed for NUMA systems) prioritize synchronization
on a single node. Such a hierarchical approach brings the
overall performance of a chain of critical sections to (at
most) the performance achievable using a single node. It
is thus essential to use the fastest algorithm available to
execute critical sections on a single node. As delegation
locking [18, 20, 19] currently outperforms any traditional
locking algorithm, the Argo system introduces primitives for
hierarchical queue delegation locking (HQDL).

Let us describe how HDQL is constructed starting from
simple (flat) queue delegation. Similarly to delegation locking,
HQDL uses a different interface than traditional locks: Each
critical section is issued with a single “delegate” call per
critical section, and optionally waits (wait) for the section’s
execution immediately or at a later point. Often, small source
code modifications are needed to “package” critical sections
into callable functions in order to be able to delegate them to
another thread. Note that threads are allowed to execute non-
dependent code between the delegate and the wait but we do
not take advantage of this feature in this paper, as it requires—
sometimes non-trivial—modifications of application source
code. HQDL streamlines the execution of many sections
into a single thread, thus reusing local hardware caches more
efficiently than if many threads each access the same data.
As there is no method of synchronization beyond the ones
implemented in Vela, no additional work is required from
the programmer.

To build a global QD lock in a distributed system one
needs a self-invalidate (SI fence) when opening the delega-
tion queue and a self-downgrade (SD fence) when flushing
(closing) the queue. The trouble is that allowing transmission
of operations to a remote node necessitates a self-downgrade
by the delegating thread. Additionally, when a thread wants
to know if its critical section has been executed successfully
(e.g., by executing a wait), we also need to perform self-
invalidation in order to be able to see the updates performed
by the critical section on possibly other nodes. Evidently
queue delegation to other nodes does not save us any self-
invalidations and self-downgrades. Furthermore, the helper
thread which executes critical sections may have to slow
down to wait for remote nodes delegating sections.

To address these issues, in the Argo system HQDL only
allows delegation of critical sections from the same node
as the lock holder is on. Permission to open a delegation
queue is determined hierarchically by acquiring a global lock.
The node that holds the global lock is the currently active
node. On the active node, a self-invalidation is performed
in order to “see” data possibly written in earlier executions
of critical sections in other nodes. However, after this initial
self invalidation, there is no need for more self-invalidations
or self-downgrades as long as critical sections are delegated
and executed locally. Once the execution of the critical sec-
tions finishes (either because there are no more, or a limit is
reached) a self-downgrade is performed to make the writes of
the executed critical sections globally visible and the global
lock is released. This type of locking structure uses signif-
icantly fewer SI fence/SD fence which would otherwise be
very costly: First we eliminate the need for self-invalidating
data upon waiting for a specific critical section. This is in-
stead done for the whole node when accessing the global lock.
Second, when delegating a critical section, we do not need

Blackscholes CG EP LU MM Nbody Average
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

S PS PS3

1.2

Figure 8: Classification impact on execution time.

to flush any buffers, as local node coherence is sufficient.
While this approach reduces the number of threads that

can simultaneously delegate to the same lock, it still improves
performance: If the program depends on lock performance,
it has enough work even on a single node, otherwise there
are only negligible stalls on other nodes.

5. EVALUATION
We implement and evaluate Argo on a large distributed

cluster in our installation primarily used for HPC workloads.
We use at least up to 32 and when possible up to 128 nodes to
run our experiments. Each node is equipped with two AMD
Opteron 6220 processors featuring two quad-core CPUs per
chip, connected using the same interconnect as for commu-
nicating with separate processors. Therefore, for NUMA
purposes, each machine has four memory nodes, each with
only four cores that share a local memory hierarchy (16 cores
total). The nodes have at least 64 GB of memory, and are
set up with Scientific Linux 6.4, running Linux kernel version
2.6.32-431.20.3.el6.x86 64. All nodes are interconnected with
a 2:1 oversubscribed QDR Infiniband fabric. Argo is in its
prototype stage and as such it does not have its own custom
fine-tuned network layer. Instead, it is built on top of MPI.
We use OpenMPI 1.8.4 supporting the MPI3 RMA stan-
dard [29]. MPI handles all the bookkeeping needed to start
a parallel program on multiple nodes. Each node contributes
an equal share of memory to the globally shared memory
of the system, and uses an equal amount of memory as a
local cache for the global memory. On each run, the amount
of memory (user specified) is sized to be large enough to
fit the desired workload. Argo uses only 15 out of the 16
available cores of a node, leaving one to take the OS overhead
(MPI and UPC use all 16 cores of a node). All results are
normalized to a single thread (Pthreads or OpenMP).

5.1 Protocol Choices: S, P/S, P/S3
We first examine the impact of the design choices made

for Argo’s Carina coherence. As discussed in Section 3.2,
Carina implements data classification via the Pyxis passive
directory structure. The classification is intended to curb
self-invalidation. A fundamental design decision is to avoid
message handlers by using more bandwidth, which leads to
choices such as the downgrade of private pages (Section 3.4.2).
Here, we examine the impact of the three data classification
choices: S (no classification—all shared), P/S (the näıve
version of P/S classification where private pages are not
downgraded), and P/S3 the full Carina classification (with
private page self-downgrade and writer classification).

Execution time normalized to the S classification for six

8 16 32 64 128 256 512 1024 2048 4096 81921638432768

Writeback buffer size (pages)

0.0

100.0

200.0

300.0

400.0

500.0

E
xe

cu
ti

o
n

 t
im

e

Blackscholes
CG

EP
LU

MM
Nbody

Figure 9: Runtime for different write-buffer sizes.

benchmarks (on four nodes—64 cores) is shown in Figure 8.
While the P/S classification aims to reduce latency by not
self-invalidating private pages, it incurs a significant check-
pointing overhead during synchronization points, in order to
service P→S transitions. The end result is that the näıve P/S
classification is no better than the S classification. The P/S3
classification overcomes this problem by self-downgrading
private pages. The private/shared classification provides
the major part of the benefit in terms of reducing the self-
invalidation miss rate. For the six benchmarks we examined,
additional writer classification further reduced miss rates but
by small amounts. The NW (no writer or read-only) and
the SW (single writer) classifications exclude shared read-
only pages and pages written by a (single) producer from
self-invalidation but these behaviors are not prevalent in our
benchmark set: i) while there may be abundant read-only
data, a single write disqualifies a whole page from being read-
only; ii) there is not enough stable single-producer/consumer
sharing at page granularity.

Lessons learned. P/S classification provides the most
benefit in reducing self-invalidation misses but must be per-
formed at a minimal cost: i.e., by self-downgrading private
pages. Writer classification offers further small improvements
which perhaps are significant at a different granularity, or in
benchmarks with different sharing patterns (e.g., dominated
by producer/consumer sharing at a coarser granularity) than
those we examined.

5.2 Write-Buffer Sensitivity Analysis
While writes are not as critical to performance as reads,

excessive write traffic can still be detrimental to performance.
The parameter that controls write traffic in Argo is the size
of the write buffer that coalesces writes between synchro-
nizations. However, a very large write buffer (that must
empty on synchronization) can adversely affect synchroniza-
tion latency, with serious performance implications. Figure 9
shows execution time as a function of write-buffer size. With
small write-buffer sizes, some of our benchmarks exceed their
preallocated run time on the HPC cluster and do not even
complete (the corresponding points are missing from Fig-
ure 9). For all intents and purposes, the performance of
these benchmarks is devastated if the write-buffer size falls
below a critical point. Execution time correlates well with
the number of writebacks, as shown in Figure 10.

On the other hand, for very large buffer sizes there is a
slight slowdown, caused by the overhead on synchronization
and other overheads directly related to write buffer size. The
set of benchmarks shown here has very little synchronization
(in the form of a handful of barriers). Through experimenta-
tion, the write buffer was chosen to contain 8192 pages for

8 16 32 64 128 256 512 1024 2048 4096 81921638432768

Writeback buffer size (pages)

0.0

1000000.0

2000000.0

3000000.0

4000000.0

5000000.0

N
u

m
b

er
 o

f
w

ri
te

b
ac

ks
Blackscholes
CG

EP
LU

MM
Nbody

Figure 10: Writebacks for different write-buffer sizes.

Blackscholes, Nbody and LU, 256 pages for GC, 128 pages
for MM, and 32 pages for EP in the remaining experiments.

Lessons learned. A minimum write buffer size is often
required to run a program, but increasing the size further
neither yields greater benefits, nor hurts performance when
synchronization is light.

5.3 Lock Algorithms: Cohort vs HQDL
Since the benchmarks examined so far do not have sig-

nificant synchronization (no lock synchronization), Argo’s
behavior in the face of intensive lock synchronization is ana-
lyzed using an appropriate micro-benchmark constructing a
concurrent priority queue from a fast sequential implemen-
tation and a lock to access it. This kind of benchmark is
regularly used to evaluate locking algorithms [12, 8, 20]. In
particular, the benchmark uses a pairing heap [9], which
has been shown to outperform non-blocking priority queue
implementations when used together with flat combining [12].

The benchmark measures throughput: the number of op-
erations that N threads, starting at the same time and exe-
cuting a loop, can perform during a period of t seconds. The
loop body consists of some amount of thread-local work and a
global operation (either insert or extract_min) which is se-
lected randomly with equal probability. While extract_min

operations wait for their result, insert operations do not
expect a result back and therefore can continue immediately
after successful delegation. The seed for the random num-
ber generator is thread-local to avoid false sharing between
threads. The thread-local work can be specified in work
units, where each work unit performs updates to two ran-
domly selected elements of a thread-local array of 64 integers.
Figure 11 shows the scaling behavior of different locking
algorithms on a single machine. As can be seen, Pthreads
has performance issues even on a single NUMA machine, and
QDL outperforms the alternative Cohort locks.

The benchmark results shown in Figure 12 use 48 local
work units and 15 threads per node. Clearly, the benchmark
does not scale, but this is to be expected of an application
which is dominated by its critical sections. When going

0 2 4 6 8 10 12 14 16
Threads

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

op
er

at
io

ns
 /

m
ic

ro
se

co
nd

native QD locking
native Cohort locking
Pthreads mutex lock

Figure 11: Scaling of lock-synchronized code on a single node.

0 100 200 300 400 500
Threads

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

op
er

at
io

ns
 /

m
ic

ro
se

co
nd

Argo (QD locking)
Cohort locking

Figure 12: Scaling of lock-synchronized code using DSM.

from a single node to two, Argo’s Vela HQDL performance
drops by 42% compared to the performance of QDL within
a node, but stays stable across a large number of nodes
and significantly outperforms a state-of-the-art Cohort lock
implementation under the same conditions (Figure 12).

Lessons Learned. Delegating critical sections to remote
nodes does not save self-invalidations and/or self-downgrades.
Instead hierarchical queue delegation should be performed
that delegates only locally.

5.4 Scalability and Comparison to MPI
The benchmarks here are written for regular multicore

systems using Pthreads, with the necessary adaptions made
to run on our system. For comparison, all graphs also show
the behavior of the unmodified code on a single machine.

For our first benchmark, we only show scalability compared
to its Pthreads implementation. We use the well-known
matrix triangulation benchmark from SPLASH-2, commonly
known as LU [38]. The results are shown in Figure 13a. As
this benchmark involves a lot of data migration within the
system, there is significant overhead when running it on Argo.
Still, using multiple nodes outperforms the Pthreads version
on a single machine, and continues to gain performance up
to eight nodes.

Figure 13b shows the scaling of a custom implementation
of the n-body problem. It uses a simple iterative approach,
separating iteration steps with barriers. The additional cost
of synchronization over a network is barely noticeable for
large problem sizes and does not prevent scaling of this bench-
mark up to 32 nodes (512 cores), exceeding that of the MPI
port. The blackscholes benchmark from Parsec [3] uses only
a single barrier synchronization at the end of each bench-
mark iteration, resulting in the very good scaling shown in
Figure 13c for up to 128 nodes (2048 cores), in contrast to
the MPI version that stops scaling at 16 nodes (256 cores).
Variations in Argo’s speedup (at 32, 48 and 64 nodes) are
mainly due to the overly simplistic data distribution and
its negative interaction with Argo’s prefetching. We imple-
mented a näıve Matrix Multiplication benchmark and show
its scaling with two input sets: 2000× 2000 and 5000× 5000.
Speedup is shown in Figure 13d. The MPI version has an
algorithmic advantage as it is already faster in a single node.
However, whereas the MPI version with the small input can-
not maintain its advantage beyond one node, Argo scales
well up to eight nodes (128 cores) before flattening out. For
the large input, Argo scales in a similar way to the MPI
version but the initial difference in the single-node speed is
carried all the way up to 32 nodes (512 cores).

3
Thanks to Tobias Skoglund for providing this benchmark.

0 5 10 15 20 25 300
5

10
15
20
25
30
35
40
45

Sp
ee

du
p

Argo
Pthread

100 200 300 400 500
Threads

(a) SPLASH-2 LU

0 5 10 15 20 25 300
50

100
150
200
250
300
350
400

Sp
ee

du
p

Argo
Pthread
MPI

100 200 300 400 500
Threads

(b) Nbody using barrier synchronization

0 5 10 15 20 25 300

50

100

150

200

250

Sp
ee

du
p

Argo
Pthread
MPI

500 1000 1500 2000
Threads

(c) Parsec blackscholes

0 5 10 15 20 25 300

50

100

150

200

250

300

350

Sp
ee

du
p

Argo-5K
Pthread-5K
MPI-5K
Argo-2K
Pthread-2K
MPI-2K

100 200 300 400 500
Threads

(d) Matrix Multiply 5000×5000 & 2000×2000

0 5 10 15 20 25 300

100

200

300

400

500

600

Sp
ee

du
p

Argo
OpenMP
UPC

500 1000 1500 2000
Threads

(e) EP CLASS D (ported from NAS)

0 5 10 15 20 25 300

10

20

30

40

50

60

Sp
ee

du
p

Argo
OpenMP
UPC

100 200 300 400 500
Threads

(f) CG CLASS C (ported from NAS)

Figure 13: Benchmark scaling to 32(128) nodes, 512(2048) cores.

5.5 Comparison to UPC
Our final comparison is against UPC benchmarks. The

scaling of the highly-parallel EP benchmark, from the NAS
Parallel Benchmark suite, is shown in Figure 13e. In this
case the scaling behaviour continues similarly to that on
a single machine for both UPC and Argo up to 128 nodes
(2048 cores; UPC is limited to 1024 cores). This shows
that Argo can compete directly with PGAS systems that
require significant effort to program in. The CG benchmark
from the NAS suite (Figure 13f) is another case of the non-
Pthreads benchmark starting with a significant advantage
over the Argo implementation in one node. This advantage,
however, withers as the UPC version stops scaling earlier
than Argo (at eight nodes, 128 cores) whereas Argo continues
up to 32 nodes (512 cores). Whereas UPC performance is
initially higher, due to an optimized implementation, Argo
still achieves good scaling without changing the algorithm.

6. CONCLUSIONS
In this paper we are re-thinking software distributed shared

memory in relation to the technology trends as they devel-
oped over the last decade. We have identified the latency of
a centralized coherence protocol that indirects via a home
node directory, the overhead of software message handlers,
the latency of remote synchronization, and the accompanied
overhead of data migration incurred by the distributed exe-
cution of critical sections, as major impediments to the end
performance and hence scalability of a DSM. To this end, we
propose a new approach to coherence and a new approach to
synchronization that overturn standard practices. The result
is exemplified in a prototype implementation of a page-based,
user-space DSM system called Argo, which currently is built
on top of MPI.

Argo’s coherence (Carina) takes distributed decisions using
self-invalidation and self-downgrade and does not use message
handlers. Instead all actions are performed via RMA by
requesting nodes. To reduce the number of misses caused
by self-invalidation we introduce passive directories (Pyxis)
that perform data classification to help nodes filter what to

self-invalidate. The novelty of the Pyxis directory structure
is that it is implemented without any message handlers. To
handle synchronization and critical section execution we
turn to the current performance-leading paradigm of queue
delegation locking but we observe that it is not appropriate
for a distributed environment where one may have to delegate
remotely. Thus, we propose a hierarchical extension of queue
delegation locking (implemented as the Vela synchronization
system), that prioritizes local delegation before switching to
other nodes.

Argo is in its prototype phase and uses MPI as its net-
working layer. We have ported an initial set of benchmarks—
expanding rapidly—to assess our design decisions. Despite
the limitations of a prototype implementation, results are
highly encouraging. Several benchmarks show significant per-
formance improvements due to Argo’s distributed coherence
and easily match or exceed their message-passing or PGAS
implementations. However, the full potential of Argo is not
tapped yet. As more benchmarks come online, future work
will rework them for detached delegation of critical sections
where one can overlap their execution with useful work. Fur-
ther, we plan to examine the relation of granularity, data
placement, and classification to enhance the opportunities
offered by the P/S3 classification scheme to reduce miss rates.

Acknowledgements
This work was carried out within the Linnaeus centre of
excellence UPMARC (Uppsala Programming for Multicore
Architectures Research Center).

7. REFERENCES
[1] S. V. Adve and M. D. Hill. Weak ordering – a new

definition. In 17th ISCA, pages 2–14, June 1990.

[2] B. N. Bershad, M. J. Zekauskas, and W. A. Sawdon.
The midway distributed shared memory system. Tech.
rep. 865207, Carnegie Mellon University, Jan. 1993.

[3] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The
PARSEC benchmark suite: Characterization and
architectural implications. In 17th PACT, Oct. 2008.

[4] B. Choi, R. Komuravelli, H. Sung, R. Smolinski,
N. Honarmand, S. V. Adve, V. S. Adve, N. P. Carter,
and C.-T. Chou. DeNovo: Rethinking the memory
hierarchy for disciplined parallelism. In 20th PACT,
pages 155–166, Oct. 2011.

[5] T. S. Craig. Building FIFO and priority-queuing spin
locks from atomic swap. Tech. rep., Dept. of CSE,
University of Washington, Seattle, 1993.

[6] B. Cuesta, A. Ros, M. E. Gómez, A. Robles, and
J. Duato. Increasing the effectiveness of directory
caches by deactivating coherence for private memory
blocks. In 38th ISCA, pages 93–103, June 2011.

[7] D. Dice, V. J. Marathe, and N. Shavit. Lock cohorting:
a general technique for designing NUMA locks. In 17th
PPoPP, pages 247–256, 2012. ACM.

[8] P. Fatourou and N. D. Kallimanis. Revisiting the
combining synchronization technique. In 17th PPoPP,
pages 257–266, 2012. ACM.

[9] M. L. Fredman, R. Sedgewick, D. D. Sleator, and R. E.
Tarjan. The pairing heap: A new form of self-adjusting
heap. Algorithmica, 1(1):111–129, 1986.

[10] K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons,
A. Gupta, and J. L. Hennessy. Memory consistency and
event ordering in scalable shared-memory
multiprocessors. In 17th ISCA, pages 15–26, 1990.

[11] N. Hardavellas, M. Ferdman, B. Falsafi, and
A. Ailamaki. Reactive NUCA: Near-optimal block
placement and replication in distributed caches. In 36th
ISCA, pages 184–195, June 2009.

[12] D. Hendler, I. Incze, N. Shavit, and M. Tzafrir. Flat
combining and the synchronization-parallelism tradeoff.
In 22nd SPAA, pages 355–364, 2010. ACM.

[13] L. Iftode, J. P. Singh, and K. Li. Scope consistency: A
bridge between release consistency and entry
consistency. In 8th SPAA, pages 277–287, June 1996.

[14] S. Kaxiras and G. Keramidas. SARC coherence:
Scaling directory cache coherence in performance and
power. IEEE Micro, 30(5):54–65, Sept. 2011.

[15] S. Kaxiras and A. Ros. A new perspective for efficient
virtual-cache coherence. In ISCA, pages 535–547, 2013.

[16] P. J. Keleher, A. L. Cox, S. Dwarkadas, and
W. Zwaenepoel. TreadMarks: Distributed shared
memory on standard workstations and operating
systems. In USENIX, pages 115–132, Jan. 1994.

[17] P. J. Keleher, A. L. Cox, and W. Zwaenepoel. Lazy
release consistency for software distributed shared
memory. In 19th ISCA, pages 13–21, May 1992.

[18] D. Klaftenegger, K. Sagonas, and K. Winblad. Brief
announcement: Queue delegation locking. In 26th
SPAA, pages 70–72, 2014. ACM.

[19] D. Klaftenegger, K. Sagonas, and K. Winblad.
Delegation locking libraries for improved performance
of multithreaded programs. In Euro-Par, LNCS, 2014.

[20] D. Klaftenegger, K. Sagonas, and K. Winblad. Queue
delegation locking, 2014. http://www.it.uu.se/
research/group/languages/software/qd_lock_lib.

[21] L. Lamport. How to make a multiprocessor computer
that correctly executes multiprocess programs. IEEE
Transactions on Computers, 28(9):690–691, 1979.

[22] A. R. Lebeck and D. A. Wood. Dynamic
self-invalidation: Reducing coherence overhead in

shared-memory multiprocessors. In 22nd ISCA, pages
48–59, June 1995.

[23] D. Lenoski, J. Laudon, K. Gharachorloo, W.-D. Weber,
A. Gupta, J. L. Hennessy, M. A. Horowitz, and M. S.
Lam. The Stanford DASH multiprocessor. IEEE
Computer, 25(3):63–79, Mar. 1992.

[24] K. Li. IVY: A shared virtual memory system for
parallel computing. In ICPP, pages 94–101, Aug. 1988.

[25] J.-P. Lozi, F. David, G. Thomas, J. Lawall, and
G. Muller. Remote core locking: Migrating
critical-section execution to improve the performance of
multithreaded applications. In USENIX, pages 65–76,
USA, 2012. USENIX Association.

[26] V. Luchangco, D. Nussbaum, and N. Shavit. A
hierarchical CLH queue lock. In 12th ICPP, pages
801–810, 2006. Springer-Verlag.

[27] P. S. Magnusson, A. Landin, and E. Hagersten. Queue
locks on cache coherent multiprocessors. In 8th ISPP,
pages 165–171, 1994. IEEE Computer Society.

[28] J. M. Mellor-Crummey and M. L. Scott. Algorithms for
scalable synchronization on shared-memory
multiprocessors. ACM TOCS, 9(1):21–65, Feb. 1991.

[29] MPI Forum. MPI: A Message-Passing Interface
Standard. Version 3.0, September 2012. available at:
http://www.mpi-forum.org/docs (January, 2015).

[30] J. Nelson, B. Holt, B. Myers, P. Briggs, L. Ceze,
S. Kahan, and M. Oskin. Grappa: A latency-tolerant
runtime for large-scale irregular applications. Tech.
Rep, Dept. of CSE, Univ. of Washington, Feb 2014.

[31] Y. Oyama, K. Taura, and A. Yonezawa. Executing
parallel programs with synchronization bottlenecks
efficiently. In IWPDC, pages 182–204. 1999.

[32] S. Phillips. M7: Next generation SPARC. In 26st
HotChips Symp., Aug. 2014.

[33] Z. Radović and E. Hagersten. DSZOOM – low latency
software-based shared memory. Technical report,
Parallel and Scientific Computing Institute, 2001.

[34] Z. Radović and E. Hagersten. Hierarchical backoff locks
for nonuniform communication architectures. In 9th
HPCA, pages 241–252. IEEE Comp. Society, 2003.

[35] B. Ramesh. Samhita: Virtual Shared Memory for
Non-Cache-Coherent Systems. PhD thesis, Virginia
Polytechnic Institute and State University, July 2013.

[36] A. Ros, B. Cuesta, M. E. Gómez, A. Robles, and
J. Duato. Temporal-aware mechanism to detect private
data in chip multiprocessors. In 42nd ICPP, pages
562–571, Oct. 2013.

[37] A. Ros and S. Kaxiras. Complexity-effective multicore
coherence. In 21st PACT, pages 241–252, Sept. 2012.

[38] J. P. Singh, W.-D. Weber, and A. Gupta. SPLASH:
Stanford parallel applications for shared-memory.
Computer Architecture News, 20(1):5–44, Mar. 1992.

[39] M. A. Suleman, O. Mutlu, M. K. Qureshi, and Y. N.
Patt. Accelerating critical section execution with
asymmetric multi-core architectures. In 14th ASPLOS,
pages 253–264, New York, NY, USA, 2009. ACM.

[40] UPC Consortium. UPC language specifications, v1.2.
Tech. Rep, Lawrence Berkeley National Lab, 2005.

[41] W.-D. Weber and A. Gupta. Analysis of cache
invalidation patterns in multiprocessors. In 3th
ASPLOS, pages 243–256, Apr. 1989.

http://www.it.uu.se/research/group/languages/software/qd_lock_lib
http://www.it.uu.se/research/group/languages/software/qd_lock_lib
http://www.mpi-forum.org/docs

	Introduction
	Background
	Coherence
	Synchronization
	Other Forward-Looking Approaches

	The Argo system
	Exposing Synchronization to Carina
	Carina: Argo's Coherence
	Pyxis: Passive Classification Directory
	P/S Classification
	Deferred Invalidation
	Self-Downgrading Private Pages

	P/S3 Classification
	Additional Techniques
	Write Buffers
	Prefetching

	Efficient Synchronization
	Barrier Synchronization
	Lock-based Synchronization Using HQDL

	Evaluation
	Protocol Choices: S, P/S, P/S3
	Write-Buffer Sensitivity Analysis
	Lock Algorithms: Cohort vs HQDL
	Scalability and Comparison to MPI
	Comparison to UPC

	Conclusions
	References

