
Energy-Efficient Cache Coherence Protocols in

Chip-Multiprocessors for Server Consolidation

Antonio García-Guirado∗, Ricardo Fernández-Pascual∗, Alberto Ros∗† and José M. García∗

∗Dept. de Ingeniería y Tecnología de Computadores †Dept. de Informática de Sistemas y Computadores
Facultad de Informática - Universidad de Murcia Universidad Politécnica de Valencia

Murcia, Spain Valencia, Spain
Email: {toni, rfernandez, a.ros, jmgarcia}@ditec.um.es aros@gap.upv.es

Abstract—As the number of cores in a chip increases,
power consumption is becoming a major constraint in the
design of chip multiprocessors. At the same time, server
consolidation is gaining importance to take advantage of such
a number of cores. Our goal is to alleviate this constraint by
reducing the power consumption of chip multiprocessors used
for consolidated workloads by means of the cache coherence
protocol. For this, we statically divide the chip in areas,
which allows us to reduce the directory overhead needed to
support coherence and to reduce the network traffic. This
translates into less power consumption without performance
degradation. Cache coherence is maintained per area and
pointers are used to link the areas, thereby achieving isolation
among virtual machines and savings in memory requirements.
Additionally, the coherence protocol dynamically selects one
node per area as responsible for providing the data on a cache
miss, thus lessening the average cache miss latency and the
traffic among areas. Compared to a highly-optimized directory
implementation, the leakage power consumption is reduced by
54% and the dynamic power consumption of the caches and the
network-on-chip by up to 38% for a 64-tile chip multiprocessor
with 4 virtual machines, showing no performance degradation.

I. INTRODUCTION

Nowadays, the number of cores in chip multiprocessors
(CMPs) is steadily increasing. CMPs with hundreds of cores
will be a reality in the near future. For example, Intel’s
Tera-scale Computing Research Program [1] has already
presented an 80-core processor, as well as a Single-chip
Cloud Computer microprocessor [2] composed by 24 tiles
containing 2 processor cores each. With the popularization
of cloud computing, one of the main ways to make the
most out of such parallel machines is by means of server
consolidation, running many virtual machines (VMs) in a
single CMP.

One of the main concerns in the development of CMPs
is the so called power wall, which can prevent those chips
from integrating the expected amount of cores due to their
excessive power consumption. Therefore, the design of every
element of the chip should aim at reducing power consump-
tion. This includes networks-on-chip (NoCs) and caches,
which currently account for up to 50% of the overall power
consumption of the chip [3].

In a shared-memory architecture like that of a CMP, the
coherence protocol is a key element in the performance
and power consumption of the system. Hence, when the

system is meant to be used in a consolidated environment,
the coherence protocol should take advantage of the special
characteristics of such an environment in order to improve
performance and reduce power consumption.

Typically, there are two kinds of data in a VM: private
data to the VM and data shared between VMs. The first one
is only accessed by a single VM, and therefore, there is no
use in keeping coherence information beyond the limits of
that VM.

On the other hand, data shared between VMs is expected
to be read-only data which are being shared because the
hypervisor has applied memory deduplication [4, 5]. Dedu-
plicated memory pages are read-only memory pages, with
identical contents, that are present in the virtual memory
of more than one single VM. The hypervisor detects these
identical pages and a single physical page is allocated in
physical memory. If a deduplicated memory page is written,
a copy-on-write policy is used and a new page is allocated
for being used by the writer of the page. Memory dedu-
plication can provide important memory savings, which has
made this technique very important for server consolidation.
Linux has supported memory deduplication in the KVM
hypervisor since version 2.6.32, and other hypervisors such
as Xen [5] or VMware [4] already support it. Regarding the
cache coherence protocol, if cache coherence is kept strictly
per VM it could achieve significant savings in cache storage.
However, deduplicated data would need to be reduplicated
at the L2 level to give each VM its own copy, which would
increase cache pressure and thus reduce performance. In [6]
it is shown that the performance of a flat directory protocol
improves by 6.6% in average when using deduplication
thanks to the cache pressure reduction provided by storing a
single copy of the deduplicated data in the shared last-level
cache.

In this paper we present a new coherence scheme that
addresses some of the challenges posed by server consolida-
tion: it reduces power consumption, reduces the cache coher-
ence storage overhead, keeps a single copy of deduplicated
data in the shared cache, provides (partial) isolation among
cores of different VMs and reduces the average latency of
cache misses.

Our proposal is based upon Direct Coherence (DiCo)
[7], whose characteristics make it a suitable baseline for

the consolidated scenario in a CMP, especially its ability to
resolve cache misses in just two hops without visiting the
home node for the memory block.

We have derived two cache coherence protocols from
DiCo. One of them, called DiCo-Providers, is also well
suited for non-virtualized environments whereas the other,
named DiCo-Arin trades some performance in the general
case for increased simplicity and reduced power consump-
tion in virtualized scenarios. In order to allow the presence
of sharers for a block in any L1 cache of the chip, in DiCo-
Providers one L1 cache in each area (the provider) tracks
the sharers in its area, while DiCo-Arin does not keep exact
information about sharers from more than one area and relies
on broadcast to invalidate them when necessary.

An area is a subset of all the tiles of the chip. The
basic idea is to isolate each VM in a different area by
instructing the OS to schedule the threads of each VM to
tiles in different areas, although any configuration of VMs is
possible with a small cost in performance when a VM uses
tiles from more than one area. Coherence information is kept
per area, which significantly reduces the storage overhead of
the proposed coherence protocols and therefore their power
consumption.

Our protocols achieve a 59–64% reduction in directory
information in cache for a 64-tile CMP with just 4 VMs. This
reduces static power consumption by 45–54% and improves
scalability. In Apache, our protocols reduce dynamic power
consumption by up to 38% and achieve speedups up to 6%
with respect to an optimized directory protocol.

The rest of this paper is organized as follows. Section II
gives a view of current proposals aimed at reducing power
consumption in consolidated servers and describes the basics
of Direct Coherence (DiCo) protocols. In section III we
present DiCo-Providers and DiCo-Arin. Section IV gives
further details on the operation of our protocols. Then,
section V evaluates the proposed protocols comparing them
to a flat directory protocol and the original DiCo protocol.
Finally, our conclusions are shown in section VI.

II. RELATED WORK AND BACKGROUND

Power-aware cache coherence has gained interest in recent
years. The Tagless Coherence Directory [8] reduces the
overhead compared to a flat directory by using bloom filters
to store coherence information which leads to less power
consumption in the directory. TurboTag [9] uses bloom
filters to avoid unnecessary tag lookups and reduce power
consumption. Coherence protocols can also take advantage
of heterogeneous networks to reduce power consumption
by transmitting critical and short messages through fast
power-consuming wires and non-critical messages through
slower low-power wires [10]. SARC Coherence [11] reduces
traffic by using tear-off copies of the block in a weak-
ordered memory system and by using prediction to avoid
the indirection of the directory.

As for virtualization, some proposals address scalability
or performance, but up to our knowledge ours is the first one

L2 Bank

Core L1

Network

Interface

64-core tiled CMP

Tile Structure

Figure 1. Structure of a 64-core tiled CMP.

to address power consumption. Coherency Domains (CDs)
have been proposed to increase the scalability of cache
coherence in such a scenario [12, 13, 14]. They isolate the
coherence transactions of different VMs, each one executed
in a different set of processors, preventing different VMs
from interacting with each other. Moreover, the data in
the L2 cache is stored closer to the cores that use them,
since each coherency domain is given a private L2 cache.
However, CDs do not allow the simultaneous use of all the
resources of the core for a single task. Tasks are confined to
the static coherency domains defined by the design on the
chip. In addition, CDs do not enable deduplication of data in
memory since each VM is given its own independent share
of the physical memory and no coherence is kept for data
between different domains.

Another proposal is Virtual Hierarchies (VHs) [15], which
also achieves isolation among VMs, and additionally allows
for the dynamic allocation of resources to VMs. However,
contrary to our proposals, VHs increase the overhead and
power consumption of the cache coherence protocol due to
the second level of coherence information that is needed.
Furthermore, VHs reduplicate previously deduplicated data
in the shared levels of the cache hierarchy, which also results
in an increase of the L2 miss rate [6].

Mechanisms at the level of the interconnection network
have also been proposed to isolate the traffic of each
VM [16].

A. Base Architecture

We assume a tiled-CMP with an optimized directory-
based coherence protocol. This kind of chip is built by
replicating basic building blocks, namely tiles, each one
containing a processor, an L1 cache, an L2 cache bank
and a network interface for communication between tiles.
The L2 cache, although physically distributed, is logically
shared among all tiles. Some bits of the address of a memory
block are used to map the block to its home L2 bank (the
bank that caches the block and its coherence information).
L1 and L2 caches are non-inclusive. To store the directory
information for those blocks not present in the L2 cache we
use the same approach as NCID [17], in which extra tags
in the L2 cache are used to store a virtual directory cache.

This reduces network traffic and improves the performance
of the directory. Additionally, if a block is evicted from
the L2 cache, the directory information can remain, hence
preventing invalidations of the block in the L1 caches. Only
when a directory entry is evicted, the block is also evicted (if
present), and every copy of the block is invalidated. When
copies of the block are present in the chip, the home L2
for the block stores their directory information. Upon an
L1 miss, a request is sent to the home L2 bank, where
the directory information for the block can be found. This
architecture is depicted in Figure 1.

It is important to notice that we use a full-map bit-
vector instead of a coarse bit vector, limited pointers or
other sharing code because the full-map provides the best
performance and lowest traffic for the base architecture.
Other sharing codes trade-off reduced directory overhead
for extra network traffic and worse performance, whereas
our proposals improve all of these metrics. Additionally,
our protocols could be implemented using any of those
alternative sharing codes to further reduce the directory
overhead if desired.

B. Direct Coherence

Our protocols are based upon a Direct Coherence (DiCo)
scheme [7]. In DiCo, the coherence information and the
ownership of the block are stored along with the data in the
L1 caches. This makes it possible to resolve most misses
in just two hops (i.e. without indirection) by predicting the
destination of requests upon an L1 miss. Requests are sent
straight to the owner. Additionally, upon a write miss the
owner L1 itself can send invalidations to the sharers because
it knows who they are. In this way, the distinctive indirection
of directory protocols is avoided.

As for deduplicated data, direct coherence does not redu-
plicate it in the shared L2 cache. Only one copy of the data
is needed for all the tiles, reducing the space needed for
shared data in cache, just like in a flat directory.

We use DiCo as a baseline because of its ability to resolve
misses in two hops without visiting the home node (just the
owner node), and because its prediction technique has been
proven pretty accurate [7]. Since the owner node will be
located in the area where the application is running while
the home node can be located anywhere in the system,
DiCo becomes a very suitable protocol for the environment
considered in this work.

III. ENERGY-EFFICIENT COHERENCE PROTOCOLS

One advantage of DiCo when used in a consolidated
server is that it isolates the VMs, brings data closer to
the requestors (they are found in the corresponding VM),
and reduces the number of hops upon a cache miss (two
instead of three as in directory based coherence protocols).
This is achieved because in the common case the directory
information for a block private to a VM can be found in an
L1 cache belonging to that VM. This data can be accessed
in just two hops, without needing to send any coherence
message out of the VM.

With DiCo, deduplicated data is not reduplicated: the
owner and directory information of a deduplicated block is
present in only one of the VMs, and the other VMs must
send their read requests to the owner in order to get the
block. This results in higher latency and power consumption
for these misses with respect to misses to VM private data
and interferences among VMs.

Upon DiCo, we propose to statically divide the CMP in
a fixed number of areas (subsets of the tiles of the chip).
The use of a static division of the chip in areas enables
a reduction of the directory information and therefore its
power consumption, contrary to a dynamic division of the
chip that would need to increase the directory size to support
the different configurations of the chip, hence increasing the
power consumption of the caches.

Our claim is that we can take advantage of the circum-
stance that data shared across VMs is expected to be read-
only data in most cases and our new coherence scheme
allows L1 misses for such data to be resolved inside the area,
with less power consumption, and yet keep a single copy of
deduplicated data in the shared level of the cache. At the
same time, directory information gets noticeably reduced.

The division of the chip in areas is hard-wired. The OS or
hypervisor could optionally be made aware of the different
areas in the chip to better map processes to cores and provide
isolation between VMs. The hardware needs no information
about the VMs running on top of it.

The hard-wired division in areas is not an important issue
when the VMs do not exactly match the areas. For instance,
when an application uses all the cores of the chip the
data shared by several areas can still be accessed without
leaving the areas of the requestors, so we still have the
benefits of shortened misses. In addition we have the power
benefits of the smaller directory entries enabled by the static
division of the chip. This makes our proposals attractive
for other scenarios in addition to consolidated servers using
virtualization.

Next, we propose two protocols that reduce the latency
and power consumption of misses to deduplicated data while
keeping a single copy in L2 cache.

A. DiCo-Providers

In DiCo-Providers, coherence information is kept for the
sharers of an area, instead of for the whole chip, thereby
reducing space requirements. If no VM uses tiles from more
than one area only deduplicated data will be shared between
areas.

We introduce the providership concept and its associated
state, provider state. With the addition of the provider state,
every area can have its own provider for every block shared
between areas, hence allowing the resolution of requests to
these data in two hops without leaving the area. However,
a single ordering point remains in the chip: the owner. This
way, the protocol has only one level, like a flat-directory. To
simplify, the term supplier is used to refer to a node that
can be either an owner or a provider.

O

Home L2

1 GetS

R S

O

1 GetS

R S

2 FwdGetS

3 Data

Home L2

2 Data

O

1 GetS

R P

Home L2

2 Data

(a) Directory (b) Direct Coherence (c) DiCo-Providers
Provider

L2 Bank

Core L1

Network

Interface

Figure 2. Read request to a deduplicated block. Four VMs running on the chip (dashed lines). One sharer exists in the requestor’s area. (a) Directory
indirection causes a long 3 hop miss. (b) DiCo avoids one hop by sending the request straight to the owner in L1. (c) DiCo-Providers additionally reduces
the number of traversed links by sending the request to the sharer (Provider) in the area. (O = Owner; S = Sharer; P = Provider; R = Requestor).

The regular operation to resolve an L1 miss for a dedu-
plicated block can be seen in Figure 2 for the directory
protocol, DiCo and DiCo-Providers.

In DiCo-Providers, the directory information of each data
block is distributed across the chip. Every block has a fixed
home L2, which is determined by using several fixed bits
of its address. The ownership of a block can be held by
its home L2 or by any L1 cache. If the ownership is held
by an L1 cache the home L2 keeps a pointer in a special
structure (called L2C$, see section IV) to store the current
location of the ownership. The owner (be it an L1 cache
or the home L2) keeps the directory information about
the providers (up to one provider per area). The directory
information regarding the sharers of each area is kept by
the corresponding provider. When an L1 cache holds the
ownership it also keeps the coherence information about the
sharers in its area. That is, the owner L1 behaves as the
only provider for its local area. Notice that if the home L2
holds the ownership, the home L2 does not keep coherence
information about sharers since that information is stored by
the providers. Figure 3 shows the distribution of coherence
information in a flat-directory, the original DiCo protocol
and DiCo-Providers.

Four are the events that may cause an L1 cache to become
the owner of a block: (1) the L1’s tile’s core performs a write
to that block; (2) the L1’s tile’s core performs a read to a
block that is not present in the chip; (3) an L1’s tile’s core
belonging to an area with no supplier performs a read to
a block whose ownership is held by the home L2; (4) an
ownership transference between L1s takes place due to a
block replacement, as discussed in section IV-A1.

The home L2 can become the owner of the block only
due to the replacement of the ownership in an L1 cache
belonging to an area with no sharers, as discussed in
section IV-A1.

As for providership, only the L1 caches can be providers.
There are two ways for an L1 cache to become the provider
of a block: (1) an L1 cache performs a read request in an
area with no supplier while another L1 cache holds the
ownership; (2) because of a providership transference due
to a block replacement.

B. DiCo-Arin

Unfortunately, DiCo-Providers shows great complexity if
compared to the original DiCo and other directory-based
protocols. The providership and ownership transferences
present in DiCo-Providers cause a number of coherence
races, and therefore the implementation of the protocol is
pretty complex.

For this reason, we have polished and simplified our
proposal by optimizing it for the virtualized scenario, taking
advantage of the fact that deduplicated pages are expected
to be read-only pages and that the data shared between the
areas in the chip is expected to be deduplicated data. The
result is DiCo-Arin: a protocol with similar complexity as
the original DiCo in which no precise information about
sharers is kept for data shared between areas. Instead, a
simple broadcast mechanism is used to invalidate all the
copies of these blocks when needed, which should be very
infrequently. Our broadcast mechanism is never used to
locate data to answer a read request since at least one copy
of the data can always be found by using the available
directory information. We make sure that our broadcast
approach is safe by adding some constraints, as discussed
in section IV-B1.

The main problem in DiCo-Providers we have found is
that for some cache misses, the critical path to resolve the
miss is five hops. This happens when a read miss for a
block shared between areas takes place, and the resulting
request reaches the home L2 due to an owner misprediction
(fortunately, not very common). The request is forwarded
to the L1 cache that holds the ownership (if any), and then
it is forwarded to the provider in the requester’s local area
(if any) who finally responds with the requested data and
updates the directory information of the block (by adding
the requestor). To avoid this, we decided for DiCo-Arin
that a block shared between areas will be always present
in the home L2, so that requests to such blocks will be
answered directly avoiding two of the hops incurred by
DiCo-Providers to locate the owner and the provider.

Two different ways to keep the coherence for blocks
shared between areas are possible with this design. The

Home L2: pointer to the owner (6 bits)

+ full-map bit-vector (64 bits) for the sharers

O

Home L2

S

Home L2 Home L2

(a) Directory (b) Direct Coherence (c) DiCo-Providers

S S

S

SS

O

S

S S

S

SS

O

P

S P

S

SP

Owner L1: full-map bit-vector (64 bits) for the sharers

Home L2: pointer to the owner (6 bits) Owner L1: full-map bit-vector (16 bits) for the area sharers

+ 3 pointers to other areas' providers (4 bits per pointer)

Home L2: pointer to the owner (6 bits)

SSS

Figure 3. Coherence information (valid bits not shown). DiCo-Providers needs noticeably less storage for coherence information than the directory and
DiCo. (O = Owner; S = Sharer; P = Provider).

first one consists of keeping precise directory information,
which would require some mechanisms to coalesce all the
directory information, including that about the new sharers
that received their data straight from the home L2 instead of
from the owner L1. This, however, increases the complexity
of the protocol, and as previously stated, one of the main
purposes of DiCo-Arin is to simplify it. So we chose the
second way, which consists of keeping inexact directory
information for data shared between areas and relying on
a broadcast mechanism in order to find all the sharers of a
block when needed.

As long as the copies of a block are confined to one area
of the chip, DiCo-Arin behaves the same as the original
DiCo protocol for that block. However, as soon as a read
request coming from a remote area reaches the owner L1,
the ownership disappears and its former holder becomes a
provider for the block. Blocks shared between areas have no
owner with precise directory information, hence these blocks
rely on broadcast for invalidation (the ordering point is the
home L2 in that case) and every new sharer of the block can
act as a provider. In addition, the former owner sends the
data to L2, which also becomes a provider (and therefore it
can serve the block to read requests as stated previously).
Notice that in the case that the L2 is already the owner, the
last step (sending the data to L2) is not necessary and the
L2 becomes a provider immediately upon the reception of
the request.

IV. DETAILED OPERATION OF THE PROTOCOLS

In order to better understand the proposed protocols, it is
first necessary to introduce a few concepts.

Regarding the areas, we must differentiate the local area
from the remote areas. When talking about an L1 cache, its
local area is the area that the L1 cache belongs to. Any other
area is a remote area for the L1 cache.

We use two kinds of pointers that hold sharing information
in our protocols to point to L1 caches: the general pointer,
named GenPo, and the pointer to provider, named ProPo.
The size of a GenPo is log(ntc), where ntc is the number

of tiles in the chip. Thereby, a GenPo can point to any L1
cache of the chip. The size of a ProPo is log(nta), where
nta is the number of tiles in the area. Hence, given one
area, a ProPo can point to any tile in that area. Notice that
a GenPo is larger than a ProPo. Since a GenPo can point to
any tile, it can be used to point to an owner or to a provider,
whereas a ProPo can only be used to point to a provider.

Two structures of a DiCo protocol that the reader might
not be familiar with are the L1 Coherence Cache (L1C$) and
the L2 Coherence Cache (L2C$). The L1C$ is indexed by
the block address and each entry contains a tag and a GenPo.
The GenPo holds a prediction of where the supplier of the
block is. Upon an L1 miss this prediction (if present) is
used as the destination for the request, otherwise the request
is sent to the home L2 of the block. The mechanism to
update the L1C$ is detailed in section IV-A2. In general,
when a block is evicted from the L1 cache, the identity of
the supplier is retained in the L1C$ to resolve future cache
misses in two hops. The reuse of blocks provides the L1C$
with a good hit ratio [7].

As for the L2C$, it is a cache at the L2 level indexed
by the block address that contains tags and GenPos. The
information in the L2C$ is not a prediction but the precise
identity of the L1 cache that holds the ownership for the
block.

A. DiCo-Providers

First we discuss the operation of the protocol upon an L1
miss. The L1 first checks the L1C$ for a supplier prediction.
If there is a hit in the L1C$, the request is sent to the
predicted cache. Otherwise, the request is sent to the home
L2. The objective of using the L1C$ is to resolve the request
without indirection (two hops instead of three) by sending it
straight to the supplier in the local area. If a misprediction
occurs, the request reaches an L1 cache that cannot provide
the data, which forwards the request to the home L2.

Table I describes the actions performed by a cache upon
the reception of a request. The request is forwarded as
many times as necessary until it reaches a supplier. The

Table I
ACTIONS PERFORMED UPON THE RECEPTION OF A REQUEST.

Request Type Receiver State Request coming from local area Provider Exists Owner in L1 Actions taken

read

L1

owner
yes Send data. Store coherence info in bit vector (requestor becomes sharer)

no yes Forward request to provider
no Send data. Store coherence info in ProPo (requestor becomes provider)

provider yes Send data. Store coherence info in bit vector (requestor becomes sharer)
no Forward request to home L2

other Forward request to home L2

L2
owner yes Forward request to provider

no Send data. Store coherence info in the L2C$ (requestor becomes owner)

other yes Forward request to owner
no Send request to memory controller to fetch data from memory. Store coherence

info in the L2C$ (requestor will become owner in exclusive state)

write

L1 owner Start invalidation. Send data. Send Change_Owner message to home L2 to
store coherence info in the L2C$ (requestor becomes owner in modified state)

other Forward request to home L2

L2
owner Start invalidation. Send data. Store coherence info in the L2C$ (requestor

becomes owner in modified state)

other yes Forward request to owner
no Send request to memory controller to fetch data from memory. Store coherence

info in the L2C$ (requestor will become owner in modified state)

Figure 4. Write request and invalidation process. The supplier prediction
succeeds.

original deadlock-avoidance mechanism of DiCo applies to
our protocol to prevent a message from being forwarded
indefinitely.

The invalidation process on a write miss can be seen
in Figure 4. The owner (ordering point) invalidates the
sharers in its area and the providers, which in turn inval-
idate the sharers in their areas. The owner also sends a
Change_Owner message to the home L2 (not shown in the
image) to let it know the identity of the new owner (the re-
questor). The ownership cannot be transferred again until an
acknowledgement from the home L2 to the Change_Owner
message is received by the new owner. This prevents a
former owner to be stored in the L2C$ of the home L2
due to the unordered arrival of consecutive Change_Owner
messages.

Two counters are needed in the MSHR of the requestor,
one to track the number of pending acknowledgement mes-
sages from the providers and another to track the number of
pending acknowledgement messages from the sharers. The
latter counter is incremented every time an acknowledge-
ment message from a provider containing the number of
sharers in its area is received. The invalidation is complete
once both counters are zero. We need separate counters
to prevent protocol races while enabling the concurrent
invalidation of all the copies of the block.

One special case is that in which the requestor of a write
request is a provider. When this happens, the requestor must

invalidate the sharers in its area. However, the invalidations
cannot be sent until the requestor receives the ownership
or an invalidation message. The latter case happens when a
write request from another L1 cache is being served before
the request issued by the provider.

The mechanism to evict a block from its home L2
and invalidate every sharer in the chip is the same as
the one used to resolve a write request. In the case of
a replacement, the L2 cache acts as both the owner (by
sending the invalidations) and the requestor (by receiving
the acknowledgements).
1) Block and L2C$ Information Replacements: Table II

describes the replacement of L1 cache blocks depending on
their state.

Like it happened in write requests, to prevent races the
Change_Owner message (see Table II) requires the reception
of an acknowledgement message from the home L2 before
the ownership can be transferred again. The same applies to
the Change_Provider message.

In addition, when a cache is no longer a sharer due to a
previous replacement, it cannot accept neither the ownership
nor the providership. In this case the ownership is forwarded
to another sharer or the home L2 if no more sharers exist.

Another type of replacement is that of the L2C$ informa-
tion. The L2C$ has a limited number GenPos, and therefore
they may need to be evicted. When this happens, a message
is sent to the owner to make it relinquish the ownership
and send back the identity of the providers and the data (if
dirty). When the ownership is transferred to the home L2,
the former owner L1 becomes the provider for its area.
2) L1C$ update mechanism: The prediction of the des-

tination of requests is done by searching the L1C$, that
stores pointers to L1 caches. The information stored in
the L1C$ should be as precise as possible in order to
achieve a high ratio of correct predictions, although incorrect
information affects only the performance of the system, not
its correctness.

L1 cache entries can store one GenPo at no additional
cost with respect to DiCo since it can be stored in the space
needed by DiCo for the directory information when the L1
holds the ownership. This way, cached blocks do not use a
pointer in the dedicated array of the L1C$. The pointers in

Table II
ACTIONS TAKEN UPON A BLOCK REPLACEMENT.

Block state Sharers exist in the area Actions taken
shared Silent eviction

provider yes Send providership and sharing code to a sharer (the sharer will send a Change_Provider message to the owner)
no Send No_Provider to the owner

owner (including any exclusive state) yes Send ownership and sharing code to a sharer (the sharer will send a Change_Owner message to the home L2)
no Send ownership (and data if dirty) to the home L2

valid

in L1 cache

entry

valid

in L1C$

not present

data

hint

hint

hint

block replacement

block invalidation

external write request

 to owned block

L1C$ replacement (random policy)

hint (owner in L2)

cache miss

hint

block invalidation

hint (owner in L2)

Figure 5. State diagram for the prediction of the supplier of a block.

L1 cache entries are considered part of L1C$ and looked up
too when making a prediction.

Figure 5 shows the three possible states for the prediction
of a block. The objective is to store the identity of a potential
supplier, hence those messages sent by a possible supplier
(data messages, invalidations and write requests) update the
predictions of the block. We send some hint messages that
also update the predictions, for instance when the ownership
or providership moves, to let the sharers know the identity
of the new owner or provider.

B. DiCo-Arin

Like DiCo-Providers, Dico-Arin is a provider based proto-
col, which means that a number of nodes, called providers,
can serve data to read requests in addition to the owner.
However, contrary to DiCo-Providers, where the directory
information regarding the location of the providers was
located in the node holding the ownership, in DiCo-Arin
this information is always located in the home L2 along
with the data shared between areas. This way, when a read
request to data shared between areas reaches the home L2,
the information about the provider, if present, is sent along
with the data to the requestor so it can store the identity of
the provider in the L1C$. Subsequent misses from that L1
cache will be sent to that provider. If there was no provider
in the area, the home L2 stores the requestor as the provider
for the area.

One optimization is that every time a copy of such a block
is sent to an L1 cache, that L1 cache becomes a provider
instead of a sharer. Therefore, read requests are more likely
to find a provider. Notice that sharers cannot provide the
data because they assume that there is an owner that tracks
all the copies of the block. Since no directory information
about the sharers for blocks shared between areas is kept, we

can use this optimization. Nevertheless, the home L2 stores
the identity of a single provider per area along with the data
to keep the storage requirements low.

In order to keep the information about providers updated
in the home L2, when a request to data shared between areas
is forwarded by an L1 cache and reaches the home L2, it
checks whether the provider stored in the home L2 for the
area matches the identity of the L1 cache that forwarded the
request. If so, it means that the cache that forwarded the
request is no longer a provider. In that case, the requestor
is stored in the home L2 as the new provider for the area.
For doing this, the identity of the forwarder of a request is
included in the forwarded message.
1) Ensuring safety of broadcast invalidations: As we

have explained in section III-B, DiCo-Arin uses a broad-
cast mechanism to invalidate the copies of a block shared
between areas upon the occurrence of a write request or an
L2 replacement.

In order to use a broadcast mechanism, we must ensure
that it keeps the correctness of the protocol, that is: the
broadcasts cannot interfere with other requests for the block
causing unexpected results (like deadlocks), and coherence
cannot be violated for the block (i.e. no copies of the block
must remain in the chip after the invalidation).

To ensure these two conditions, we use a three-way
invalidation mechanism. First, the home L2 of the block
broadcasts the invalidation message. When this message is
received, the L1 caches block the block and will not respond
to other requests to the same block. Second, every L1 cache
acknowledges the invalidation to the requestor or the home
L2, depending on whether the invalidation was caused by a
write request or an L2 replacement, respectively. Finally,
the receiver of the acknowledgements broadcasts another
message to let the L1 caches unblock the block and issue
responses to requests regarding that block again. This third
step prevents L1 caches from obtaining copies of the block
from other L1 caches by means of prediction in the middle
of the invalidation process.

V. EVALUATION

A. Methodology

We use Virtual-GEMS [18] to simulate a server running
a number of consolidated workloads. To model the network
we use a version of Garnet [19] to which we have added
broadcast support [20]. Memory access latency is modelled
as a fixed number of cycles (plus a small random delay)
although we have performed simulations with a more de-
tailed DDR memory controller model and we have found
that this does not affect the results. We simulate a 64-core

Table III
SYSTEM CONFIGURATION.

Processors 64 UltraSPARC-III+ 3 GHz. 2-ways, in-order.
L1 Cache Split I&D. Size: 128KB. Associativity: 4-ways. 64 bytes/block.

Access latency: 1 (tag) + 2 (data) cycles.
L2 Cache Size: 1MB each bank. 64MB total. Associativity: 8-ways. 64 bytes/block.

Access latency: 2 (tag) + 3 (data) cycles.
RAM 4 GB DRAM. 8 memory controllers along the borders of the chip.

Memory latency 300 cycles + on-chip delay. Page Size: 4 KB.
Interconnection Bidimensional mesh 8x8. 16 byte links.

Latency: 2 cycles/link + 2 cycles/switch +
1 cycle/router (in absence of contention)
Flit Size: 16 bytes. Control packet size: 1 flit. Data packet size: 5 flits.

Table IV
BENCHMARK CONFIGURATIONS.

Workload Description Size Simulation
Performance
Metric

Memory
saved by
deduplica-
tion

apache4x16p
Web server with
static contents

500 clients per
VM, 10ms be-
tween requests

4 16-core
Apache VMs

No. of transactions
in 500 million cy-
cles

21.72%

jbb4x16p Java server
1.5
warehouses
per tile

4 16-core JBB
VMs

No. of transactions
in 500 million cy-
cles

23.88%

radix4x16p
Sorting of inte-
gers 1M integers 4 16-core Radix

VMs

Average execution
time of all the
VMs

24.18%

lu4x16p
Factorization of
a dense matrix

512x512
matrix

4 16-core lu
VMs

Average execution
time of all the
VMs

32.71%

volrend4x16p
Ray-casting ren-
dering Head 4 16-core vol-

rend VMs

Average execution
time of all the
VMs

19.77%

tomcatv4x16p
Vectorized mesh
generation 256 4 16-core tom-

catv VMs

Average execution
time of all the
VMs

36.82%

mixed-com
Commercial
benchmarks:
Apache, JBB

See the
size of the
corresponding
benchmarks

2 16-core
Apache VMs
and 2 16-core
JBB VMs

Weighted no. of
transactions in 500
million cycles

15.74%

mixed-sci

Scientific
benchmarks:
Radix, Lu,
Volrend,
Tomcatv

See the
size of the
corresponding
benchmarks

4 16-core VM:
Radix, Lu, Vol-
rend and Tom-
catv

Average execution
time of all the
VMs

15.21%

tiled CMP and run simulations with 4 VMs running in a
single server. Each VM executes its own operating system
(Solaris 10) and runs in 16 tiles. Memory deduplication is
activated in every simulation. As explained before, the chip
is statically divided in four square areas of 16 tiles for DiCo-
Providers and DiCo-Arin. In our default configuration we
assume that the OS or Hypervisor has been instructed to
schedule the threads so that each VM executes in tiles from
a different area to take as much advantage as possible from
our protocols. We also show an alternative configuration
in which the threads of each VM have not been carefully
scheduled and each VM uses tiles from more than one area,
as shown in Figure 6. We expect that this second case would
represent the worst case for DiCo-Arin. This alternative
configuration is shown in Figure 6 and is denoted by the
suffix “-alt”. Tables III and IV show the system configuration
and benchmarks used, respectively. Table IV also shows the
average memory savings provided by memory deduplication
in our benchmarks.

We use CACTI 6.5 [21] to calculate the power consump-
tion (static and dynamic) due to the cache structures (tags,
data and directory) with their different sizes in the various
protocols, assuming a 32nm process. We consider every
event of the cache coherence protocols in the calculation
of power consumption, including invalidations, block re-
placements, directory information updates, etc. As for the
network, we calculate the power consumed by message

VM 1 VM 2

VM 3

VM 4

VM 1 VM 2

VM 3 VM 4

Figure 6. Configuration in which VMs fit the areas on the left. Alternative
configuration on the right. Areas shown in dashed lines. VMs shown in grey
lines.

routing and flit transmissions. For this, we use the model
proposed in [22] because of its simplicity, in which routing
a message consumes as much power as reading an L1 block,
and four times as much power as transmitting a flit.

B. Static Power Consumption

DiCo-Providers and DiCo-Arin provide significant sav-
ings in cache storage for directory information compared to
DiCo or to a flat directory. This translates into static power
savings.

We assume an 8x8 tiled CMP divided in four areas. All
the areas in the chip are composed by sixteen tiles. Table III
shows the size of the caches. We assume physical addresses
of 40 bits. There are five different types of tags in a tile:
L1Tag (25 bits), L2Tag (17 bits), DirTag (17 bits), L1CTag
(23 bits) and L2CTag (17 bits). A GenPo has a size of 6 bits
to point to any of the 64 tiles of the chip. A ProPo has a size
of 4 bits to point to any of the 16 tiles of an area. We also
consider for some of the structures that the validity of an
entry can be determined by the state of the block. However,
a valid bit is needed for some other structures.

In the case of a flat directory, each L2 entry contains
a full-map bit-vector to track the sharers of the block. In
addition, a directory cache is needed to track the blocks in
exclusive state in the L1 caches. Each entry of this cache
contains a full-map bit-vector, a GenPo to store the owner
in L1 and a DirTag.

As for DiCo, a full-map bit-vector is needed in each entry
of both L1 cache and L2 cache. The L2C$ requires one
GenPo (for the case in which the owner is held by an L1)
and an L2CTag. An L1C$ entry in any protocol needs a
GenPo to store the supplier prediction and an L1CTag.

In DiCo-Providers, the only directory information that
must be stored along with a block in the home L2 is one
ProPo per area (for the case in which the owner is in the
home L2). No information about sharers is necessary in the
home L2 thanks to the replacement mechanism described
in section IV-A1 that only replaces the ownership to L2
when no sharers exist in the area. The directory information
required in L1 is a full-map bit-vector with a bit for each
node in the area (to store the sharers when the L1 is the
provider or the owner) and one ProPo per area (to store the

Table V
MEMORY OVERHEAD INTRODUCED BY COHERENCE INFORMATION (PER

TILE) IN OUR 8X8 TILED CMP.

Structure Entry size Entries Total size (KB) Overhead

Data L1 cache L1Tag (25 bits) + 64 bytes 2048 134.25
L2 cache L2Tag (17 bits) + 64 bytes 16384 1058

Directory L2 dir. inf. 8 bytes 16384 128 12.56%Dir. cache DirTag (17 bits) + 8 bytes + GenPo (6 bits) 2048 21.75

DiCo

L1 dir. inf. 8 bytes 2048 16

13.21%L2 dir. inf. 8 bytes 16384 128
L1C$ L1CTag (23 bits) + GenPo (6 bits) + Valid Bit 2048 7.5
L2C$ L2CTag (17 bits) + GenPo (6 bits) + Valid Bit 2048 6

DiCo-Providers

L1 dir. inf. 2 bytes + 3 ProPos (3×4 bits) + 3 Valid Bits 2048 7.75

5.14%L2 dir. inf. 4 ProPos (4×4 bits) + 4 Valid Bits 16384 40
L1C$ L1CTag (23 bits) + GenPo (6 bits) + Valid Bit 2048 7.5
L2C$ L2CTag (17 bits) + GenPo (6 bits) + Valid Bit 2048 6

DiCo-Arin

L1 dir. inf. 2 bytes 2048 4

4.49%L2 dir. inf. 2 bytes + 2 bits (area number) 16384 36
L1C$ L1CTag (23 bits) + GenPo (6 bits) + Valid Bit 2048 7.5
L2C$ L2CTag (17 bits) + GenPo (6 bits) + Valid Bit 2048 6

Table VI
LEAKAGE POWER OF THE CACHES PER TILE.

Protocol
Total Leakage
Power (mW)

Difference with re-
spect to directory

Tag Leakage Power
(mW)

Difference with re-
spect to directory

Directory 239 37
DiCo 241 +1% 39 +5%
DiCo-Providers 222 -7% 20 -45%
DiCo-Arin 219 -8% 17 -54%

providers when the L1 is the owner). The L1C$ and L2C$
have the same size as in DiCo.

As for DiCo-Arin, when the L2 is the owner for a block,
the directory information needed is a full-map bit-vector of
nta bits to store the sharers in the area and log(na) bits to
store the number of the area (where na is the number of
areas). However, if the block is shared between areas, the
L2 only needs one ProPo per area. Hence, since the full-map
bit-vector and the ProPos are never needed at the same time,
only the space for the largest of them is actually needed. In
the L1 cache only a full-map bit-vector of nta bits is needed
to store the sharers in the area. The L1C$ and L2C$ have
the same size as in DiCo.

Table V summarizes the amount of coherence informa-
tion needed by each protocol. Contrary to the original
DiCo, which needs even more coherence information than
an ordinary directory protocol, DiCo-Providers reduces the
overhead due to coherence information by 59% with respect
to the flat directory and DiCo-Arin reduces it by 64%.

As a result, our proposals reduce leakage power notice-
ably with respect to the flat directory, as can be seen in
Table VI. The total leakage power of the caches is reduced
by 8% in DiCo-Arin, due to the reduction in the storage
of the directory information which is included in the tag
structures of the tile. Overall, tags consume 54% less in
DiCo-Arin than in the flat directory. As the number of cores
grows, the effect of tag leakage power would become bigger.

Table VII shows the storage overhead of these four cache
coherence protocols for a range of number of processors
and number of areas in the chip. The overhead of DiCo-
Arin depends on the number of cores in each area, while
the overhead of DiCo-Providers is also proportional to the
number of areas (it needs one ProPo per area). As a result,
as the number of areas increases, DiCo-Arin introduces less
overhead while the overhead of DiCo-Providers increases.

Table VII
STORAGE OVERHEAD OF THE PROTOCOLS DEPENDING ON THE NUMBER

OF CORES AND NUMBER OF AREAS OF THE CHIP.

64 cores 2 areas 4 areas 8 areas 16 areas 32 areas 64 areas
Directory 12.6% 12.6% 12.6% 12.6% 12.6% 12.6%
DiCo 13.2% 13.2% 13.2% 13.2% 13.2% 13.2%
DiCo-Providers 4% 5.1% 7.2% 10% 12.6% 12%
DiCo-Arin 7.3% 4.5% 5.3% 6.6% 6.5% 2.3%
128 cores 2 areas 4 areas 8 areas 16 areas 32 areas 64 areas 128 areas
Directory 24.7% 24.7% 24.7% 24.7% 24.7% 24.7% 24.7%
DiCo 25.3% 25.3% 25.3% 25.3% 25.3% 25.3% 25.3%
DiCo-Providers 5% 6.2% 8.8% 13% 18.7% 24% 22.7%
DiCo-Arin 13.4% 7.5% 6.8% 9.3% 12% 11.9% 2.5%
256 cores 2 areas 4 areas 8 areas 16 areas 32 areas 64 areas 128 areas 256 areas
Directory 48.9% 48.9% 48.9% 48.9% 48.9% 48.9% 48.9% 48.9%
DiCo 49.6% 49.6% 49.6% 49.6% 49.6% 49.6% 49.6% 49.6%
DiCo-Providers 6.7% 7.6% 10.6% 16.2% 24.8% 36.2% 47% 44.3%
DiCo-Arin 25.5% 13.5% 8.5% 12.2% 17.4% 22.7% 22.7% 2.6%
512 cores 2 areas 4 areas 8 areas 16 areas 32 areas 64 areas 128 areas 256 areas 512 areas
Directory 97.5% 97.5% 97.5% 97.5% 97.5% 97.5% 97.5% 97.5% 97.5%
DiCo 98.2% 98.2% 98.2% 98.2% 98.2% 98.2% 98.2% 98.2% 98.2%
DiCo-Providers 9.7% 9.7% 12.8% 19.6% 31.1% 48.5% 71.3% 92.9% 87.5%
DiCo-Arin 49.8% 25.7% 13.7% 15.2% 23% 33.6% 44.3% 44.3% 2.8%
1024 cores 2 areas 4 areas 8 areas 16 areas 32 areas 64 areas 128 areas 256 areas 512 areas
Directory 195% 195% 195% 195% 195% 195% 195% 195% 195%
DiCo 195.6% 195.6% 195.6% 195.6% 195.6% 195.6% 195.6% 195.6% 195.6%
DiCo-Providers 15.5% 13.1% 15.7% 23.3% 37.5% 60.8% 95.8% 141.7% 184.9%
DiCo-Arin 98.5% 50% 25.9% 18.6% 28.8% 44.6% 66.1% 87.6% 87.6%

apache4x16p

jbb4x16p

tomcatv4x16p

lu4x16p

radix4x16p

volre
nd4x16p

mixed-com

mixed-sci

Workload

0.0

1.0

2.0

3.0

4.0

T
o

ta
l
p

o
w

e
r

c
o

n
s
u

m
p

ti
o

n

Cache NetLinks NetRouting
dir

DiCo
DiCo-Providers

DiCo-Arin
dir-alt

DiCo-alt
DiCo-Providers-alt

DiCo-Arin-alt

Figure 7. Total dynamic power consumption by protocol. Results normal-
ized to the cache dynamic power consumption of the directory. Breakdown
in cache, network links and network routing consumptions.

An appropriate number of areas should be chosen for a
given number of cores, and higher storage savings can be
achieved as the number of cores increases. A trade-off exists
in which using smaller areas implies that providers will be
closer to the requestors but also that finding a provider in
the area is less likely.

C. Dynamic Power Consumption

Figure 7 shows the total dynamic power consumption of
our protocols. Two kinds of workloads can be observed:
those in which power consumption is dominated by L1
caches, like Tomcatv, Lu, Radix and Volrend, and those in
which it is dominated by L2 caches and network traffic,
like Apache and JBB. L1-power-dominated workloads are
those whose working set fits in the L1 cache, and therefore
very little traffic and directory accesses are observed in
them. On the other hand, L2-power-dominated workloads
have working sets that are significantly larger than the L1
caches, which causes many L1 cache misses resulting in
higher network usage and directory accesses. L2-power-
dominated workloads are the norm in real scenarios since
real applications have bigger working sets that those of
ordinary benchmarks [23], but we show both kinds of
workloads for completion in our analysis. We can see that

apache4x16p

jbb4x16p

tomcatv4x16p

lu4x16p

radix4x16p

volre
nd4x16p

mixed-com

mixed-sci

Workload

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6

N
o

rm
a

liz
e

d
 c

a
c
h

e
 p

o
w

e
r

c
o

n
s
u

m
p

ti
o

n

L1C$
L1BlockRead
L1TagRead

L1WordRead
L1BlockWrite
L1TagWrite

L1WordWrite
L2BlockRead
L2DirRead

L2TagRead
L2BlockWrite
L2DirWrite

L2TagWrite

dir
DiCo

DiCo-Providers
DiCo-Arin

dir-alt
DiCo-alt

DiCo-Providers-alt
DiCo-Arin-alt

(a) Normalized cache dynamic power consumption by protocol. Breakdown
in cache events that cause the consumption.

apache4x16p

jbb4x16p

tomcatv4x16p

lu4x16p

radix4x16p

volre
nd4x16p

mixed-com

mixed-sci

Workload

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1

N
o

rm
a

liz
e

d
 n

e
tw

o
rk

 p
o

w
e

r
c
o

n
s
u

m
p

ti
o

n

Bcast Control Data RoutingBcast RoutingControl RoutingData

dir
DiCo

DiCo-Providers
DiCo-Arin

dir-alt
DiCo-alt

DiCo-Providers-alt
DiCo-Arin-alt

(b) Normalized network dynamic power consumption by
protocol. Breakdown in link usage and routing consumption.

Figure 8. Power consumption.

our proposals reduce dynamic power consumption in every
benchmark compared to the directory, but this reduction is
more noticeable in L2-power-dominated workloads. We find
Apache the most representative benchmark due to its large
working set and because the other benchmark with a large
working set, JBB, has a huge L2 cache miss rate over 40%.

In general, our protocols reduce L2 cache and network
power consumption but increase L1 cache power consump-
tion. DiCo noticeably reduces network usage with respect
to the directory thanks to solving many requests in just two
hops. DiCo-Providers and DiCo-Arin can reduce network
usage even further thanks to the use of providers in the
area for deduplicated data, shortening the average distance
travelled by the messages.

Figure 8a depicts how, due to the directory information
stored in the L1 caches, tag accesses are more power
consuming in DiCo-based protocols than in the flat directory.
This causes DiCo-based protocols to use more power in
the caches in some L1-power-dominated workloads (lu,
volrend, and radix with DiCo-Providers). Since network
usage is pretty small in these workloads, compared to cache
usage, our protocols can only improve the overall power
consumption by a small margin, thanks to our savings
in network traffic (Figure 8b). Nevertheless, both DiCo-
Providers and DiCo-Arin improve the original DiCo total
power consumption by at least 10% in every L1-power-
dominated workload.

The power consumption of the L1C$ of DiCo-based
protocols is not a significant share of the overall power
consumption. This is thanks to its small size and because
it is accessed only after a cache miss takes place and when
its contents are updated by events such as invalidations,
replacements, etc.

Regarding L2-power-dominated workloads, DiCo-
Providers and DiCo-Arin reduce power consumption in
Apache by 38% with respect to the directory (Figure 7).
This reduction comes both from reductions in network
power and in cache power (Figures 8b and 8a). L2 tags
are smaller in DiCo-Providers and even smaller in DiCo-
Arin. In addition, L2 block reads, which are more power
consuming than L1 block reads, are more frequent in the

directory since DiCo protocols try to use an L1 cache as
the provider to resolve misses in two hops.

JBB represents the case in which pressure is highest in
the L2 cache due to a huge working set. The L2 miss rate
of JBB is over 40% for every protocol. We use it as the
worst scenario for DiCo-Arin since this protocol uses more
L2 space to store deduplicated data and issues broadcasts to
invalidate their L1 copies upon an L2 replacement. We can
see in Figure 8b that broadcasts make DiCo-Arin network
consumption approach that of the directory. However, even
in that worst case, DiCo-Arin shows 4% less power con-
sumption than the directory (Figure 7) thanks to the smaller
use of L2 caches in general due to the operation of DiCo
that resolves many misses in a remote L1 cache. DiCo-
Providers proves the most reliable protocol in terms of power
consumption and also reduces total power consumption in
JBB by 22% with respect to the directory.

Regarding the alternative configuration in which the VMs
do not match the areas, no significant differences are
observed with respect the optimal configuration in which
the VMs fit the areas beyond the logical increment in
broadcast traffic in DiCo-Arin due to the extra invalidations
of read/write blocks that now are shared between areas.
Nevertheless, despite this traffic increment the power con-
sumption of DiCo-Provider keeps being smaller than that of
the directory.

D. Performance Results

The performance of the protocols can be found in
Figure 9a. The main conclusion is that DiCo-Providers
and DiCo-Arin show no significant degradation regarding
the original DiCo. In the most representative benchmark
(Apache), DiCo-Providers and DiCo-Arin outperform the
directory by 3% and 6% respectively. Only in JBB does
DiCo-Arin perform 2% worse than the highly optimized flat
directory, and it is due to the particular characteristics of
JBB pointed out early that this is the worst scenario for
DiCo-Arin due to the heavy pressure over the L2 cache.

In figure 9b we can see that in some benchmarks a
significant percentage of the requests can be resolved by
predicting the provider. In the case of Apache, 21% of the
requests are resolved in this way in DiCo-Providers. Taking

apache4x16p

jbb4x16p

tomcatv4x16p

lu4x16p

radix4x16p

volre
nd4x16p

mixed-com

mixed-sci

Workload

0.7

0.8

0.9

1.0

1.1

1.2

P
e
rf

o
rm

a
n
c
e

dir DiCo DiCo-Providers DiCo-Arin dir-alt DiCo-alt DiCo-Providers-alt DiCo-Arin-alt

(a) Performance (bigger is better).

apache4x16p

jbb4x16p

tomcatv4x16p

lu4x16p

radix4x16p

volre
nd4x16p

mixed-com

mixed-sci

Workload

0.0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0

100.0
110.0
120.0

P
e

rc
e

n
ta

g
e

 o
f

re
q

u
e

s
ts

nonPredictedHit
nonPredictedMiss

ownerPredictedHit
ownerPredictedMiss

providerPredictedHit
providerPredictedMiss

DiCo DiCo-Providers DiCo-Arin DiCo-alt DiCo-Providers-alt DiCo-Arin-alt

(b) Breakdown of L1 misses in six categories depending on
whether they were predicted or not, on whether the destination
was an owner or a provider in the area, and on whether the
prediction succeeded or not.

Figure 9. Performance and prediction accuracy.

into account that the theoretical average distance in a 2D
mesh is 2

3

√

ntc, where ntc is the number of tiles in the chip,
a two hop miss in our 64-tile CMP, with arbitrary origin
and destination, would traverse 10.6 links on average. The
misses that hit in the provider only take two hops inside a
16-tile area. This results in a theoretical average of 5.4 links
traversed to resolve such misses, instead of the 10.6 links
needed in DiCo, which matches our experimental results. In
the end this means a reduction in number of links traversed
with respect to DiCo of 38% and 40% in DiCo-Providers
and DiCo-Arin, respectively. We call these misses resolved
inside the area shortened misses. Overall, shortened misses
cause a noticeable reduction in the average miss latency
and power consumption. As the number of tiles and VMs
increases, this potential benefit should grow. For example,
in a densely virtualized 256-tile CMP with 4-tile areas (that
is, 64 VMs), indirect misses would take an average of 32
links, normal misses would take 21.3 links, and shortened
misses would take just 2.6 links.

The alternative configuration does not produce significant
changes in the performance of the VMs in any of the pro-
tocols. This is the expected behaviour for the directory and
DiCo. For our proposal a noticeable performance reduction
could be expected, but it does not actually take place. Two
reasons explain why DiCo-Providers and DiCo-Arin keep
performing well. First, when a VM executes in cores of more
than one area, the L1 owners are still located within the VM
and are accessed in two hops. Second, now providers are also
used for data private to the VM. These data can be supplied
by a provider in the area of the requestor, which is closer
to the requestor than the owner is, since the owner might be
in another area. This way, the performance and prediction
accuracy of our proposals remain almost the same even if
the VMs span in several areas.

VI. CONCLUSIONS

Server consolidation is increasingly gaining importance
as the number of cores provided in a single chip increases.
The number of virtual machines per server is also likely
to grow to take advantage of such a number of cores. We
have proposed a new scheme with the chip statically divided

in areas in which deduplicated data is stored only once
in the shared level of cache and yet the data is brought
closer to the requestors thanks to the use of providers. We
have proposed two different protocols based on this scheme:
DiCo-Providers and DiCo-Arin. DiCo-Arin is simpler than
DiCo-Providers and it requires less hardware for storing
sharing information. However, DiCo-Arin relies on broad-
cast to invalidate data shared between areas (i.e. deduplicated
data).

We have shown that our protocols achieve a 59–64%
reduction in directory information in cache for a 64-tile CMP
with just 4 VMs, which reduces static power consumption
by 45–54% and improves scalability. They reduce dynamic
power consumption up to 38% for the most representative
workload (Apache). When the weak points of our protocols
are tested with non-realistic scenarios in which little network
traffic is generated and few L1 cache misses take place, the
power consumption of our protocols is still lower than that
of the optimized directory.

Additionally, speedups up to 6% with respect to the
optimized directory protocol have been achieved in Apache.
Our protocols do not show any significant degradation in
performance with respect to the directory, not even if the
placement of the VMs does not exactly match the static
areas. On the contrary, they noticeably outperform the direc-
tory in most workloads thanks to the use of providers. We
also expect that as virtualization density increases, with tens
of virtual machines running in a single server, the advantages
of our proposals will become even more noticeable.

ACKNOWLEDGMENTS

This work has been jointly supported by the Fundación
Séneca (Agencia Regional de Ciencia y Tecnología, Región
de Murcia) under grant 00001/CS/2007, by the Generalitat
Valenciana under Grant PROMETEO/2008/060, and also by
the Spanish MEC and European Commission FEDER funds
under grants “Consolider Ingenio-2010 CSD2006-00046”
and “TIN2009-14475-C04-02”. Antonio García-Guirado is
also supported by a research grant from the Spanish MEC
under the FPU National Plan (AP2008-04387).

REFERENCES

[1] J. Held, J. Bautista, and S. Koehl, “From a Few Cores to
Many: A Tera-scale Computing Research Overview,” Intel
White Paper, 2006.

[2] J. Held and S. Koehl, “Introducing the Single-Chip Cloud
Computer,” Intel White Paper, 2010.

[3] N. Magen and A. Kolodny, “Interconnect-Power Dissipation
in a Microprocessor,” in Proceedings of the International
Workshop on System-Level Interconnect Prediction, 2004, pp.
7–13.

[4] C. A. Waldspurger, “Memory Resource Management in
VMware ESX Server,” in 5th Symposium on Operating Sys-
tem Design and Implementation (OSDI), 2002, pp. 181–194.

[5] M. Jeon, E. Seo, J. Kim, and J. Lee, “Domain Level
Page Sharing in Xen Virtual Machine Systems,” in The 7th
International Symposium on Advanced Parallel Processing
Technologies (APPT), 2007, pp. 590–599.

[6] A. García-Guirado, R. Fernández-Pascual, and J. M. García,
“Analizing Cache Coherence Protocols for Server Consolida-
tion,” in Proceedings of the 22nd International Symposium
on Computer Architecture and High Performance Computing
(SBAC-PAD), 2010, pp. 191–198.

[7] A. Ros, M. E. Acacio, and J. M. García, “A Direct Coherence
Protocol for Many-Core Chip Multiprocessors,” IEEE Trans-
actions on Parallel and Distributed Systems (TPDS), vol. 21,
no. 12, pp. 1779–1792, 2010.

[8] J. Zebchuk, V. Srinivasan, M. K. Qureshi, and A. Moshovos,
“A tagless coherence directory,” in Proceedings of the 42nd
Annual IEEE/ACM International Symposium on Microarchi-
tecture (MICRO), 2009, pp. 423–434.

[9] P. Lotfi-Kamran, M. Ferdman, D. Crisan, and B. Falsafi,
“TurboTag: Lookup Filtering to Reduce Coherence Directory
Power,” in Proceedings of the 16th International Symposium
on Low Power Electronics and Design (ISLPED), 2010, pp.
377–382.

[10] A. Flores, J. L. Aragón, and M. E. Acacio, “Heterogeneous
Interconnects for Energy-Efficient Message Management in
CMPs,” IEEE Transactions on Computers, vol. 59, no. 1, pp.
16–28, 2010.

[11] G. Keramidas and S. Kaxiras, “SARC Coherence: Scal-
ing Directory Cache Coherence in Performance and Power
(preprint),” IEEE Micro, 2010.

[12] R. C. Kinter, “Support for multiple coherence domains,”
Patent No. WO 2009/039417 A1, 2009, MIPS Technologies,
Inc.

[13] Z. Offen, A. Berkovits, and P. Thomas, “Technique to
share information among different cache coherency domains,”
Patent No. WO 2009/120997 A2, 2009, Intel Corporation.

[14] M. A. Blumrich and V. Salapura, “Programmable partitioning
for high-performance coherence domains in a multiprocessor
system,” United States Patent No. US 2009/0006769 A1,
2009, International Business Machines Corporation.

[15] M. R. Marty and M. D. Hill, “Virtual Hierarchies to Support
Server Consolidation,” in Proceedings of the 34th annual
international symposium on Computer architecture (ISCA),
2007, pp. 46–56.

[16] J. Flich, J. Duato, T. Sødring, Å. G. Solheim, T. Skeie,
O. Lysne, and S. Rodrigo, “On the Potential of NoC Virtu-
alization for Multicore Chips,” in International Workshop on
Multi-Core Computing Systems (MuCoCoS), 2008, pp. 801–
807.

[17] L. Zhao, R. Iyer, S. Makineni, D. Newell, and L. Cheng,
“Ncid: a non-inclusive cache, inclusive directory architecture
for flexible and efficient cache hierarchies,” in Proceedings of
the 7th ACM international conference on Computing frontiers,
2010, pp. 121–130.

[18] A. García-Guirado, R. Fernández-Pascual, and J. M. Gar-
cía, “Virtual-GEMS: An Infrastructure To Simulate Virtual
Machines,” in Proc. of the 5th Int. Workshop on Modeling,
Benchmarking and Simulation (in conjunction with ISCA),
2009, pp. 53–62.

[19] N. Agarwal, T. Krishna, L.-S. Peh, and N. K. Jha, “GARNET:
A detailed on-chip network model inside a full-system simu-
lator,” in International Symposium on Performance Analysis
of Systems and Software (ISPASS), 2009, pp. 33–42.

[20] J. Duato, S. Yalamanchili, and N. Lionel, Interconnection
Networks: An Engineering Approach. Morgan Kaufmann,
2002.

[21] N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi,
“CACTI 6.0: A Tool to Model Large Caches,” Hewlett
Packard, Tech. Rep., 2009.

[22] N. Barrow-Williams, C. Fensch, and S. Moore, “Proximity
coherence for chip multiprocessors,” in Proceedings of the
19th international conference on Parallel architectures and
compilation techniques (PACT), 2010, pp. 123–134.

[23] R. C. Murphy and P. M. Kogge, “On the memory access pat-
terns of supercomputer applications: Benchmark selection and
its implications,” IEEE Transactions on Computers, vol. 56,
no. 7, pp. 937–945, 2007.

[24] J. Smith and R. Nair, Virtual Machines: Versatile Platforms
for Systems and Processes. Morgan Kaufmann, 2005.

