
Fast and Efficient Synchronization and

Communication Collective Primitives
for Dual Cell-Based Blades�

Epifanio Gaona, Juan Fernández, and Manuel E. Acacio

Dept. de Ingenieŕıa y Tecnoloǵıa de Computadores, Universidad de Murcia, Spain
{fanios.gr,juanf,meacacio}@ditec.um.es

Abstract. The Cell Broadband Engine (Cell BE) is a heterogeneous
multi-core processor specifically designed to exploit thread-level paral-
lelism. Its memory model comprehends a common shared main mem-
ory and eight small private local memories. Programming of the Cell
BE involves dealing with multiple threads and explicit data movement
strategies through DMAs which make the task very challenging. This
situation gets even worse when dual Cell-based blades are considered. In
this context, fast and efficient collective primitives are indispensable to
reduce complexity and optimize performance.

In this paper, we describe the design and implementation of three
collective operations: barrier, broadcast and reduce. Their design takes
into consideration the architectural peculiarities and asymmetries of dual
Cell-based blades. Meanwhile, their implementation requires minimal re-
sources, a signal register and a buffer. Experimental results show low
latencies and high bandwidths, synchronization latency of 637 ns, broad-
cast bandwidth of 38.33 GB/s for 16 KB messages, and reduce latency
of 1535 ns with 32 floats, on a dual Cell-based blade with 16 SPEs.

1 Introduction

The Cell BE was jointly developed by Sony, Toshiba and IBM to provide im-
proved performance on game and multimedia applications [1]. However, there
is a growing interest in using the Cell BE for high-performance computing due
to its tremendous potential in terms of theoretical peak performance. From the
architectural point of view, the Cell BE can be classified as a heterogeneous
multi-core processor specifically designed to exploit thread-level parallelism. As
for its memory model, the Cell BE comes with a hybrid scheme with a common
shared main memory and eight small private local memories. The combination
of all these factors makes programming of the Cell BE a really complex task.

� This work has been jointly supported by the Spanish MEC under grants
“TIN2006-15516-C04-03” and European Comission FEDER funds under grant “Con-
solider Ingenio-2010 CSD2006-00046”. Epifanio Gaona is supported by fellowship
09503/FPI/08 from Comunidad Autónoma de la Región de Murcia (Fundación
Séneca, Agencia Regional de Ciencia y Tecnoloǵıa).

H. Sips, D. Epema, and H.-X. Lin (Eds.): Euro-Par 2009, LNCS 5704, pp. 900–911, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Fast and Efficient Synchronization and Communication Collective Primitives 901

Cell BE programmers must explicitly cope with multiple threads that have to or-
chestrate frequent data movements to overlap computation and communication
due to the small size of the private local memories [2].

In this scenario, a number of programming models and platforms have been
proposed for the Cell BE. Some of them are based on well-known shared-memory
and message-passing libraries such as OpenMP [3] and MPI [4,5]. In the mean-
time, others such as CellSs [6] and RapidMind [7] are based on task-parallel
and stream programming models, respectively. Anyway, synchronization and co-
ordination of multiple threads is a common source of programming errors and
performance bottlenecks [8]. For that reason, these programming models either
offer explicit synchronization and communication collective primitives, such as
MPI Barrier or #pragma omp barrier, in order to make code less error prone.
In any case, fast and efficient collective primitives are clearly needed.

The Cell BE provides programmers with a broad variety of communication
and synchronization primitives between the threads that comprise parallel ap-
plications, such as DMAs, mailboxes, signals and atomic operations, which were
evaluated by us in [9] for dual Cell-based blades. Nevertheless, the Cell BE SDK
provided by IBM does not provide programmers with synchronization and com-
munication collective primitives similar to those available for many other parallel
systems [10]. To the best of our knowledge, the work presented in [11] is the only
one that tackles this problem. However, it focuses on the MPI programming
model for the Cell BE introduced by [5] considering that application data is
stored in main memory and is not optimized for dual Cell-based Blades. In con-
trast, our proposal in this work is more general and efficient. First, it assumes
that data resides in the SPEs’ LSs. Second, it has been specifically optimized for
dual Cell-based blades taking advantage of the know-how acquired in [9] and,
therefore, improves barrier performance results (see Section 4). Third, it requires
less resources to implement the very same set of collective primitives.

Our main contributions are: (1) a description of the design of several algo-
rithms for three common collective operations: barrier, broadcast and reduce;

(a) Cell Block Diagram. (b) Dual Cell-based Blade.

Fig. 1. Cell BE Architecture

902 E. Gaona, J. Fernández, and M.E. Acacio

(2) an optimized implementation of the algorithms for dual Cell-based blades
requiring minimal resources, a signal register and a single 16 KB buffer; and, (3)
a comparative analysis of the performance of the algorithms. Note that the use
of a single 16 KB buffer limits the maximum broadcast and reduce sizes. This
limitation is not such a restriction due to the small size of the LSs and the fact
that reductions involving simple operations on small data sizes are the prevalent
case in most scientific applications [12]. Finally, as an outcome of this work, Cell
BE programmers should be able to implement the most appropriate version of
these primitives depending of their expertise and performance requirements.

The rest of the paper is organized as follows. In Section 2, we provide a revision
of the architecture and programming of dual Cell-based blades. Next, in Section 3
our proposal for designing and implementing the three collective primitives is
explained. Then, the experimental results obtained on a dual Cell-based blade
are presented in Section 4. Finally, Section 5 gives the main conclusions of this
work.

2 Cell BE: Architecture and Programming

The Cell Broadband Engine (Cell BE) [1] is an heterogeneous multi-core chip
composed of one general-purpose processor, called PowerPC Processor Element
(PPE), eight specialized co-processors, called Synergistic Processing Elements
(SPEs), a high-speed memory interface controller, and an I/O interface, all in-
tegrated in a single chip. All these elements communicate through an internal
high-speed Element Interconnect Bus (EIB) (see Figure 1(a)).

A dual Cell-based blade is composed of two separate Cell BEs linked together
through their EIBs as shown in Figure 1(b). The EIB is extended transparently
across a high-speed coherent interface running at 20 GBytes/second in each
direction [2]. In this configuration the two Cell BEs operate in SMP mode with
full cache and memory coherency.

The Cell BE provides programmers with a variety of synchronization and
communication mechanisms: DMA Transfers, Atomic Operations, Mailboxes and
Signals.

SPEs use DMA transfers to read from (Get) or write to (Put) main memory,
or to copy data between the eight SPEs’ LSs (Mov). DMA transfer size must be
1, 2, 4, 8 or a multiple of 16 Bytes up to a maximum of 16 KB. DMA transfers
can be either blocking or non-blocking. The latter allow to overlap computation
and communication: there might be up to 128 simultaneous transfers between
the eight SPEs’ LSs and main memory. In all cases, peak performance can be
achieved when both the source and destination addresses are 128-Byte aligned
and the size of the transfer is an even multiple of 128 Bytes [13].

Read-modify-write atomic operations enable simple transactions on single
words residing in main memory. For example, the atomic add return atomic
operation adds a 32-bit integer to a word in main memory and returns its value
before the addition.

Fast and Efficient Synchronization and Communication Collective Primitives 903

Mailboxes are FIFO queues that support exchange of 32-bit messages among
the SPEs and the PPE. Each SPE includes two outbound mailboxes, called
SPU Write Outbound Mailbox and SPU Write Outbound Interrupt Mailbox, to
send messages from the SPE; and a 4-entry inbound mailbox, called SPU Read
Inbound Mailbox, to receive messages.

In contrast, signals were designed with the only purpose of sending notifica-
tions to the SPEs. Each SPE has two 32-bit signal registers to collect incoming
notifications, namely SPU Signal Notification 1 (SIG1) and SPU Signal Notifi-
cation 2 (SIG2). A signal register is assigned a MMIO register to enable remote
SPEs and the PPE to send individual signals (overwrite mode) or combined
signals (OR mode) to the owner SPE. It is worth noting that the latter mode
allows to collect and identify incoming notifications from remote SPEs. To do so,
it is enough to assign the ith bit of a signal register to the ith SPE, that is, SPE
i can signal SPE j by sending the value 2id which would set the ith bit of the
target SPE j ’s signal register. In this way, SPE j can determine the number and
identity of the remote SPEs by simply using bit masks. This strategy revealed
extremely useful to implement collective primitives as we will see in Section 3.

Cell BE programming requires separate programs, written in C/C++, for
the PPE and the SPEs, respectively. The PPE program can include exten-
sions (e.g., vec add), to use its VMX unit; and library function calls, to man-
age threads and perform communication and synchronization operations (e.g.,
spe create thread and spe write in mbox). The SPE program follows an
SPMD model. It includes extensions, to execute SIMD instructions, and com-
munication and synchronization operations (e.g., spu add and mfc get).

Programming of a dual Cell-based blade is similar to that of an indepen-
dent Cell from a functional point of view. However, there are two important
differences. Firstly, dual Cell-based blades have 16 SPEs at programmer’s dis-
posal rather than 8 SPEs. This feature doubles the maximum theoretical peak
performance but also makes much more difficult to fully exploit thread-level
parallelism. Secondly, from an architectural point of view, synchronization and
communication operations crossing the inter-Cell interface result in significantly
less performance than those that stay on-chip [9]. This feature is a key factor
that must be taken into consideration to avoid unexpected and undesirable sur-
prises when designing synchronization and communication collective primitives
for a dual Cell-based blade platform.

3 Design and Implementation

This section describes the design and implementation of several alternative al-
gorithms for three common collective synchronization and communication prim-
itives: barrier, broadcast and reduce. Most of them are based on a three-phase
scheme. In the ready phase all group members wait for each other to reach the
collective primitive call. The transfer phase is executed in between the other two
phases and is devoted to transferring data among SPEs’ LSs using DMAs when
necessary. Finally, in the go phase all group members are informed to resume

904 E. Gaona, J. Fernández, and M.E. Acacio

computation. Unless otherwise noted, only one signal register in OR mode is
needed to implement the ready and go phases as described in Section 2. More-
over, even though it is not discussed in the paper, the 16 most significant bits
(msb) and the 16 less significant bits (lsb) of such a signal register have been
used alternatively in order to ensure correctness between consecutive executions
of each primitive when necessary. Note that the second signal register could be
used for synchronizing up to 4 Cell chips. A single 16 KB buffer is in turn em-
ployed in the transfer phase. Finally, in all cases, there is a single group that
comprehends all threads run by the SPEs used by the application.

3.1 Barrier

A barrier synchronization blocks the callers until all group members have invoked
the primitive. We have implemented three different algorithms and two variants
for the first two ones (see Figure 2).

All-To-One Barrier (ATOBar). In the ready phase every SPE signals the
root SPE (see the arrows labeled with number 1 in Figure 2(a)). The root SPE
in turn waits for all SPEs to enter the barrier and then clears its signal register.
In the go phase, the root SPE signals all SPEs (see the arrows marked with
number in 2 Figure 2(b)). As SPEs receive the acknowledgement from the root
SPE, they resume computation.

All-To-One Barrier for Blades (ATOBarB). This algorithm introduces an
optimization over the previous one in order to reduce the inter-Cell traffic when
the second Cell comes into play. To do so, the ATOBar algorithm is executed
locally by both Cells so that both root SPEs must signal each other (inter-Cell
synchronization) before the beginning of the go phase. Consequently, only two
signals are sent through the inter-Cell interface (see the arrows marked with
number 2 in Figure Figure 2(b)).

Tree Topology Barrier (TTBar). This scheme is similar to the ATOBar
algorithm but a tree structure is used in the upward and downward directions
for the ready and go phases, respectively (see Figure Figure 2(c)). The algorithm
requires 2 × �logd N� steps where d is the degree of the tree.

Tree Topology Barrier for Blades (TTBarB). This version follows the
same idea as the ATOBarB algorithm but using instead the TTBar algorithm
for synchronization inside each Cell (as illustrated in Figure Figure 2(d)). In this

case, the algorithm employs 2 × �logd

N

2
� + 1 steps.

Pairwise Exchange Barrier (PEBar). Parwise exchange is a well-known
recursive algorithm [14]. Unlike the previous schemes, all SPEs are progressively
paired up to synchronize in each round. Let N be the number of SPEs. At step
s, SPE i and SPE j, where j = i ⊕ 2s, signal each other. If the number of
SPEs is a power of two, then the algorithm requires log2 N steps. Otherwise,
PE needs �log2 N� + 2 steps [14]. Let M be the largest power of two less than
N. First, ∀k ≥ M , SPE k signals SPE i, where i = k − M . Second, ∀i < M ,

Fast and Efficient Synchronization and Communication Collective Primitives 905

Fig. 2. Barrier Algorithms: ready, inter-Cell synchronization, and go phases

SPE i executes the PE algorithm. Third, ∀k ≥ M , SPE i signals SPE k, where
i = k−M , upon completion of the intermediate PE synchronization. Figure 2(e)
shows these three steps.

3.2 Broadcast

A broadcast communication is similar to a barrier synchronization in which all
group members must receive a message from the root member before they leave
the barrier. The broadcast algorithms presented here are based on a three-phase
scheme: ready, broadcast and go. The ready and go phases are similar to those
of barrier algorithms. In the meantime, the transfer phase becomes a broadcast
phase where a message is Moved from the source SPE’s LS to the destination
SPEs’ LSs. The broadcast buffers always reside at the same LS locations in
all SPEs. Thus, their effective addresses can be computed by just adding the
effective starting address of the corresponding SPEs’ LSs. This simplification

906 E. Gaona, J. Fernández, and M.E. Acacio

is not a hard constraint since different effective destination addresses could be
easily gathered in the ready phase. Broadcast message size is limited to 16 KB,
that is, the maximum DMA size, and a 16 KB buffer per SPE is hence needed.
Note that broadcast messages greater than 16 KB could be sent by using DMA
lists or by implementing a flow control mechanism (e.g. through mailboxes) in
charge of monitoring the transmission of the segments of the message.
We have implemented two different algorithms (see Figure 3), the broadcast
versions of the ATOBar and TTBar algorithms, with a number of variants each
through incorporating some optimizations. PE broadcast version is not con-
sidered because the ready and go phases cannot be decoupled. Description of
non-blade, unoptimized versions of ATOBcastBOpt and TTBcastBOpt have been
omitted since their implementations are straightforward from the description of
the corresponding barrier algorithms.

All-To-One Broadcast for Blades with Optimizations (ATOBcastBOpt).
This algorithm is similar to the ATOBar version with two major optimizations.
On the one hand, both root SPEs run the ATOBcast algorithm but the root
SPE on the second Cell is treated as another remote SPE of the root SPE on
the first Cell. In this way, a single broadcast message and two signals go across
the inter-Cell interface. On the other hand, the broadcast phase overlaps with
the ready and go phases. When the root SPE is signaled by a remote SPE, it
immediately starts an asynchronous DMA to transfer the broadcast message
from the local LS to the corresponding remote SPE’s LS. After signals from all
remote SPEs have been received and the subsequent DMAs have been initiated,
the root SPE waits for each DMA to complete and immediately signals the
corresponding remote SPE, in the same order signals were received in the ready
phase. As a minor optimization of the last step, the root SPE on the second Cell
is given a highest priority than the other remote SPEs.

TreeTopologyBroadcast forBladeswithOptimizations (TTBcastBOpt).
This scheme is derived from the TTBar algorithm and incorporates similar
optimizations to the ones used in ATOBcastBOpt.

3.3 Reduce

A reduce communication behaves like a broadcast communication in which mes-
sages flow in the reverse order. The broadcast algorithms presented here are
based on a three-phase scheme: ready, gather and go. The ready and go phases are
identical to those of broadcast algorithms. In the gather phase incoming reduce
messages, consisting of arrays of integers or single-precision floating-point num-
bers, are combined using a specific operator (e.g. ADD or SUB) through SIMD
intrinsics (e.g. spu add or spu sub). Broadcast buffers are also used here for re-
duce operations. As in the case of broadcast, we have implemented two different
algorithms (graphical representation would be equal to that of Figure 3 if ar-
rows labeled with 2 appeared reversed), the reduce versions of the ATOBarB and
TTBarB algorithms, with a number of variants each through incorporating the
same optimizations used by the ATOBcastBOpt and TTBcastBOpt algorithms.

Fast and Efficient Synchronization and Communication Collective Primitives 907

Fig. 3. Broadcast Algorithms: ready, broadcast, and go phases

Again, non-blade, unoptimized versions of the ATORedBOpt and TTRedBOpt

algorithms have been left out since their implementations are straightforward
from the description of the corresponding barrier algorithms.

All-To-One Reduce for Blades with Optimizations (ATORedBOpt).
This algorithm applies similar optimizations to the ones implemented by the
ATOBcastBOpt algorithm to ATORed. First, both root SPEs run the ATORed
algorithm but the root SPE on the second Cell becomes another remote SPE
of the root SPE on the first Cell. Thus, it is guaranteed that no more than a
single reduce message and two signals cross the inter-Cell interface. Second, the
gather phase overlaps with the ready and go phases. Upon signal reception, the
root SPE initiates an asynchronous DMA to transfer the reduce message from
the remote SPE’s LS into its local LS. When all signals from children SPEs have
been processed, the root SPE proceeds in the same order they were received: (1)
waits for DMA completion, (2) computes the reduce using local data and remote
data, and (3) signals the corresponding remote SPE. Also, the root SPE on the
second Cell is given a highest priority as a minor optimization. Finally, reduce
operations are limited to 512 integers or single-precision floating point numbers
and, therefore, reduce messages from all remote SPEs can be accommodated in
the same buffer used by broadcast operations.

Tree Topology Reduce for Blades with Optimizations (TTRedBOpt).
This scheme is derived from the TTRed algorithm and incorporates similar op-
timizations to the ones used in ATOBcastBOpt. Consequently, regardless of the
degree of the tree, the root SPE on the second Cell is treated as a child of the
root SPE on the first Cell, and the gather phase overlaps with the ready and go

908 E. Gaona, J. Fernández, and M.E. Acacio

 0

 500

 1000

 1500

 2000

 2500

 3000

 2 4 6 8 10 12 14 16

T
im

e
(n

an
os

ec
s)

Number of SPEs

 ATOBar

 ATOBarB

 PEBar

 TTBar D2

 TTBarB D2

Fig. 5. Barrier Latency

 0

 500

 1000

 1500

 2000

 2500

 3000

 2 4 6 8 10 12 14 16

T
im

e
(n

an
os

ec
s)

Number of SPEs

ATOBcast

ATOBcastBOpt

 TTBcastBOpt D2

 TTBcastBOpt D3

Fig. 6. Broadcast Latency (128 Bytes)

phases in the root and intermediate SPEs. In this case, reduce messages gath-
ered from children SPEs are limited to 2,048 integers or single-precision floating
point numbers in order not to exceed the maximum broadcast buffer size.

4 Performance Evaluation

This section details the making of the experiments and analyzes the experimental
results obtained for the three collective primitives. In all experiments, the number
of demanded SPEs invoke the specified collective primitive in a loop for one million
iterations. Reported results are the best of three experiments executed in a row.

All the algorithms considered in this work have been implemented and evalu-
ated using the IBM SDK v3.1 installed atop Fedora Core 9 on a dual Cell-based
IBM BladeCenter QS20 blade which incorporates two 3.2 GHz Cell BEs v5.1,
namely Cell0 and Cell1, with 1 GByte of main memory and a 670 GB hard disk.

4.1 Barrier

First of all, we present in Figure 5 the latency (measured in nanoseconds) for
the implementations of the barrier primitive discussed in Subsection 3.1. As we
can see, the naive All-To-One Barrier (ATOBar) is the best option when the
number of SPEs involved is small (less than 8). In this case, all SPEs are in
the same Cell chip and two signals, one from each SPE to the root SPE and
another one in the opposite direction, suffice to complete the barrier primitive.
Unfortunately, as the number of SPEs grows, so does the time taken by the
ATOBar implementation, which becomes impractical when the number of SPEs
is greater than 8. In this case, SPEs belonging to the two Cell chips participate in
the barrier and latency is dominated by inter-chip signals (round-trip latencies
of inter-chip and intra-chip signals are 619.4 ns and 160.1 ns [9], respectively).
In order to cope with this problem, we proposed the All-To-One Barrier for
Blades (ATOBarB) implementation. Up to 8 SPEs, the behavior of ATOBar
and ATOBarB is exactly the same. From 9 SPEs up, two SPEs (one per Cell
chip) act as roots and just two signals (exchanged by the two root SPEs once the
local ready phases have been completed) must traverse the inter-Cell interface.

Fast and Efficient Synchronization and Communication Collective Primitives 909

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 2 4 6 8 10 12 14 16

B
an

dw
id

th
 (

G
B

/s
)

Message Size (KB)

 ATOBcast

 ATOBcastBOpt

 TTBcastBOpt D2

 TTBcastBOpt D3

Fig. 7. Broadcast Bandwidth

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 2 4 6 8 10 12 14 16

T
im

e
(n

an
os

ec
s)

Number of SPEs

ATORed

ATORedBOpt

 TTRedBOpt D2

 TTRedBOpt D3

Fig. 8. Reduce Latency (32 floats)

As seen in Figure 5, this optimization ensures perfect scalability for more than
9 SPEs, since the two local ready and go phases are performed in parallel.

Similarly to ATOBar and ATOBarB, the Tree Topology Barrier (TTBar) and
Tree Topology Barrier for Blades (TTBarB) implementations perform identically
when the number of SPEs is lower than 9. Latency of TTBar and TTBarB
increases afterwards due to the greater number of steps that are required to
complete the ready and go phases. Observe, however, that they still scale much
better than ATOBar. When more than 8 SPEs are involved, TTBarB avoids the
scalability problems suffered by TTBar because the tree structure it implements
for the ready and go phases reduces the number of inter-Cell signals, which
finally translates into lower latency. Obviously, as the degree of the tree grows,
performance of TTBarB progressively approaches to that of ATOBarB. For the
sake of brevity, we present results just for degrees 2 and 3 though.

Finally, the Pairwise Exchange Barrier (PEBar) obtains the shortest latencies
when the number of SPEs is a power of two because the number of steps is smaller
than the tree topology algorithms. The extra steps required in the rest of the
cases blur the advantages brought by the distributed way of synchronizing the
SPEs that this algorithm entails. Note that all inter-chip signals are sent during
the same phase with this algorithm which explains the almost constant latency
increase when the number of SPEs is greater than 8.

4.2 Broadcast

Latency of the implementations of the broadcast primitive discussed in Subsec-
tion 3.2 is plotted in Figure 6 for 128-byte packets with 16 SPEs. Latency for
larger packet sizes up to 16 KB takes the very same shape, although the absolute
differences in terms of latency become more acute. Consequently, those results
have been omitted for the sake of brevity.

As it can be seen in Figure 6, TTBcastBOpt obtains the best results in terms
of latency when the number of SPEs is greater than 6, especially with a degree
2 tree. The tree structure assumed in TTBcastBOpt allows to initiate several
DMA transfers simultaneously thus reducing the time employed in the broadcast
phase. As expected, the larger the packet size, the lower the number of SPEs for

910 E. Gaona, J. Fernández, and M.E. Acacio

which TTBcastBOpt performs better than ATOBcast. For example, for 16-KB
packets TTBcastBOpt is the best scheme when 3 or more SPEs are involved.

Additionally, Figure 7 shows the effective bandwidth (measured in GB/s) that
is reached for the same implementations of the broadcast primitive as packet size
varies from 128 bytes to 16 KB with 16 SPEs. As expected, absolute differences
in terms of effective bandwidth grow with packet size. For example, a maximum
bandwidth of 38.33 GB/s is reached with TTBcastBopt D2, whereas just 25
GB/s can be extracted from ATOBcastBopt.

4.3 Reduce

The latency of the reduce operations is shown in Figure 8. In all cases, results
for reductions of 32-float vectors are presented. As already commented on, we
strongly believe that this size is representative of most scientific applications,
for which reductions involving simple operations on small data sizes are the
prevalent case [12].

As it happens with barrier and broadcast primitives, the implementation of
the reduce primitive with lowest latency depends on the total number of inter-
vening SPEs. When the number of SPEs is less than 6, the simple ATORedBOpt

scheme proves to be the best option. However, as the number of SPEs increases
TTRedBOpt obtains lower latencies. When all SPEs are involved in the reduction,
latency of ATORedBOpt almost doubles the figures obtained with TTRedBOpt.
The fact that partial reductions distributed among all SPEs (instead of being
centralized in a couple of root SPEs) are carried out in parallel is the key factor
to explain such a latency decrease.

Apart from degree 2 trees, we have also evaluated a version of TTRedBOpt

with a degree 3 tree. However, as it can be observed in Figure 8, no latency advan-
tage is found for TTRedBOpt D3, which performs slightly worse than TTRedBOpt

D2 in all cases.

5 Conclusions

In this paper, we have described the design and implementation of three common
collective operations: barrier, broadcast and reduce. For each of them we have
explored several alternatives ranging from the naive approach to well-known
algorithms coming from the cluster arena. Besides, we have adapted those in or-
der to consider the architectural peculiarities and asymmetries of dual Cell-based
blades. Our designs are efficient because, as we have explained, only require a
signal register and a single 16 KB buffer. At the same time, our implementations
of the algorithms are quite fast resulting in low latencies and high bandwidths
for 16 SPEs. In addition, we have compared the performance of the different
versions of each algorithm. This comparison highlights some interesting conclu-
sions. On the one hand, the best algorithm is not always the same but depends
on the number of SPEs and data size. On the other hand, the naive implemen-
tation obtains performance results close to the best algorithm in some cases.

Fast and Efficient Synchronization and Communication Collective Primitives 911

In this way, experienced Cell BE programmers could opt for hybrid implemen-
tations that use the best algorithm depending on the input parameters. In the
meantime, non-experienced programmers could adopt algorithms representing a
tradeoff between performance and programming complexity.

References

1. Kahle, J., Day, M., Hofstee, H., Johns, C., Maeurer, T., Shippy, D.: Introduction
to the Cell Multiprocessor. IBM Journal of Research and Development 49(4/5),
589–604 (2005)

2. Nanda, A., Moulic, J., Hanson, R., Goldrian, G., Day, M.N., D’Amora, B.D., Ke-
savarapu, S.: Cell/B.E. blades: Building blocks for Scalable, real-time, interactive,
and digital media servers. IBM Systems Journal 51(5), 573–582 (2007)

3. O’Brien, K., O’Brien, K., Sura, Z., Chen, T., Zhang, T.: Supporting OpenMP on
Cell. International Journal of Parallel Programming 36(3), 287–360 (2008)

4. Ohara, M., Inoue, H., Sohda, Y., Komatsu, H., Nakatani, T.: MPI microtask
for programming the Cell Broadband EngineTM processors. IBM Systems Jour-
nal 45(1), 85–102 (2006)

5. Kumar, A., Senthilkumar, G., Krishna, M., Jayam, N., Baruah, P.K., Sharma, R.,
Srinivasan, A., Kapoor, S.: A Buffered-mode MPI Implementation for the Cell
BETM Processor. In: 7th International Conference on Computational Science, Bei-
jing, China (2007)

6. Bellens, P., Prez, J.M., Bada, R.M., Labarta, J.: CellSs: a Programming Model for
the Cell BE Architecture. In: Proceedings of IEEE/ACM Conference on Super-
Computing, Tampa, FL (2006)

7. McCool, M.D.: Data-Parallel Programming on the Cell BE and the GPU using the
RapidMind Development Platform. In: Proceedings of GSPx Multicore Applica-
tions Conference, Santa Clara, CA (2006)

8. McCool, M.D.: Scalable Programming Models for Massively Multicore Processors.
Proceedings of the IEEE 96(5), 816–831 (2008)

9. Abellán, J.L., Fernández, J., Acacio, M.E.: Characterizing the Basic Synchroniza-
tion and Communication Operations in Dual Cell-Based Blades. In: 8th Interna-
tional Conference on Computational Science, Krákow, Poland (2008)

10. Yu, W., Buntinas, D., Graham, R.L., Panda, D.K.: Efficient and Scalable Barrier
over Quadrics and Myrinet with a New NIC-based Collective Message Passing Pro-
tocol. In: Proceedings of Workshop on Communication Architecture for Clusters,
Santa Fe, NM, USA (2004)

11. Velamati, M.K., Kumar, A., Jayam, N., Senthilkumar, G., Baruah, P., Sharma, R.,
Kapoor, S., Srinivasan, A.: Optimization of Collective Communication in Intra-
Cell MPI. In: Proceedings of 14th International Conference on High Performance
Computing, Goa, India (2007)

12. Petrini, F., Moody, A., Fernández, J., Frachtenberg, E., Panda, D.K.: NIC-based
Reduction Algorithms for Large-Scale Clusters. International Journal of High Per-
formance Computing and Networking 4(3–4), 122–136 (2005)

13. Kistler, M., Perrone, M., Petrini, F.: Cell Processor Interconnection Network: Built
for Speed. IEEE Micro. 25(3), 2–15 (2006)

14. Hoefler, T., Mehlan, T., Mietke, F., Rehm, W.: A Survey of Barrier Algorithms for
Coarse Grained Supercomputers. Technical report, Technical University of Chem-
nitz (2004)

	Fast and Efficient Synchronization and Communication Collective Primitives for Dual Cell-Based Blades
	Introduction
	Cell BE: Architecture and Programming
	Design and Implementation
	Barrier
	Broadcast
	Reduce

	Performance Evaluation
	Barrier
	Broadcast
	Reduce

	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

