
A Parallel Implementation of the 2D Wavelet Transform Using CUDA

Joaquín Franco, Gregorio Bernabé, Juan Fernández and Manuel E. Acacio
Dpto. de Ingeniería y Tecnología de Computadores

Universidad de Murcia, Campus de Espinardo s/n, 30100 Murcia (SPAIN)
email:{j.franco,gbernabe,juanf,meacacio}@ditec.um.es

Abstract

There is a multicore platform that is currently concen-
trating an enormous attention due to its tremendous poten-
tial in terms of sustained performance: the NVIDIA Tesla
boards. These cards intended for general-purpose computing
on graphic processing units (GPGPUs) are used as data-
parallel computing devices. They are based on the Computed
Unified Device Architecture (CUDA) which is common to
the latest NVIDIA GPUs. The bottom line is a multicore
platform which provides an enormous potential performance
benefit driven by a non-traditional programming model.
In this paper we try to provide some insight into the
peculiarities of CUDA in order to target scientific computing
by means of a specific example. In particular, we show
that the parallelization of the two-dimensional fast wavelet
transform for the NVIDIA Tesla C870 achieves a speedup of
20.8 for an image size of 8192x8192, when compared with
the fastest host-only version implementation using OpenMP
and including the data transfers between main memory and
device memory.
Keywords: 2D fast wavelet transform, parallel program-

ming, multicore processor, CUDA, NVIDIA Tesla.

1. Introduction

Nowadays, multicore architectures are omnipresent and
can be found in all market segments. In particular, they
constitute the CPU of many embedded systems (for example,
video game consoles, network processors or GPUs), personal
computers (for example, the latest developments from Intel
and AMD), servers (the IBM Power6 or Sun UltraSPARC T2
among others) and even supercomputers (for example, the
CPU chips used as building blocks in the IBM Blue-Gene/L
and Blue-Gene/P systems). This market trend towards CMP
(or chip-multiprocessor) architectures has given rise to plat-
forms with a great potential for scientific computing such as
the GPGPUs [25] whose best representative is the NVIDIA
Tesla GPGPU series [20].
CUDA [21] is a new hardware and software architecture

for issuing and managing computations on the GPU, without
the need of mapping them to a graphics API [12], common
to the latest NVIDIA developments. Each CUDA-enabled
device behaves as a massively-threaded computing device

with a significant amount of on-board memory. Thus, it
is composed of a variable number of thread processors
and a thread execution manager that handles threading
automatically. Both the number of thread processors and the
amount of on-board memory depend on the specific GPU
model. Data set is divided into smaller chunks stored in
the on-board memory in order to feed the thread processors.
Thereafter threads are intended to run in lockstep in a SIMD
fashion acting as a data-parallel computing device. In this
sense, CUDA programmers don’t have to write explicitly
threaded code. Instead, the design of a correct data layout
becomes the crucial task to obtain good performance and
requires writing some explicit code.
In the last few years, a very attractive area of research

involves the proposal and evaluation of different transform
functions that may overcome the limitations that the discrete
cosine transform (DCT) used by MPEG-2 presents for some
particular types of video. Wavelet techniques have recently
generated much interest in applied areas and the wavelet
transform has been mainly applied to images. Several coders
have been developed using the 2D wavelet transform [1]
[16] [28]. The latest image compression standard, JPEG-
2000 [18] [27], is also based on the 2D wavelet transform
with a dyadic mother wavelet transform. The 3D wavelet
transform has been also applied for compressing video.
Since one of the three spatial dimensions can be considered
similar to time, Chen and Pearlman developed a three-
dimensional subband coding to code video sequences [7],
later improved with an embedded wavelet video coder using
3D set partitioning in hierarchical trees (SPHIT) [15]. Today,
the standard MPEG-4 [2] [3] supports an ad-hoc tool for
encoding textures and still images, based on a wavelet
algorithm. In a previous work [5], we have presented the
implementation of a lossy encoder for medical video based
on the 3D fast wavelet transform. This encoder achieves
both high compression ratios and excellent quality, so that
medical doctors cannot find longer differences between
the original and the reconstructed video. Furthermore, the
execution time achieved by this encoder allows for real-time
video compression and transmission.
In the case of parallelizing the 2D fast wavelet transform,

automatic parallelization methods do not yield enough be-
nefits, while manual parallelization methods pose a consi-
derable burden in software development [4].

Parallel, Distributed and Network-based Processing

1066-6192/09 $25.00 © 2009 IEEE

DOI 10.1109/.39

111

Parallel, Distributed and Network-based Processing

1066-6192/09 $25.00 © 2009 IEEE

DOI 10.1109/PDP.2009.40

111

In this paper, we attempt to take advantage of the NVIDIA
Tesla C870 that complies with the CUDA model to improve
the execution time of the 2D fast wavelet transform. In
particular, we provide performance results from an initial
implementation which required a moderate development
effort while achieving a remarkable speedup in terms of
overall execution time.
The rest of this paper is organized as follows. Section 2

summarizes the background to wavelets. In Section 3 we
provide an introduction to CUDA and the main details of
our parallelization strategy for the 2D wavelet transform
using CUDA. Experimental results are analyzed in Section
4. Finally, Section 5 summarizes the work and concludes the
paper.

2. Background

In this section, we review the theory behind wavelets
along with the previous work for wavelets and GPU pro-
gramming.

2.1. The Wavelet Transform Foundations

The basic idea of the wavelet transform is to represent any
arbitrary function f as a weighted sum of functions, referred
to as wavelets. Each wavelet is obtained from a mother
wavelet function by conveniently scaling and translating it.
The result is equivalent to decomposing f into different
scale levels (or layers), where each level is then further
decomposed with a resolution adapted to that level.
One way to achieve such a decomposition writes f as

an integral over a and b of ψa,b with appropriate weighting
coefficients. However, it is preferred to write f as a discrete
superposition. If a discretization is started with a = am

0
and

b = nb0a
m
0
, with m,nεZ, and a0 > 1, b0 > 0 fixed. The

wavelet decomposition is then

f =
∑

cm,n(f)ψm,n (1)

with

ψm,n(t) = ψam

0
,nb0am

0 (t) = a
−

m

2

0
ψ(a−m

0
t− nb0) (2)

In a multiresolution analysis, there are two functions:
the mother wavelet ψ and its associated scaling function
φ. Therefore, the wavelet transform can be implemented
by quadrature mirror filters (QMF), G = g(n) and H =
h(n) nεZ, where h(n) = 1

2
< φ

(
x
2

)
, φ(x − n) >, and

g(n) = (−1)nh(1 − n) (<> denotes the space L2 of
all square integrable functions). H corresponds to a low-
pass filter, and G is a high-pass filter. The reconstruction
filters have impulse response h∗(n) = h(1 − n), and
g∗(n) = g(1 − n). For a more detailed analysis of the
relationship between wavelets and QMF see [17].

Table 1. Filter Coefficients for H ofW4.

Daubechie’s W4

h0 = 0.4829629131445341

h1 = 0.8365163037378079

h2 = 0.2241438680420134

h3 = −0.1294095225512604

The filters H and G correspond to one step in the wavelet
decomposition. Given a discrete signal, s, with a length of
2n, at each stage of the wavelet transformation the G and H
filters are applied to the signal, and the filter output down-
sampled by two, thus generating two bands, G and H. The
process is then repeated on the H band to generate the next
level of decomposition, and so on. It is important to note that
the wavelet decomposition of a set of discrete samples has
exactly the same number of samples as in the original, due
to the orthogonality of wavelets. This procedure is referred
to as the 1D Fast Wavelet Transform (1D-FWT). The inverse
wavelet transform can be obtained in a way very similar to
that for the forward transform by simply reversing the above
procedure following. But the order of the g’s and h’s has to
be reversed.
It is not difficult to generalize the one-dimensional wavelet

transform to the multi-dimensional case [17]. The 2D case,
introduces, like in the one-dimensional case, a scaling func-
tion φ(x, y) such that:

φ(x, y) = φ(x)φ(y) (3)

where φ(x) is a one-dimensional scaling function. The
wavelet representation of an image, f(x, y), can be obtained
with a pyramid algorithm. It can be achieved by first
applying the 1D-FWT to each row of the image and then
to each column, that is, the G and H filters are applied to
the image in both the horizontal and vertical directions. The
process is repeated several times, as in the one-dimensional
case. This procedure is referred to as the 2D Fast Wavelet
Transform (2D-FWT).
Firstly, we consider Daubechie’s W4 wavelet mother [8]

as a baseline function. We have chosen this function because
some previous work have proved its effectiveness [6]. The
mother wavelet basis forW4 is shown in Table 1, from which
the taps filters for G and the reconstruction filters can be
derived.
In a traditional implementation based on wavelets, the 1D-

FWT is applied to a row of an image, the pixels belonging to
this row are only needed. Let us suppose that theW4 mother
wavelet (with four taps filters) is applied to images that have
n by n pixels. Applying the 1D-FWT to a n-bits row, creates
n/2 low-pixels and n/2 high-pixels. In order to compute the
first-low-pixel and the first-high-pixel, the first, second, third
and fourth original pixels are needed. The second-low-pixel
and second-high-pixel depend on the third, fourth, fifth and

112112

Figure 1. A traditional implementation withW4.

sixth original pixels, and so on. Finally, in the last stage,
the (n/2)th-low-pixel and (n/2)th-high-pixel depend on the
(n-1)th, nth, first and second original pixel, so that when the
last original pixel is reached, the process comes back to the
beginning, as shown in Figure 1.

2.2. Previous Work

In the last few years the rapid development of the graphics
processor, coupled with recent improvements in its pro-
grammability, have implied and explosion in interest on
general purpose computation on graphics processing units
(GPGPU). The wide deployment of GPUs in the last few
years has resulted in a widely range of applications imple-
mented on a graphics processor such as physics simulations
[13] [26], signal and image processing [30] [32], computer
vision [35], global illumination [33], geometric computing
[10] or databases and data mining [11].
In the scope of the mathematical transforms several

projects have developed GPU implementations of the Fast
Fourier Transform (FFT). The FFT has been implemented
in GPUs [19] [29]. Based on these works, Sumanaweera
and Liu [30] presented an implementation of the 2D-FFT
in a GPU performing image reconstruction in magnetic
resonance imaging (MRI) and ultrasound imaging. On the
same way that the 2D-FWT, the 2D-FFT could be obtained
processing 1D-FFT across all columns of an image and then
doing another 1D-FFT across all rows. Their implemen-
tation automatically balances the load between the vertex
processor, the rasterizer, and the fragment processor; it also
used other improvements for providing better performance
(close to a factor of two) on the NVIDIA Quadro NV4x
family of GPUs compared to the CPUs in medical image
reconstruction at a cheaper cost. Recently, the 1D-FFT, 2D-
FFT and 3D-FFT have been included in CUDA libraries
[23]. For 2D and 3D transforms, CUFFT (is the CUDA FFT
library) performs transforms in row-major order (C-order).
In the context of the wavelet transform, there have been

several implementations of the 2D-FWT on a GPU. In
[34], it is presented a SIMD algorithm that performs the
2D-DWT completely on the GPU NVIDIA 7800 GTX.
This implementation adopted Cg and OpenGL for shader
development. Evaluation showed speedups between 2.68 and
7.36 in the execution time over a version executed on an
AMD Athlon 64X2 dual-core 3800+ at 2.01 GHz. These
speedups are apparent for encoding high-resolution images

from 1024×1024 pixels when CPU-GPU data transfer times
are ignored. On the same way, Tenllado et al. [31] explored
the implementation of the 2D-DWT on modern GPUs as
NVIDIA FX5950 Ultra and NVIDIA 7800 GTX. Their im-
plementations were coded using Cg and OpenGL. Ignoring
CPU-GPU data transfer times, the GPU implementations
obtained better performance than a highly tuned CPU imple-
mentation on an Intel Prescott processor at 3.4 GHz. Results
showed speedup factors between 1.2 and 3.4.
Finally, 3D wavelet reconstruction has also been im-

plemented on a GPU. Garcia and Shen [9] described a
GPU-based algorithm using fragment programs which uses
tile-boards as a primary layout to organize 3D wavelet
coefficients. They used Cg and OpenGL to evaluate the
reconstruction formulae. Results obtained speedups of up
to 6.76 on an NVIDIA Quadro FX 3400 over an Intel Xeon
processor at 3.0 GHz.

3. Compute Unified Device Architecture

All the latest NVIDIA developments such as GeForce
8 series, Quadro FX 5600/4600 and Tesla solutions are
compliant with the Compute Unified Device Architecture
(CUDA). Nevertheless, the NVIDIA Tesla boards, namely
C870, D870 and S870, are the only ones that have been
specifically designed for general-purpose computing given
the fact that they have no graphics output. In particular,
the NVIDIA Tesla C870 is a homogeneous CMP, with 128
cores and 1.5 GB of on-board memory, attached to the main
CPU through a PCIe x16 interface. Under this configuration,
the NVIDIA Tesla features a theoretical peak performance
of 518 Gflops (single precision), a peak on-board memory
bandwidth of 76.8 GB/s and a peak main memory bandwidth
of 4 GB/s. In turn, the NVIDIA Tesla D870 and S870
computing solutions comprise two and four C870 units
in a desktop and a 1U rack-mount chassis, respectively.
Therefore, they come with 256 and 512 cores, and 3 GB
and 6 GB of on-board memory, to provide a theoretical
peak performance of 1036.8 Gflops and 2073.6 Gflops,
respectively.

3.1. Hardware Architecture

Each CUDA-compliant device is a set of multiprocessor
cores (see Figure 2(a)), capable of executing a very high
number of threads concurrently, that operates as a copro-
cessor to the main CPU or host. In turn, each multiprocessor
has a SIMD architecture, that is, each processor of the
multiprocessor executes a different thread but all the threads
run the same instruction, operating on different data based
on its threadId, at any given clock cycle. The NVIDIA
Tesla C870 has sixteen multiprocessors with eight processors
each.

113113

Both the host and the device maintain their own DRAM,
referred to as host memory and device memory (on-board
memory). Device memory can be of three different types
(see Figure 2(b)): global memory, constant memory and
texture memory. They all can be read from or written to by
the host and are persistent through the life of the application.
Nevertheless, global, constant and texture memory spaces
are optimized for different memory usages.
Multiprocessors have on-chip memory that can be of the

four following types: registers, shared memory, constant
cache and texture cache (see Figures 2(a) and 2(b)). Each
processor in a multiprocessor has one set of local 32-bit
read-write registers per processor. A parallel data cache of
shared memory is shared by all the processors. A read-only
constant cache is shared by all the processors and speeds up
reads from the constant memory. A read-only texture cache
is shared by all the processors and speeds up reads from the
texture memory. The local and global memory spaces are
implemented as read-write regions of device memory and
are not cached. The NVIDIA Tesla C870 has 8192 registers
and 16 KB of shared memory per multiprocessor.

3.2. Software Architecture

A portion of a parallel application that is executed many
times, but independently on different data, can be isolated
into a function that is executed on the device by many
threads running on different processors of the multiproces-
sors. Such a function, called a kernel, is compiled to the
instruction set of the device and downloaded into it.
A kernel is organized as a set of thread blocks as

shown in Figure 2(c). A thread block is a batch of threads
that can cooperate together by efficiently sharing data
through the shared memory and synchronizing their exe-
cution to coordinate memory accesses using the primitive
__syncthreads(). Each thread block executes on one
multiprocessor. Each thread has its own thread ID, which
is the number of the thread within a one-, two- or three-
dimensional array of arbitrary size. The use of multidimen-
sional identifiers helps to simplify memory addressing when
processing multidimensional data.
The number of blocks in a thread block is limited (512

in the NVIDIA Tesla C870). Therefore, blocks of equal
dimension and size that execute the same kernel can be
batched together into a grid of thread blocks. This comes at
the expense of reduced thread cooperation, because threads
in different thread blocks from the same grid cannot com-
municate and synchronize with each other. In contrast, this
model allows thread blocks of the same kernel grid to run
on any multiprocessor, even from different devices, at any
time. Again, each block is identified by its block ID, which
is the number of the block within a one- or two-dimensional
array of arbitrary size for the same reasons as above. It is
worth noting that kernel threads are extremely lightweight,

i.e. creation overhead is negligible and context switching is
essentially free.
In this scenario, a thread can access device memory

through the following memory spaces: read-write per-thread
registers, read-write per-thread local memory, read-write per-
block shared memory, read-write per-grid global memory,
read-only per-grid constant memory and read-only per-grid
texture memory. Note that the global, constant, and texture
memory spaces are persistent across kernel launches.

3.3. Programming

CUDA tries to simplify the programming model by hiding
thread handling from programmers, i.e. there is no need
to write explicit threaded code in the conventional sense.
Instead, CUDA includes C/C++ software-development tools
that allow programmers to combine host code with device
code [12]. To do so, CUDA programming requires a single
program written in C/C++ with some extensions [21]:
• Function type qualifiers to specify whether a func-
tion executes on the host or on the device and
whether it is callable from the host or from the device
(__device__, __global__ and __host__).

• Variable type qualifiers for variables that reside on
device memory (__device__, __shared__ and
__constant__).

• Four built-in variables that specify the grid and
block dimensions, the block index within the grid
and thread index within the block (gridDim,
blockDim, blockIdx and threadIdx), accessible
in __global__ and __device__ functions.

• An execution configuration construct to specify the di-
mension of the grid and blocks when launching kernels,
declared with the __global__ directive, from host
code (for example, function«gridDim, blockDim,
shm_size»(parameter_list)).

Each source file containing these extensions must be com-
piled with the CUDA nvcc compiler [12].
Besides, CUDA comes with a runtime library, split into

a host component, a device component and a common
component, that supports built-in vector data types and
texture types, and provides a number of mathematical func-
tions, type conversion and casting functions, thread syn-
chronization functions, and device and memory management
functions. Finally the CUDA environment also includes two
higher-level mathematical libraries, namely CUBLAS [22]
and CUFFT [23].
Kernel launches using the above mentioned execution

configuration construct are asynchronous, that is, control re-
turns to host immediately. Then, the main CPU is free to do
whatever is required until cudaThreadSynchronize()
is invoked so that the host blocks until all previous CUDA
calls complete. In this way, memory allocation and move-
ment of data between host memory and device memory

114114

(a) CUDA Hardware Model. (b) CUDA Memory Model.

(c) CUDA Programming Model. (d) NVIDIA Tesla C870.

Figure 2. CUDA Architecture.

is left to programmers. They must allocate the required
buffers in either host or device memory, and also copy
data back and forth between host memory and device
memory, using the functions provided by the runtime library
(cudaMalloc(), cudaMallocHost(), cudaFree()
and cudaMemcpy()).

3.4. Parallelization Strategy for 2D-FWT

Firstly, we briefly describe the process to obtain the
standard decomposition of an image using the 2D-FWT.
Each image is processed as follows:

• A .pgm file is read into a page-locked main memory
buffer.

• The main memory buffer is copied to a global memory
buffer.

• The 1D-FWT is applied to each row of the image.
• The image matrix is transposed in order to be able to
apply the 1D-FWT again but on each column.

• The image matrix is transposed again to recover the
initial data layout.

• Finally, the resulting image is copied back from
the global memory buffer to the page-locked main
memory buffer.

115115

Table 2. Main configuration parameters.

Hardware
Processor Intel Core 2 Quad Q6700 (2.66 GHz)

L1 caches (I + D) 64KB + 64KB
L2 data cache 2×4MB
Main Memory 4 GB
GPU Architecture NVDIA Tesla C870

Software
OS OpenSUSE 10.2
icc v10.0
gcc v4.1.2
CUDA v1.1

In this scenario, two different kernels were identified: 1D-
FWT and matrix transposition. Secondly, the parallelization
strategy with CUDA for both kernels is explained given
an image of dimension m rows x n columns. To pa-
rallelize the computation of the 1D-FWT for every row of
the image, we empirically determined the optimal configu-
ration, using the CUDA occupancy calculator and following
a simple set of heuristics [24]. Each thread requires 13
registers and 128-thread blocks need 1032 Bytes of shared
memory ((256 + 2) image elements x 4 Bytes per image
element). Thus, four active thread blocks per multiprocessor
require around 6.6 K registers and 4 KB of shared memory,
which does not exceed the maximum allowed values for
the NVIDIA Tesla C870. Such a configuration consists
of a different thread to compute every pair of G and H
values. In this way, we define one-dimensional thread blocks
of 128 threads and two-dimensional grids of (m rows x
n/256 columns) thread blocks. To parallelize the matrix
transposition we have used the matrix transpose example
from the CUDA development kit.

4. Performance Evaluation

In this section we present the evaluation results obtained
for the parallel 2D-FWT described in Section 3.

4.1. Evaluation environment

All the tests have been executed on a Intel Core 2
Quad processor. Additionally, we have also employed the
NVIDIA Tesla C870 for the CUDA version of the 2D-FWT
described in Section 3. Consequently, Table 2 summarizes
the main hardware and software parameters of our evaluation
environment and their corresponding values.
We compare the proposed CUDA version of the 2D-FWT

(compiled with the -O3 flag) with a sequential implementa-
tion compiled with both the gcc and the icc compilers. For
the gcc compiler we consider both the performance of the
binary generated without any compiler flags, and with the
-O3 flag activated. For the icc compiler we also consider
the latter two cases, although for the second case we also
activate the following flags (besides -O3):

(a) Execution times using gcc, icc and CUDA.

(b) Execution time breakdown on Tesla C870.

Figure 3. 2D-FWT execution times using gcc, icc and
CUDA for different images sizes.

• -parallel: Detects simply structured loops capable
of being executed safely in parallel and automatically
generates multi-threaded code for these loops.

• -par-threshold0: Used in conjunction with
-parallel, this flag sets a threshold for the auto-
parallelization of loops based on the probability of
profitable execution of the loop in parallel. In our
case, we use the value 0 for the threshold which
commands the compiler to parallelize loops regardless
of computation work volume.

• -xT: Generates specialized code and enables vector-
ization.

More details regarding these compilation flags can be
found in [14]. Additionally, our CUDA version of the 2D-
FWT has been compared with a parallel implementation of
the algorithm that has been developed using OpenMP. This
implementation required a moderate programming effort and
takes advantage of all the four cores of the host platform.

116116

4.2. Results

Execution times (in milliseconds) that have been ob-
tained for the configurations previously described are plotted
in Figure 3. Results are shown for three image sizes:
2048×2048, 4096×4096, and 8192×8192. In Figure 3(a)
we show the execution times reached for the sequential
algorithm of the 2D-FWT when the gcc and icc compilers
are used without any flags (GCC (Host) and ICC (Host)
bars), and when the optimization flags already commented
are used (GCCopt (Host) and ICCopt (Host) bars). Addi-
tionally, the ICCOMP(Host) and CUDA (Host+Tesla) bars
plot the execution times reached for the OpenMP and CUDA
versions of the 2D-FWT proposed in this paper, respectively.
A breakdown of the CUDA (Host+Tesla) bars is shown
in Figure 3(b). In particular, we split each bar into five
components: time spent in the application of the 1D-FWT
(1D-FWT (Row) and 1D-FWT (Column)), time spent in the
transpositions (Transposition), and time taken in copying
data between main memory and the NVIDIA Tesla (Host-
GPU Transfers).
As it can be seen, the utilization of the compiler flags have

limited effect on final execution time, even when several
of them are aimed at parallelizing the loops found in the
sequential code (those employed in icc). Moreover, the
speedups reached for the GCCopt and ICCopt configurations
decrease as the image size grows. On the contrary, important
reductions in terms of execution time are obtained for the
CUDA version of the 2D-FWT even when we take into
account the time needed to copy data and results to and
from the NVIDIA Tesla. Compared to the best results
for the sequential code (ICCopt), the speedups achieved
with our CUDA implementation of the 2D-FWT range
from 10 (2048×2048 size) to 21.7 (8192×8192 size). In
turn, compared to the OpenMP implementation (ICCOMP),
the speedups range from 9.5 (2048×2048 size) to 20.8
(8192×8192 size). The improvement of the OpenMP im-
plementation over the automatic parallelization provided
by icc is minimal due to the memory access pattern.
In general, the time needed to copy data from the host’s
main memory to the NVIDIA Tesla’s global memory and
conversely, represents a large fraction of the total execution
time, and keeps almost constant as we change image size
(approximately 50% of the elapsed time). Thus, if we do not
include these copies to calculate the speedups, we would
get speedups ranging from 20 (2048×2048 size) to 40.64
(8192×8192 size).

5. Conclusions and Future Work

CUDA is a new hardware and software architecture for
issuing and managing computations on the GPU, without
the need of mapping them to a graphics API, common to
the latest NVIDIA developments. It promises to simplify

the development of applications that take full advantage of
current and future powerful GPUs.
In this paper we have presented and evaluated an ini-

tial implementation of the 2D fast wavelet transform for
CUDA-enabled devices. A brief introduction to the wavelet
transform and CUDA has been provided prior to explaining
our parallelization strategy. We have compared the proposed
CUDA version of the 2D-FWT with a sequential implemen-
tation compiled with both the gcc compiler and the icc
compiler, and with a parallel implementation of the algo-
rithm that has been developed using OpenMP. Performance
results, obtained on a Intel Core 2 Quad processor with
an NVIDIA Tesla C870, indicate that significant speedups
can be achieved with a moderate programming effort when
compared with automatic parallelization methods (up to
21.7), or an OpenMP parallel implementation that requires
a similar development effort (up to 20.8).
Future work involves a more in depth analysis of the

parallelization strategy in order to fully exploit all the com-
puting resources provided by these devices, along with an
exhaustive comparison with optimized OpenMP and Pthread
implementations of the algorithm.

Acknowledgements

The authors would like to thank the anonymous review-
ers for their detailed comments and valuable suggestions,
which have been helped to improve the quality of the
paper. This work has been jointly supported by Spanish
MEC under grant “TIN2006-15516-C04-03” and European
Comission FEDER funds under grant “Consolider Ingenio-
2010 CSD2006-00046”.

References

[1] M. Antonini and M. Barlaud. Image Coding Using
Wavelet Transform. IEEE Transactions on Image Processing,
1(2):205–220, April 1992.

[2] S. Battista, F. Casalino, and C. Lande. MPEG-4: A Mul-
timedia Standard for the Third Millenium, Part 1. IEEE
Multimedia, 6(4), October 1999.

[3] S. Battista, F. Casalino, and C. Lande. MPEG-4: A Mul-
timedia Standard for the Third Millenium, Part 2. IEEE
Multimedia, 7(1), January 2000.

[4] G. Bernabé, R. Fernández, J. M. García, M. E. Acacio, and
J. González. An Efficient Implementation of a 3D Wavelet
Transform Based Encoder on Hyper-Threading Technology.
Journal of Parallel Computing, 33(1):54–72, February 2007.

[5] G. Bernabé, J. M. García, and J. González. Reducing
3D Wavelet Transform Execution Time Using Blocking and
the Streaming SIMD Extensions. Journal of VLSI Signal
Processing, 41(2):209–223, 2005.

117117

[6] G. Bernabé, J. González, J. M. García, and J. Duato. A New
Lossy 3-D Wavelet Transform for High-Quality Compression
of Medical Video. In Proceedings of IEEE EMBS Interna-
tional Conference on Information Technology Applications in
Biomedicine, November 2000.

[7] Y. Chen and W. A. Pearlman. Three-Dimensional Subband
Coding of Video Using the Zero-Tree Method. Proc. of SPIE-
Visual Communications and Image Processing, pages 1302–
1310, March 1996.

[8] I. Daubechies. Ten Lectures on Wavelets. Society for
Industrial and Applied Mathematics, 1992.

[9] A. García and H. Shen. GPU-Based 3D Wavelet Reconstruc-
tion with Tileboarding. The Visual Computer, 21(8–10):755–
763, September 2005.

[10] N. K. Govindaraju, M. Henson, M. C. Lin, and D. Manocha.
Interactive Visibility Ordering of Geometric Primitives in
Complex Environments. Symposium on Interactive 3D
Graphics and Games, pages 49–56, April 2005.

[11] N. K. Govindaraju, B. LLoyd, W. Wang, M. Lin, and
D. Manocha. Fast Computation of Database Operations
Using Graphics Processors. ACM SIGMOD International
Conference on Management of Data, pages 215–226, 2004.

[12] T. R. Halffill. Parallel Processing with CUDA. MicroProces-
sor Report Online, January 2008.

[13] M. Harris. Fast Fluid Dynamics Simulation on the GPU. In
GPU Gems. Addisson Wesley, March 2004.

[14] Intel Corporation. Intel C++ Compiler Options (Document
Number: 307776-002US), 2007.

[15] Y. Kim and W. A. Pearlman. Stripe-Based SPIHT Lossy
Compression of Volumetric Medical Images for Low Memory
Usage and Uniform Reconstruction Quality. Proceedings of
International Conference on Acoustics, Speech and Signal
Processing, 2000.

[16] A. S. Lewis and G. Knowles. Image Compression Using
the 2-D Wavelet Transform. IEEE Transactions on Image
Processing, 1(2):244–256, April 1992.

[17] S. Mallat. A Theory for Multiresolution Signal Descompo-
sition: The Wavelet Representation. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 11(7):674–693,
July 1989.

[18] M. W. Marcellin, M. J. Gormish, A. Bilgin, and M. P.
Boliek. An Overview of JPEG-2000. In Proceedings of Data
Compression Conference, March 2000.

[19] K. Moreland and E. Angel. The FFT on a GPU. Graphics
Hardware, pages 112–119, July 2003.

[20] NVIDIA Corporation. NVIDIA Tesla Computing Solutions
for HPC.

[21] NVIDIA Corporation. NVIDIA Compute Unified Device Ar-
chitecture (CUDA) Programming Guide Version 1.1, Novem-
ber 2007.

[22] NVIDIA Corporation. NVIDIA CUDA CUBLAS Library
Version 1.0, June 2007.

[23] NVIDIA Corporation. NVIDIA CUDA CUFFT Library Ver-
sion 1.1, October 2007.

[24] NVIDIA Tutorial at PDP’08. CUDA: A New Architecture for
Computing on the GPU, February 2008.

[25] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris,
J. Krüger, A. E. Lefohn, and T. J. Purcell. A Survey of
General-Purpose Computation on Graphics Hardware. Com-
puter Graphics Forum, 26(1):80–113, 2007.

[26] P. Sander, N. Tartachuk, and J. L. Mitchell. Explicit Early-Z
Culling for Efficient Fluid Flow Simulation and Rendering.
Technical Report, ATI Research Journal, August 2004.

[27] D. Santa-Cruz and T. Ebrahimi. A Study of JPEG 2000 Still
Image Coding Versus Others Standards. In Proceedings of X
European Signal Processing Conference, September 2000.

[28] J. M. Shapiro. Embedded Image Coding Using Zerotrees
of Wavelets Coefficients. IEEE Transactions on Signal
Processing, 41(12):3445–3462, December 1993.

[29] J. Sptizer. Implementing a CPU-Efficient FFT. Nvidia Course
Presentation, SIGGRAPH, 2003.

[30] T. Sumanaweera and D. Liu. Medical Image Reconstruction
with the FFT. In GPU Gems. Addisson Wesley, March 2004.

[31] C. Tenllado, J. Setoain, M. Prieto, L. Pi nuel, and F. Tirado.
Parallel Implementation of the 2D Discrete Wavelet Trans-
form on Graphics Processing Units: Filter Bank versus Lift-
ing. IEEE Transactions on Parallel and Distributed Systems,
19(2):299–310, February 2008.

[32] I. Viola, A. Kanitsar, and M. E. Groller. Hardware-
Based Nonlinear Filtering and Segmentation Using High-
Level Shading Languages. IEEE Visualization, pages 309–
316, October 2003.

[33] D. Weiskopf, T. Schafhitzel, and T. Ertl. GPU-Base Bonlinear
Ray Tracing. Computer Graphics Forum, 23(3):625–633,
September 2004.

[34] T. T. Wong, C. S. Leung, P. A. Heng, and J. Wang. Discrete
Wavelet Transform on Consumer-Level Graphics Hardware.
IEEE Transactions on Multimedia, 9(3):668–673, April 2007.

[35] R. Yang and M. Pollefeys. A Versatile Stereo Implementation
on Commodity Graphics Hardware. Real Time Imaging,
11(1):7–18, February 2005.

118118

