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Abstract—Many scientific and high-performance computing applications consist of multiple processes running on different processors
that communicate frequently. Because of their synchronization needs, these applications can suffer severe performance penalties if
their processes are not all coscheduled to run together. Two common approaches to coscheduling jobs are batch scheduling, wherein
nodes are dedicated for the duration of the run, and gang scheduling, wherein time slicing is coordinated across processors. Both work
well when jobs are load-balanced and make use of the entire parallel machine. However, these conditions are rarely met and most
realistic workloads consequently suffer from both internal and external fragmentation, in which resources and processors are left idle
because jobs cannot be packed with perfect efficiency. This situation leads to reduced utilization and suboptimal performance. Flexible
CoScheduling (FCS) addresses this problem by monitoring each job’s computation granularity and communication pattern and
scheduling jobs based on their synchronization and load-balancing requirements. In particular, jobs that do not require stringent
synchronization are identified, and are not coscheduled; instead, these processes are used to reduce fragmentation. FCS has been
fully implemented on top of the STORM resource manager on a 256-processor Alpha cluster and compared to batch, gang, and implicit
coscheduling algorithms. This paper describes in detail the implementation of FCS and its performance evaluation with a variety of
workloads, including large-scale benchmarks, scientific applications, and dynamic workloads. The experimental results show that FCS
saturates at higher loads than other algorithms (up to 54 percent higher in some cases), and displays lower response times and
slowdown than the other algorithms in nearly all scenarios.

Index Terms—Cluster computing, load balancing, job scheduling, gang scheduling, parallel architectures, flexible coscheduling.
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1 INTRODUCTION

CLUSTERS of workstations are steadily growing larger and
more prevalent. Although cluster hardware is improv-

ing in terms of price and performance, cluster utilization
remains poor. Load imbalance is arguably one of the main
factors that limits resource utilization, in particular, in
large-scale clusters [5]. Load imbalance can have a marked
detrimental effect on many parallel programs. A large
subset of high-performance computing (HPC) software can
be modeled using the bulk-synchronous parallel (BSP)
model. In this model, a computation involves a number of
supersteps, each having several parallel computational
threads that synchronize at the end of the superstep [6],
[13], [23]. A load imbalance can harm the performance of
the whole parallel application because each thread of
computation requires a different amount of time to
complete, and the entire program must wait for the slowest
thread before it can synchronize. Since these computation/
synchronization cycles are potentially executed many times
throughout the lifetime of the program, the cumulative
effect on the application runtime and the system resource
utilization can be quite high [20].

Load imbalance has three main sources: application
imbalance, workload imbalance, and heterogeneity of
hardware resources. Application load imbalance occurs
when different parallel threads of computation take varying
times to complete the superstep. This can occur either as a
result of poor programming or, more typically, because of a
data set that creates uneven loads on the different threads.

Even when one is using well-balanced software, load
imbalances can occur. They occur, for instance, when the
compute nodes are not entirely dedicated to the parallel
computation because they are also being used for local user
or system-level programs, or because the resource manage-
ment system cannot allocate an even workload to all
processors. This uneven taxing of resources creates a
situation in which some parts of the parallel program run
slower than others, and a load imbalance occurs [20].

Load imbalance can also be generated by heterogeneous
architectures in which different nodes have different
computational capabilities, different memory hierarchy
properties, or even a different number of processors per
node. Two examples of such situations are grid computing
and HPC systems that accrue additional processing nodes
over a period of time, thus taking advantage of technolo-
gical improvements.

The traditional approach to tackling load imbalance is at
the application level: The programmer tries to balance the
resources by changing the structure of the parallel program.
This approach is usually time-consuming and yields
diminishing returns after an initial phase of code restruc-
turing and optimizations. In fact, there are some problems
that are inherently load-imbalanced. This approach is also
not economically feasible with legacy codes. For example,
the Accelerated Strategic Computing Initiative (ASC)
program [25] invested more than a billion dollars in recent
years in parallel software.
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An alternative approach is to attack load imbalance at the
runtime level. Rather than optimizing a single parallel job,we
can coschedule (time-slice on the same set of processors)
multiple parallel jobs and try to compensate for the load
imbalance within these jobs. This approach is also better
suited to handling complex workloads and/or heteroge-
neous architectures. Ideally, we would like to transform a set
of ill-behaved user applications into a single load-balanced,
system-level workload. This approach has the appealing
advantage that it does not require any changes to existing
parallel software, and it is therefore able to deal with existing
legacy codes. For example, coscheduling algorithms such as
Implicit CoScheduling (ICS) [3], Dynamic CoScheduling
(DCS) [21], or Coordinated CoScheduling (CC) [4] can
potentially alleviate load imbalance and increase resource
utilization.1 However, they are not always able to handle all
job types because they do not rely on global coordination. On
the other hand, global resource coordination and job
preemption can have a significant cost if they are implemen-
ted using only software mechanisms [12], [17].

In this paper, we show that it is possible to increase the
resource utilization in a cluster of workstations substan-
tially and to perform system-level load balancing effec-
tively. We introduce an innovative methodology called
Flexible CoScheduling (FCS), that can dynamically detect
and compensate for load imbalance. Dynamic detection of
load imbalances is performed by 1) monitoring the
communication behavior of applications, 2) defining me-
trics for their communication performance that attempt to
identify possible load imbalances, and 3) classifying
applications according to these metrics. On top of this, we
propose a coscheduling mechanism that uses this applica-
tion classification to execute scheduling decisions. The
scheduler strives to coschedule those processes that require
coscheduling, while scheduling other processes to increase
overall system utilization and throughput. This approach
does not alleviate the specific situation of an application
that suffers from load imbalances. Obviously, any given
application receives the best service when running by itself
on a dedicated set of nodes. However, the proposed
approach will prevent each job from wasting too many
system resources, and the overall system efficiency and
responsiveness will be improved, which, in turn, lowers the
single application’s waiting time.

We demonstrate this methodology with a streamlined
implementation on top of STORM (Scalable TOol for
Resource Management) [9]. The key innovation behind
STORM is a software architecture that enables resource
management to exploit low-level network features. As a
consequence of this design, STORM can enact scheduling
decisions, such as a global context switch or a heartbeat, in a
few hundreds of microseconds across thousands of nodes.
Thus, STORM avoids much of the nonscalable overhead
associated with software-only versions of gang scheduling.
An important innovation in FCS is the combination of a set
of local policies with the global coordination mechanisms
provided by STORM in order to coschedule processes that
have a high degree of coupling.

In preliminary work, we presented initial benchmark
results for FCS running on a cluster of Pentium-III machines
[8]. This paper extends that work with new experiments on
a larger experimental platform and with new metrics, and
using more realistic applications and workloads. Addition-
ally, FCS was further tuned and simplified and provides

better performance results. In the experimental section, we
provide an empirical evaluation, which ranges from simple
workloads that provide insights on several job scheduling
algorithms to experiments with real applications represen-
tative of the ASC workload.

2 FLEXIBLE COSCHEDULING

To address the problems described above, we propose a
novel scheduling mechanism called Flexible CoScheduling
(FCS). The main motivation behind FCS is the improvement
of overall system performance in the presence of load
imbalance, gained by using dynamic measurement of
applications’ communication patterns and classification of
applications into distinct types. Some applications strictly
adhere to the BSP model with balanced, fine-grained
communications. Others deviate from this model because
of little communication or inherent load imbalances. We can
therefore restate FCS’ goal as identifying the proper
synchronization needs of each application and process
and trying to optimize the entire system’s performance
while addressing these needs. FCS is implemented on top of
STORM [9], a tool that allows for both global synchroniza-
tion through scalable global context-switch messages (heart-
beats) and local scheduling by a dæmon run on every node
(based on its locally-collected information). User-level as
opposed to kernel-level scheduling incurs some additional
overhead, but eliminates the need to communicate frequent
scheduling information to the kernel [2].

2.1 Process Classification

FCS employs dynamic process classification and schedules
processes using this class information. Processes are
categorized into one of three classes (Fig. 1):

1. CS (coscheduling): These processes communicate
often, and must be coscheduled (gang-scheduled)
across the machine to run effectively, because of
their demanding synchronization requirements.

2. F (frustrated): These processes have enough syn-
chronization requirements to be coscheduled, but
because of load imbalance, they often cannot make
full use of their allotted CPU time. This load
imbalance can result from any of the reasons
detailed in the introduction.

3. DC (don’t-care): These processes rarely synchronize
and can be scheduled independently without pena-
lizing the system’s utilization or the job’s perfor-
mance. For example, a job using a coarse-grained
workpile model would be categorized as DC. We
include in DC also the processes of a fourth class, RE
(rate-equivalent). RE is characterized by jobs that
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1. These algorithms are distinguished by the location at which the
coordination is inferred: at sender side, receiver, or both, respectively.

Fig. 1. Decision tree for process classification.



have little synchronization, but require a similar
(balanced) amount of CPU time for all their
processes. Since detection of RE processes cannot
be made in runtime with local information only, they
are classified as DC instead, due to their low
synchronization needs.

Fig. 1 shows the decision tree for process classification.
Each process is evaluated at the end of its time slot.2 If a
process communicates at relatively coarse granularity, it is
either aDC orREprocess and classified asDC. Otherwise, the
process is classified according to how effectively it commu-
nicates when coscheduled. If effective, it is a CS process.
Otherwise, some load imbalance prevents the process from
communicating effectively, and it is consideredF. To estimate
the granularity and effectiveness of the communication of a
process, we modified the MPI library so that blocking
communication calls take timemeasurements and store them
in a shared-memory area, where the scheduling layer can
access them. Only synchronous (blocking) communication
calls are monitored since nonblocking communications do
not require tight synchronization and need not affect
scheduling. (Thus, a call to MPI_Isend() is nonblocking, but
MPI_Wait() is considered blocking.)

Processes of the same job will not always belong to the
same class. For example, load imbalance or system
heterogeneity can lead to situations in which one process
needs to wait more than another. To allow for these cases
and to avoid global exchange of information, processes are
categorized on an individual basis rather than per-job.

This classification differs in two important ways from a
similar one suggested by Lee et al. [14]. First, we
differentiate between the CS and F classes, so that even
processes that require gang scheduling do not tax the
system too much if heterogeneity prevents them from fully
exploiting coscheduling. Second, there is no separate class
for RE applications. RE applications are indistinguishable
(from the scheduler’s point of view) from DC processes, and
they are scheduled in the same manner. The classification
also differs from the one suggested by Wiseman [24], which
is based on CPU utilization and is done at the job rather
than the process level.

2.2 Scheduling

The scheduling principles in FCS are as follows:

. CS processes are always coscheduled and should not
be preempted.

. F processes need coscheduling but are preempted if
synchronization is ineffective.

. DC processes impose no restrictions on scheduling.

The infrastructure used to implement this scheduling
algorithm (STORM) is based on an implementation of
conventional gang scheduling [9]. A single systemwide
manager, the machine manager dæmon (MM), packs the
jobs into an Ousterhout matrix. It periodically sends
multicontext-switch messages to the node manager dæ-
mons (NM), instructing them to switch from one time slot to
another. A crucial characteristic is that the node managers
are not obligated to comply. They are free to make their

own scheduling decisions based on their local measure-

ments and classifications.
Algorithm 1 shows the behavior of the node manager

upon receipt of a multicontext-switch message. The basic

idea is to allow the local operating system the freedom to

schedule DC processes according to its usual criteria

(fairness, I/O considerations, etc.), as well as to use

DC processes to fill in the gaps that F processes create

because of their synchronization problems. An F process

that waits for pending communication does not block

immediately, but rather spins for some time to avoid

unnecessary context-switch penalties, as in ICS [3].

Algorithm 1: Context switch algorithm for FCS

// context_switch: switch from one process to another

process

// Invoked for each processor by a global

multicontext-switch procedure context_switch

(current_process, next_process)
begin

if current_process == next_process then return

if type of next_process is CS then

suspend whatever is running on this PE

run next_process for its entire time slot

use polling for synchronous communications

else

resume DC and F processes belonging to this PE
let local OS scheduler schedule all processes

use spin-blocking in synchronous communications

if next_process is of type F

prioritize it over all other processes.

end

end

This scheduling algorithm represents a new approach to

dynamic coscheduling methods, since it can benefit both

from scalable global scheduling decisions and local deci-

sions based on detailed process statistics. Furthermore, it

differs from previous dynamic coscheduling methods like

DCS [21] and ICS in that:

1. A CS process in FCS cannot be preempted before the
time slot expires even if a message arrives for
another process. (Processes classified as CS have
shown that it is not worthwhile to deschedule them
in their time slot because of their fine-grained
synchronization.) Blocking events therefore do not
cause yielding of the CPU.

2. The local scheduler’s decision in choosing among
processes in the DC time slots and F gaps is affected
by the communication characterization of processes,
which could lead to less-blocking processes and
higher utilization of resources. Another improve-
ment over the work presented in [8] is that
CS processes are no longer allowed to run in the F
slots. Empirical evaluation has shown that this
sharing typically results in worse overall perfor-
mance. This is probably because both competing
processes are essentially fine-grained and cannot
both run well at the same time, while on the other
hand, context-switch and cache-flushing issues
degrade their performance.
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2. In strict gang scheduling, each job is assigned a dedicated time slot
and can only be run in that slot. FCS also assigns a time slot to each job, but
local scheduling decisions can cause the job to run in other time slots as
well, possibly sharing them with other jobs. We call the original time slot to
which a process is mapped the “assigned time slot.”



2.3 FCS Parameters

There are three types of parameters used in FCS:

. Process characteristics measured by the MPI layer,
summarized in Table 1. (The “reset” mentioned in
the table is either a class change or a predetermined
age expiration.)

. Parameters measured or determined by the schedul-
ing layer, also detailed in Table 1.

. Algorithm and runtime constants, shown in Table 2.

Measurements are taken whenever a process is running.
For highly synchronized processes, we have verified that
processes typicallymakeprogressonly in their assignedslots,
so the measurements indeed reflect their behavior when
coscheduled. For other processes, the assigned slot does not
have a large effect onprogress, exceptpossibly forFprocesses
that get a higher priority in their slot. ForDC and F processes,
the assigned time slot is used mainly to track the age of a
process using the cslots and tslots counters.

Some of the considerations that led us to choose the
values in Table 2 follow:

. Tslice was chosen to be low enough to enable
interactive responsiveness and high enough to have
no noticeable overhead on the applications as
measured in [7].

. Tspin was chosen to be high enough to accommodate
twice the average communication operation (in our

setup, � 60 us [19]) and low enough so that
resources are not wasted unnecessarily.

. cslotsMIN should allow enough time for some
initializations to occur, but without overly delaying
proper classification.

. For CSthresh, it was found that proper classification
has the most effect for processes with a granularity
finer than � 5 ms on this architecture.

All constants, and the last two, in particular, were found
by careful tuning and testing on all our hardware and
software combinations to offer good average performance
across the board [7], [9].

2.4 Characterization Heuristic

Algorithm 2 shows how a process is reclassified. This
algorithm is invoked for every process that has just finished
running in its assigned time slot, so this happens at
deterministic, predictable times throughout the machine.
Thus, when the time to reset a process to class CS arrives, it
is guaranteed that all the processes of the same job will be
reset together. (Otherwise, they might not actually be
coscheduled.)

Algorithm 2: Classification function for FCS

// reevaluate, and possibly reclassify the process

// using FCS parameters and measurements procedure

FCS_reclassify

begin

old class ¼ class

if cslots < cslotsMIN

return // Not running long enough in current
class

if tslots mod tslotsMAX ¼¼ 0 OR

g < CSthresh

class ¼ CS // Reset or change class back to CS

else if g < DCthresh AND Tcpu < Fthresh

class ¼ F // Communication too slow

else class ¼ DC // Coarse granularity

if class! ¼ old class

cslots ¼ 0

end

The algorithm can be illustrated with the phase diagram
shown in Fig. 2. Recall that the granularity g is defined as
the average time per iteration, which is the sum of the
average computation and communication times. Therefore,
constant granularity is represented by diagonals from
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TABLE 1
FCS Parameters

TABLE 2
FCS Constants and Values Used in Experiments



upper left to lower right. CS processes occupy the corner
near the origin, whereas DC processes are those that are far
from this corner. F processes are those that should be in the
corner because of their low Tcpu, but suffer from a relatively
high Tcomm.

2.5 Implementation Framework

We have implemented FCS and several other scheduling
algorithms in STORM [9], a scalable, flexible resource
management system for clusters, implemented on top of
various Intel and Alpha-based architectures. STORM
exploits low-level collective communication mechanisms
to offer high-performance job launching and management.
As mentioned above, the basic software architecture is a set
of dæmons, one for the entire machine (machine manager,
or MM), and an additional one for each node (node
manager, or NM). This architecture allows the implementa-
tion of many scheduling algorithms by “plugging-in”
appropriate modules in the MM and NM. Thus, FCS was
added to STORM with two relatively simple enhancements:
an MPI hook to measure and export information on process
synchronous communication to the NM, and a module in
the NM that translates this information into classification,
and schedule processes based on their class. Note that the
MM was not modified relative to GS.

2.6 Implementation Issues

Measuring process statistics can be both intrusive and
imprecise if not performed carefully. It is important to take
measurements with as little overhead as possible, without
significantly affecting or modifying the code. To realize this
goal, we implemented a lightweight monitoring layer that is
integrated with MPI. Synchronous communication primi-
tives in MPI call one of four low-latency functions to note
when the process starts/ends a synchronous operation and
when it enters and exits blocking mode. Applications only
need to be relinked with the modified MPI library, without
any change. The accuracy of this monitoring layer has been
verified using synthetic applications for which the mea-
sured parameters are known in advance and found to be
precise within 0.1 percent.

The monitoring layer updates the MPI-level variables
shown in Table 1. These variables reside in shared memory
to allow the NM to read them without issuing a system call.
While this transfer is asynchronous and a lag could exist
between the actual communication event and the time the
NM gathers the information, these parameters converge
quickly to an accurate picture of the process characteristics.

To count communication events (Ccomm),we employed the
following guideline: multiple communication events with no
intervening computation are considered to be a single
communication event. This heuristic works very accurately

as long as the granularity of the process is greater than that of
the local operating system. Otherwise, the computation
intervals are too short to be registered by the operating
system. We found this value to typically be around twice the
Linux 1/HZ value (the timer interrupt frequency), which
defaults to� 1 msonour cluster.Todetect finergranularities,
we increased the HZ value to 4; 096.

3 SYNTHETIC SCENARIOS

In this section, we analyze the characteristics of FCS under
four basic synthetic benchmarks and compare it to three
scheduling algorithms: batch scheduling (first-come-first-
serve, or FCFS), gang scheduling (GS), and spin-block (SB).
SB is an instance of implicit coscheduling (ICS) [3] and has
been shown to perform on a par with other implicit
algorithms without global coordination as in gang schedul-
ing [1], [4]. With SB, processes that wait for a synchronous
communication poll for a given interval—and only if the
communication has not completed by this time they do
block (in contrast, gang-scheduled processes always busy-
wait). Thus, processes tend to self-synchronize across the
job, so relatively good coordination is achieved without the
need for a explicit coscheduling. In ICS, the spin time can be
adaptive [3], thus decreasing inefficiencies resulting from
spinning too long. In our implementation of SB we chose a
small constant time for spinning (120 �s), so that very little
time is wasted. Note that typical communication operations
with this hardware and software setup complete in far less
than this time (a few tens of �s), so if two communicating
processes are coscheduled, they are almost guaranteed to
complete the communication within this time interval.

We use two metrics to compare the performance of
different scheduling algorithms [6]:

. turnaround time—the total running time (in sec-
onds) of the entire workload; and

. average response time—the mean time it takes a job
to complete running from the time of submittal
(enqueuing), which is not necessarily the actual
execution time.

Turnaround time is considered a system-centric metric,
since it describes the reciprocal of the system’s throughput.
Response time, on the other hand, is more of interest to
users who would like to minimize the time they wait for
their individual jobs to complete. In practice, it is difficult to
discuss these metrics in isolation, since with real dynamic
workloads, various factors and feedback effects create
interactions between the metrics [6], [7]. However, the four
scenarios we describe in this section are simple enough to
allow a comprehensive understanding of the factors
involved. We believe that this set of synthetic tests covers
a wide spectrum of basic workload combinations.

For all four scenarios, we use a simple synthetic
application as the “building-block” of the workload. This
job is modeled after the BSP model [23], containing a simple
loop with some computation followed by a communication
phase in a nearest-neighbor, ring pattern. The computation
granularity (per iteration) in the basic case was chosen to be
1 ms, which is considered to be a relatively fine granularity
when compared to real scientific applications’ performance
in the given hardware environment [10]. When running in
isolation, the basic “building block” job takes approxi-
mately 60 s to complete.
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Fig. 2. Phase diagram of classification algorithm.



The hardware used for the experimental evaluation was
the “Wolverine” cluster at LANL. This cluster consists of
64 HP Alpha compute nodes and a dual-rail QsNet network
[19]. Each compute node contains four 833 MHz
EV6 processors, 8 GB of ECC RAM, two independent
32 MHz/64-bit PCI buses, two Quadrics QM-400 Elan3 NIC
[19] for the data network, and a 100 Mbit Ethernet network
adapter for the management network. All the nodes run
Red Hat Linux 7.3 with Quadrics kernel modifications and
user-level libraries. Our tests used a simple workload of up
to three jobs arriving concurrently using half the cluster,
128 processors on 32 nodes. This cluster architecture and
size combined with the very fine granularity, is a good
stress test for scheduling algorithms. This configuration is
not conducive for good performance with fine-grain
applications and/or global context switching because of
the machine’s high sensitivity to noise created by system
dæmons and our own scheduling system [20]. To mitigate
this problem, we used a context-switch interval of 100 ms,
which is high enough to reduce most of the overhead and
noise effects while still being responsive enough to be
considered interactive. Every experiment was repeated five
times, and the best result was taken for each algorithm.

3.1 Balanced Jobs

Many HPC applications are latency-bound in the sense that
they synchronize often with short messages. These syn-
chronous applications require that all their processes be
coscheduled to communicate effectively. If another applica-
tion or system dæmon interrupts their synchronization,
large skews can develop that significantly hamper their
performance [20].

In the first scenario, we emulate such situations by
running two identical, fine-grained jobs concurrently. Fig. 3
depicts the runtime per iteration, which is balanced and
equal for both jobs.3 Table 3 presents the results for running
this workload, giving the termination time in seconds for
each job and for the complete set. It also shows the total
turnaround and mean response times, all in seconds.

Since synchronous, balanced jobs require a dedicated
environment to run effectively, FCFS scheduling and GS
offer the best performance. SB scheduling shows noticeable
slowdown when compared to the others because of the lack
of global coordination. FCS exhibits performance compar-
able to that of GS since all processes are classified as CS and
are therefore gang-scheduled. Still, total turnaround time is
slightly higher than that of GS because of the added
overhead of process classification. When one is considering
response time, batch scheduling is the only algorithm that
has a significant advantage over the other algorithms, since
job 1 that runs in isolation terminates quickly and lowers
the average.

3.2 Load-Imbalanced Jobs

This scenario represents a simple load-imbalanced case
with two complementing jobs, as depicted in Fig. 4. Every
alternating node (four processes) in the first job computes
twice as much per iteration as the other node, while the
situation is reversed for job 2.4 The faster processes compute
for the same amount of time as in the previous scenario. In a
sense, this workload represents the exact opposite of the
previous one, in which jobs need a dedicated partition to
communicate effectively. In contrast, these unbalanced jobs
are guaranteed to waste compute resources when running
in isolation. Table 4 shows the performance of each
scheduling algorithm.

It can be seen from the data that both FCFS and GS take
almost twice as much time to run each job (compared to the
previous scenario), whereas the total amount of computa-
tion per job is only increased by 50 percent. SB does a much
better job at load-balancing, since the short polling interval
allows the algorithm to yield the CPU when processes are
not coscheduled, giving the other job a chance to complete
its communication and wasting little CPU time. FCS is also
successful in exploiting these computational holes. After a
brief interval, it classifies the first job’s processes in
alternating nodes as F; F; F ; F ;DC;DC;DC;DC; . . . , and
the second job’s as DC;DC;DC;DC; F; F ; F ; F ; . . . . The
resulting scheduling is effectively the same as SB’s, with the
exception that F processes are prioritized when their
assigned slot is the active one. The total turnaround time
is similar to SBs, and represents close to optimum resource
utilization: both jobs complete after running for �
159 percent of the time it took the previous scenario, which
corresponds to � 6 percent more than the total amount of
compute work.

The response-time metric again shows some preference
for batch scheduling, although FCS and SB are not far
behind, because of their lower turnaround time. GS exhibits
approximately the same turnaround time as FCFS, but since
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3. In this and the following figures, the compute and communicate
phases are shown per iteration. Scheduling determines which processes run
together and for how many iterations.

4. In reality, the speed ratio is slightly over 2:1, bringing the total runtime
of each job to 120 s. The gap is produced by the communication time, which
is unchanged, requiring additional computation to increase the runtime.

Fig. 3. One iteration of two “building-block” jobs.

TABLE 3
Completion Times for Balanced Jobs Workload (sec)

Fig. 4. Two load-imbalanced jobs.



all the processes terminate concurrently, the mean response
time is actually higher.

3.3 Complementing Jobs

The third scenario exposes the ability of various algorithms
to pack jobs efficiently in a more imbalanced workload. It
consists of two noncommunicating 60 s jobs and one
communicating 180 s job that are arranged so that alternat-
ing nodes run for different amounts of time, taking a total of
180 s per processor when aggregated over all processors.
(See Fig. 5.) An optimal scheduler should pack all these jobs
so that the total turnaround time does not exceed that of the
third job when run in isolation (assuming zero context-
switch overhead). Table 5 again shows the performance for
each algorithm.

Once more, FCFS and GS exhibit similar turnaround
time—the combined runtime of all the jobs run in isolation.
SB shows some ability to load-balance the jobs, reducing the
overall turnaround and response times, but since it lacks a
detailed knowledge of the processes’ requirements, it can
only go so far. Job 3 still shows a significant slowdown
(� 36 percent) when compared to FCFS. With FCS, the
situation is even better. The scheduler classifies all the
processes as DC, except for the faster processes of job 3,
which are classified as F. As such, they receive priority in
their time slot and, thus, the total run time of job 3 suffers a
slowdown of � 9 percent from the interference of the other
jobs, which pack neatly into the other time slices. This
approach not only reduces the turnaround of this workload
to � 9 percent of the optimal packing value (paying some
price to overhead), but also minimizes the mean response
time, which is competitive with that of FCFS. A reordering
of the jobs would not affect FCS’ metrics, while it would
worsen FCFS’ response times. Time-sharing algorithms are
not as sensitive to job order, which becomes an advantage
when the order is not known in advance.

3.4 Balanced and Imbalanced Job Combination

The last synthetic scenario is designed to expose the
interaction between synchronous balanced and imbalanced
jobs in a mixed workload. This situation might occur when
a machine is running more than one type of application or
with different data sets that have different load-balancing
properties. Even if the workload of a parallel machine is
composed of only balanced applications, this situation can
occur whenever job arrivals and sizes are dynamic. For
example, in a time-sharing system, different nodes might
run different numbers of jobs, thus creating a dynamic
imbalance.

We encapsulate some of this complexity in a set of three
jobs (Fig. 6). The first twoare complementary imbalanced and
identical to jobs 1 and 2 of the second scenario (Section 3.2).
The third job is the basic, load-balanced job used in the first
scenario (Section 3.1). Table 6 shows the run time results for
the four algorithms.

Once more, batch and gang scheduling demonstrate
similar performance. Shuffling the job order so that job 3 is
actually first would have improved the response time for
FCFS even further, to around 181 s.

Another weakness of SB scheduling is exposed in this
scenario. Since it gives an equal treatment to all processes,
fine-grained jobs suffer from the noise generated by other
jobs. This effect is clearly shown in the performance of job 3
under SB, which is much worse than that under FCS. Since
FCS identifies the special requirements of job 3, it classifies
it as CS. As such, it receives dedicated time slots that allow
it to communicate effectively, hindered only by context-
switch overhead. The overall result is a decrease in
turnaround time and mean response time when compared
to the other algorithms.
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TABLE 4
Completion Times for Load-Imbalanced Workload (sec)

Fig. 5. Complementing jobs.

TABLE 5
Completion Times for Complementing Jobs Workload (sec)

Fig. 6. Balanced and imbalanced job combination.



3.5 Summary

These basic benchmarks demonstrate the inherent strengths
and weaknesses of multiprogramming versus batch schedu-
lers and dynamic versus rigid schedulers. In all cases, FCS’
performancewas close to or better than that of the scheduling
algorithm most suited to each scenario, attesting to its
flexibility. The next section explores how these properties
are translated to two actual scientific applications.

4 APPLICATION TESTS

For a more realistic experimental evaluation, we compared
FCS to the other three scheduling algorithms when running
two real MPI applications. The results presented in this
section describe three scenarios based on different job mixes:
two fine-grain applications, two medium-grain applications,
and a combination of both. The applications used in this
section are SWEEP3D and SAGE, both running on 128 pro-
cessors.5 We used a multiprogramming level of 2 for these
experiments to reflect the fact that these real applications
have significant memory footprints, preventing the accom-
modation of many instances of these applications entirely in
physical memory. In addition, because of the applications’
large working set and the cluster’s susceptibility to noise
when using four processors per node [20], these experiments
were run with a time slice of 200 ms to amortize some of the
context-switching cost. Still, some overhead was noticeable
for all the scheduling algorithms—and, especially, with the
explicit algorithms (GS and FCS).

SWEEP3D: SWEEP3D [10] is a time-independent, Carte-
sian-grid, single-group, discrete ordinates, deterministic,
particle transport code taken from the ASC workload.
SWEEP3D represents the core of a widely used method of
solving the Boltzmann transport equation. Estimates are
that deterministic particle transport accounts for 50 percent
to 80 percent of the execution time of many realistic
simulations on current DOE systems. SWEEP3D is char-
acterized by very fine granularity (averaging � 1 ms in the
configuration tested) and a nearest-neighbor communica-
tion stencil. We used a realistic input file comprising
10,000 cells per processor and taking � 270MB of memory
per process. We increased the number of iterations from 12
to 600 so that a single run took � 111 s.6 The combination of
this data set and architecture represents a rather extreme
case of a load-balanced, fine-grained application, as
different configurations and architectures typically result
in coarser granularities [8], [9].

We ran a simple workload consisting of two identical
SWEEP3D jobs (similar to the first synthetic scenario of the

previous section). We present the results in the same format
(see Table 7).

All the multiprogramming algorithms are hindered by
the overhead associated with multitasking between highly
synchronous jobs with an active working set. Context-
switch overhead, interruptions to synchronous communica-
tion, cache flushing, and skew caused by noise (and
exacerbated by the fine granularity of SWEEP3D) causes a
per-job slowdown of � 2:25 percent and � 4:95 percent for
GS and FCS, respectively, compared to batch scheduling.
FCS suffers from relatively high reclassification overhead,
because of the high number of communication events. In
the case of GS and FCS, there is also the occasional
interruption by the NM, which is awakened to perform
the context switch. While SB has the potential for less
overhead, since the NM does not intervene with the
scheduling, the lack of explicit coscheduling is shown to
have a significant effect on SWEEP3D’s performance, with a
per-job slowdown of 11.93 percent compared to FCFS.

SAGE: SAGE (SAIC’s Adaptive Grid Eulerian hydro-
code) is a multidimensional (1D, 2D, and 3D), multi-
material, Eulerian hydrodynamics code with adaptive
mesh refinement (AMR) [11]. SAGE comes from the LANL
Crestone project, whose goal is the investigation of
continuous adaptive Eulerian techniques to Stockpile
Stewardship problems. SAGE has also been applied to a
variety of problems in many areas of science and engineer-
ing including water shock, stemming and containment,
early time front design, and hydrodynamics instability
problems.

SAGE is more load imbalanced than SWEEP3D, which
implies that SAGE does not always follow the classic
BSP model as the granularity varies across processes and
over time. The effective granularity is thus much coarser
than the computation granularity. While most processes
reach a synchronization point every 5 ms or less, because of
unequal partitioning of the input data, they are often
waiting for their peers for a few more ms, so the average
granularity over all processes is closer to 8 ms. Most such
“computational” fragments are not large enough to fill
effectively with another process, but are still large enough
to classify � 75 percent of the processes as class F . Once
more, we ran two concurrent copies of SAGE with the
“timing_h” input file, (using 335MB/process) and we
present the results in Table 8.

The different algorithms’ performance in this workload
shows less disparity than with SWEEP3D, indicating that
SAGE lends itself rather well to multiprogramming. When
one compares this workload to the previous one, the most
obvious difference is the relatively coarser granularity of
SAGE, which lowers the performance penalty for context
switching. Another mitigating factor is the occasional
success of the dynamic algorithms (SB and FCS) in
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TABLE 6
Completion Times for Mixed Workload (sec)

5. These two applications are representative of the ASC workload.
6. This does not change the application behavior, but merely serves to

increase its runtime artificially to more than a few seconds.

TABLE 7
Completion Times for SWEEP3D Workload (sec)



overlapping some computation and communication of
competing, load-imbalanced processes.

Combined Workload: In the last part of this section, we
analyze a workload composed of both SAGE and
SWEEP3D—somewhat similar to the workload of the fourth
synthetic scenario. This workload offers the opportunity to
see how the two different types of jobs interact when
scheduled together, which is relevant for many super-
computing centers. Both jobs ran for a similar amount of
time in isolation (after adjusting SWEEP3D), and were
launched together. The results are presented in Table 9.

Once more, this scenario demonstrates the adverse effect
of context-switch overhead on gang scheduling (compared
to batch scheduling), and the significant slowdown a fine-
grained application (SWEEP3D) can suffer from the lack of
coordination in SB. FCS fares somewhat better than both
and slightly better than batch scheduling since, on the one
hand, it can coschedule SWEEP3D explicitly, and on the
other, make use of the small amount of load-imbalance in
SAGE to fill the computational holes. As noted in the
synthetic experiments and on other hardware configura-
tions, when the load imbalance is higher or the context-
switch overhead is lower, FCS can significantly outperform
the other scheduling algorithms. A situation in which load
imbalances are constantly created and changed because of a
more realistic, dynamic workload is even more conducive
to improved utilization with FCS. This scenario is discussed
in the next section.

5 DYNAMIC WORKLOADS

The workloads evaluated so far were relatively simple and
static. Many if not most real HPC centers run more
complicated workloads, with different jobs of different
sizes and runtimes arriving dynamically. With these
machines, issues such as queue management, scheduling
algorithms and multiprogramming levels, interactions
between jobs, and specific hardware configuration have
significant implications. A detailed evaluation of these
aspects was reported in previous work [7]. In this section,
we reproduce the main results, namely, the effect of offered
load on an actual cluster running a relatively long, dynamic
workload under the four scheduling algorithms.

5.1 Workload and Methodology

We used a workload of 1,000 jobs, whose size, runtime, and
arrival times are modeled using an accurate workload
model [7], [15]. We use this workload as a mold for two sets
of experiments, with synthetic and real applications,
respectively. For each set, we created a series of workloads
with varying offered load by multiplying job-arrival times
by a constant.

The first set ran the same synthetic application as the
previous section, but with different job sizes and runtimes
as determined by the model, and with different granularity
and communication pattern, chosen randomly. The second
set consisted of multiple instances of SAGE and SWEEP3D
with input files chosen randomly from a set of scenarios
representing different physics problems. This choice meant
that we could not control the runtime of each job, only its
arrival time. Moreover, there was less variety in runtimes in
the second set. On the other hand, the applications were
real and produced representative calculations, making the
internal communication and computation patterns more
realistic than those of the first set. We ran both sets with
four algorithms, FCFS with backfilling, GS, SB, and FCS.
The first set, having no real memory constraints, was run
with a multiprogramming level (MPL) of 6, while the
second set was limited to an MPL of 2 to avoid physical
memory overflow, which would have required a memory-
aware scheduling algorithm [18].

To estimate the offered load for each workload, we first
measured the runtime of each job in isolation. The offered
load was then calculated as the ratio between the requested
resources (the sum of all jobs’ runtime multiplied by their
sizes) and the available resources (the number of processors
multiplied by the last arrival time). Accepted load could not
be measured precisely, but could be indirectly inferred from
the accumulation of jobs in the queue [8]. Additionally, we
stopped the experiments at each algorithm’s saturation
point, as witnessed by a relatively constant accepted load.

We used EASY backfilling [22] for queue management,
which was shown to be very effective in lowering the
average response time, especially for short jobs and batch
scheduling [16]. Since it is also beneficial for multiprogram-
ming schedulers, we used EASY for them as well, multi-
plying the requested runtime by the MPL to estimate run
and reservation times [7]. The first experiment set was
executed out on a different LANL cluster (Crescendo), using
32 Pentium-III processors (16 nodes), and the second set
was executed on 64 processors of Wolverine (16 nodes).

5.2 Results and Discussion

Figs. 7a and 7b show the average response time and
slowdown, respectively, for different offered loads and
scheduling algorithms for the first set. The near-linear
growth in response times with load is the result of our
method of varying load, by multiplying runtimes of jobs by
a load factor. Both metrics suggest that FCS performs
consistently better than the other algorithms, and FCFS
seems to perform consistently worse than the others. Also,
FCFS saturates at a load of � 78 percent, while FCS
supports a load of up to 88 percent in this set.

To understand the source of these differences, we looked
at the median response time and slowdown in Figs. 7c and
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TABLE 8
Completion Times for SAGE Workload (sec)

TABLE 9
Completion Times for SAGE/SWEEP3D Workload (sec)



7d, respectively. A low median response time suggests
good handling of short jobs since most jobs are compara-
tively short. On the other hand, a small median slowdown
indicates preferential handling of long jobs, since the
lowest-slowdown jobs are mostly long jobs that are less
affected by wait time than short jobs. FCFS shows a high
average slowdown and a small median slowdown. This
result indicates that while long jobs benefit from shorter
waiting times (driving the median slowdown lower), short
jobs suffer enough to raise the average response time and
slowdown significantly.

To verify these biases, we looked at the cumulative
distribution function (CDF) of response times for the shorter

500 jobs and longer 500 jobs separately, as defined by their
runtime in isolation (Fig. 8). The higher distribution of short
jobswith FCS attests to the scheduler’s ability to “push”more
jobs toward the shorter response times. Similarly, FCFS’
preferential treatment of long jobs is reflected in Fig. 8b.

Fig. 9 shows the response time and bounded slowdown
results for the second set, running SAGE and SWEEP3D.
The differences between the three time-sharing algorithms
is not as dramatic as in the first set, mostly because the
lower MPL allows less room to express the differences
between the algorithms. Still, FCS performs a little better
than the other algorithms, particularly in the higher loads.
FCS also saturates at an offered load higher than that of the

FRACHTENBERG ET AL.: ADAPTIVE PARALLEL JOB SCHEDULING WITH FLEXIBLE COSCHEDULING 1075

Fig. 7. Performance as a function of offered load—synthetic applications. (a) Mean response time. (b) Mean bounded slowdown. (c) Median

response time. (d) Median bounded slowdown.

Fig. 8. Cumulative distribution of response times at 74 percent load and FCS scheduling. (a) 500 shortest jobs. (b) 500 longest jobs.



other algorithms, while FCFS saturates at a very early point
compared to the other algorithms and previous set.

We believe the reason for FCS’ good performance is its
ability to adapt to various scenarios that occur during the
execution of the dynamic workload. In particular, FCS
always coschedules a job in its first few seconds of running
(unlike SB), and then classifies it according to its commu-
nication requirements (unlike GS). If a job is long and does
not synchronize frequently or effectively, FCS will allow
other jobs to compete with it for machine resources. Thus,
FCS shows a bias toward short jobs, allowing them to clear
the system early. Since short jobs dominate the first
workload, this bias actually reduces the overall system
load and allows long jobs to complete earlier than with GS
or SB. The opposite can be said of the FCFS scheme, which
shows a bias toward long jobs, since they do not have to
compete with other jobs.

6 CONCLUSIONS

An important problem with traditional parallel job-schedul-
ing algorithms is their specialization for specific types of
workloads, which results in poor performance when the
workload characteristics do not fit the model for which they
were designed. For example, batch and gang scheduling
perform poorly under dynamic or load-imbalanced work-
loads, whereas implicit coscheduling suffers from perfor-
mance penalties for fine-grained synchronous jobs. Most job
schedulers offer little adaptation to externally and internally
fragmented workloads. The result is reduced machine
utilization and response times.

We designed Flexible CoScheduling (FCS) to alleviate
these problems specifically by dynamically adjusting
scheduling to varying workload and application require-
ments. FCS was fully implemented on top of STORM and
tested on three cluster architectures using both synthetic
and real applications, static and dynamic workloads. The
results clearly show that FCS deals well with both internal
and external resource fragmentation, and is competitive
with batch scheduling, gang scheduling, and implicit
coscheduling. The performance advantages of FCS over
other algorithms in the more realistic, dynamic workloads is
rather significant: FCS saturates at an offered load approxi-
mately 16 percent higher than that of backfilling for
synthetic applications, and 54 percent higher for scientific
applications. The difference in saturation compared to gang
scheduling and implicit coscheduling is less dramatic, but
still favors FCS. In all the dynamic scenarios but one, FCS
performs equally well or better than the other algorithms in
terms of response time and bounded slowdown.
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