
STORM: Scalable Resource Management
for Large-Scale Parallel Computers

Eitan Frachtenberg, Member, IEEE, Fabrizio Petrini, Member, IEEE, Juan Fernández, and Scott Pakin

Abstract—Although clusters are a popular form of high-performance computing, they remain more difficult to manage than sequential

systems—or even symmetric multiprocessors. In this paper, we identify a small set of primitive mechanisms that are sufficiently

general to be used as building blocks to solve a variety of resource-management problems. We then present STORM, a resource-

management environment that embodies these mechanisms in a scalable, low-overhead, and efficient implementation. The key

innovation behind STORM is a modular software architecture that reduces all resource management functionality to a small number of

highly scalable mechanisms. These mechanisms simplify the integration of resource management with low-level network features. As

a result of this design, STORM can launch large, parallel applications an order of magnitude faster than the best time reported in the

literature and can gang-schedule a parallel application as fast as the node OS can schedule a sequential application. This paper

describes the mechanisms and algorithms behind STORM and presents a detailed performance model that shows that STORM’s

performance can scale to thousands of nodes.

Index Terms—Hardware/software interface, system architectures, integration, and modeling, network operating systems,

supercomputers.

Ç

1 INTRODUCTION

ALTHOUGH much attention is paid to the performance of
applications running on high-performance computer

systems, the performance of resource-management (RM)
software has largely been neglected. This neglect is not
unfounded for the following reasons:

1. Even the least efficient, least scalable RM tools
occupy a small fraction of total time on today’s
small-to-medium-sized clusters.

2. Today’s users are willing to tolerate noninteractive
execution of their jobs.

3. Application programmers are still able to move RM
functionality into their applications to make up for
whatever functionality is not provided by the RM
system or for whatever functionality is unusably slow.

With cluster sizes of tens of thousands of processors
coming online [34], resource management can no longer be
ignored. Even a small amount of wasted wall-clock time
translates into a significant amount of aggregate wasted CPU
time. Furthermore, nonscalable RM functions must be
amortized by calling them as infrequently as possible. This
degrades responsiveness and hinders the usage of interactive
jobs and noninteractive jobs being debugged. Clusters—even

the largest ones in existence—should ideally be as usable as a
desktop system, with split-second job-launch times and
timeshared job execution. We claim that clusters can
approach the usability of a desktop if functions such as job
launching and scheduling can be implemented in a manner
that is both fast and scalable to large numbers of nodes. As a
proof of concept of the potential for improving system
performance by optimizing RM software, we have developed
a system called STORM (Scalable TOol for Resource Manage-
ment). STORM implements RM primitives in an efficient
manner by delegating as much of the work as possible to
scalable network collective operations.

The rest of this paper is organized as follows: Sections 2
and 3 detail STORM’s architecture and implementation. We
analyze STORM’s performance in Section 4. Section 5
compares STORM to prior resource managers. Finally, we
draw some conclusions from this work in Section 6.

2 ARCHITECTURE

This section describes the architecture of STORM. The main
design goals for STORM were: 1) to provide RM mechan-
isms that are scalable, high-performance, and lightweight
and 2) to support the implementation of most current and
future job scheduling algorithms.

To fulfill the first goal, we use a set of loosely coupled
dæmons that communicate with extremely fast messages.
Dæmons are coordinated by multicasting strobes (a.k.a.
heartbeat) messages using a scalable multicast algorithm.
For the second goal, the dæmons are designed so that
modules for different scheduling algorithms can be
“plugged” into them. In this paper, we focus on one
successful algorithm, gang-scheduling (GS) [8].1 We did,
however, implement four other scheduling algorithms,

1572 IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 12, DECEMBER 2006

. E. Frachtenberg and S. Pakin are with the CCS-3 Modeling, Algorithms,
and Informatics Group, Computer and Computational Sciences (CCS)
Division, Los Alamos National Laboratory, MS B256, PO Box 1663, Los
Alamos, NM 87545. E-mail: etcs@cs.huji.ac.il, pakin@lanl.gov.

. F. Petrini is with the Applied Computer Science Group, Computational
Sciences and Mathematics Division, Pacific Northwest National Labora-
tory, MS K7-90, Richland, WA 99352. E-mail: fabrizio.petrini@pnl.gov.

. J. Fernández is with the Departamento Ingenierı́a y Tecnologia de
Computadores, Facultad de Informática, Universidad de Murcia, 30071
Espinardo, Murcia, Spain. E-mail: juanf@ditec.um.es.

Manuscript received 18 Mar. 2005; revised 1 Feb. 2006; accepted 15 May
2006; published online 20 Oct. 2006.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-0082-0305.

1. By gang-scheduling we refer to explicit coscheduling with global
synchronization.

0018-9340/06/$20.00 � 2006 IEEE Published by the IEEE Computer Society

which are detailed in various scheduling-specific studies
[9], [10]. GS allocates both space (processors) and time
resources to incoming jobs. All of the processes of a job are
coscheduled within their time slot for the duration of a
timeslice and are then context-switched to a different job in
a cyclic manner.

Relative to batch scheduling, GS allows jobs to start
immediately, but at the cost of longer execution times
caused by resource contention with other running jobs. To
amortize overhead, gang schedulers are usually run with
large scheduling quanta, on the order of seconds or even
minutes [13]. While large quanta increase throughput, they
also increase response time, which hinders interactive jobs.
Section 3 explains how STORM was architected to minimize
rather than amortize scheduling overhead.

2.1 Overview of STORM

Several issues were considered crucial for STORM and were
incorporated into its design:

. Flexibility. STORM supports various scheduling
algorithms, including first-come first-served (FCFS),
GS, Flexible-, Buffered-, and Implicit-Coscheduling
[1], [8], [10], [24], and backfilling.

. Usability. STORM is designed so that parallel
applications need not be changed to accommodate
the system and need only be relinked with a slightly
modified version of the Message-Passing Interface
(MPI) library.

. Portability. STORM runs entirely in user mode
and with no OS modifications. STORM was
successfully ported to three CPU architectures
(x86, Alpha, and Itanium) and two interconnects
(QsNet and generic MPI).

. Scalability. STORM is designed so that most of the
scheduler operations are decentralized and asyn-
chronous and the rest are implemented on top of
scalable collective operations.

. Performance. STORM can take full advantage of the
underlying network hardware and is designed to
provide significantly superior performance to any
existing parallel job scheduler.

2.2 Process Structure

For ease of initial implementation, the STORM scheduler
was written as a user-level scheduler that consists of a
number of communicating dæmons. The primary advan-
tage of user-level scheduling is that is is easier to implement
and modify, which facilitates experimentation. The primary
disadvantage is that the STORM scheduler is susceptible to
variability induced by the underlying OS scheduler. If the
scheduling dæmons do not each have a dedicated CPU,
then they must compete with applications for CPU access,

which increases scheduling time. While a longer-term
solution is to integrate the STORM scheduler with the
OS kernel scheduler, the experiments shown in this paper
represent the case in which each dæmon has its own CPU
(except where noted).

STORM comprises three types of dæmons (Table 1): the
Machine Manager (MM), the Node Manager (NM), and the
Program Launcher (PL). These dæmons do not require
dedicated CPUs because they run only briefly and only at
timeslice intervals. The MM is in charge of resource
allocation for jobs, including both space and time resources.
Whenever a new job arrives, the MM enqueues it and
attempts to allocate processors to it using a buddy-tree
algorithm [5], [6]. If the scheduling policy allows for
multiprogramming (as does GS), the processors are
allocated in any time slot that has enough resources
available. After a successful allocation, the MM broadcasts
a job-launch message to the relevant NMs, which launch the
job when its time slot arrives.

When launching a parallel application, the MM first
transfers the binary image of the program to each node’s
local file system (via each node’s NM) and then instructs the
PLs (again, via the NMs) to launch the application locally.
This procedure exploits an efficient broadcast mechanism
which can disseminate a file of several megabytes to all of
the nodes in a fraction of a second. (A more common but
poorer-performing alternative is to disseminate files via a
—less-scalable—shared filesystem such as NFS [30]. When a
process terminates, the appropriate PL notifies the NM,
which in turn notifies the MM. The MM then marks the
time/space resources occupied by that process as available
for allocation. Section 2.4 describes the termination algo-
rithm in more detail. Note that, even though the MM is
centralized, in reality it does not create a bottleneck because
all of its global operations utilize scalable hardware broad-
casts and all of its local operations—reading a new job,
allocating resources to it, and receiving process-termination
notifications—are both rare and lightweight.

2.3 Running a Job

Jobs are launched in STORM according to the following
procedure:

1. The MM reads the job information from the work-
load file and enqueues it.

2. After the designated job launch time, as soon as the
requested resources become available, the MM
multicasts the job information (possibly with the
binary image) to all of the NMs.

3. If the NM needs to fork processes, it locates the
appropriate PLs (according to the job’s PE/timeslot

FRACHTENBERG ET AL.: STORM: SCALABLE RESOURCE MANAGEMENT FOR LARGE-SCALE PARALLEL COMPUTERS 1573

TABLE 1
STORM Dæmons

allocation) and sends the job information to it using
shared memory.

4. The PLs execute the APs (Section 2.2).
5. When an AP terminates, its PL receives a notification

from the operating system.
6. The PLs notify the NM of the APs’ termination.
7. Finally, the NMs send a message to the MM, which

deallocates the processes’ resources.

For the job launching mechanism, which involves the
broadcast of binaries and data, we implemented a specia-
lized protocol. This protocol alleviates one of the major
bottlenecks in program launching: the interaction with the
I/O subsystem. The MM multicasts file chunks to the NMs
who write the files locally in a symmetric fashion. File
chunks are pipelined and flow-controlled so that a chunk
can be sent while the next chunk is read at the source and
the preceding chunk is written at the destination. The
performance of this file-distribution protocol is analyzed in
Section 4.2.1.

2.4 Algorithms

The key insight behind STORM’s architecture is that, by
reducing all RM functions to a small set of primitives, we
increase STORM’s portability and maintainability. We
therefore partitioned the code into a higher-level abstraction
layer that implements all of STORM’s RM functions and a
lower-level abstraction layer that maps network function-
ality into three basic primitives (Fig. 1). Our thesis is that if
these three primitives are implemented efficiently on a
network, then all of STORM’s RM functions will be efficient
as well. Furthermore, porting STORM to a new network
architecture requires only a suitable mapping of the three
STORM primitives to that architecture. In this section, we
describe first the lower-level abstraction layer and then the
higher-level abstraction layer.

2.4.1 Lower-Level Abstraction Layer

Collective communication is central to STORM’s lower-
level abstraction layer. Not only is resource management in
a cluster environment inherently collective, but collective
operations can be made efficient by taking advantage of
network support. There are only three primitives upon
which all of STORM is based—one for global data transfer,
one for local control, and one for global control:

. XFER-AND-SIGNAL. Transfer (PUT) a block of data
from local memory to the global memory of a subset
of nodes. Optionally signal a local and/or a remote
event upon completion.

. TEST-EVENT. Poll a local event to see if it has been
signaled. Optionally, block until it is.

. COMPARE-AND-WRITE. Compare (using � , < , ¼ ,
or 6¼) a local value to a global variable on a subset of

the nodes and report whether the condition holds
true everywhere. Also, optionally assign a new value
to a—possibly different—global variable.

The following are some important points about the STORM
primitives’ semantics:

1. Global data refers to data that lies at the same virtual
address on all nodes. Depending on the implemen-
tation, global data may reside in either main
memory or network-interface memory. Global cache
coherency is neither assumed nor required.

2. XFER-AND-SIGNAL and COMPARE-AND-WRITE are
both atomic operations. That is, XFER-AND-SIGNAL

either PUTs data to all nodes in the destination set or
—in case of a network error—no nodes (and an error
status is returned). The same condition holds for
COMPARE-AND-WRITE when it writes a value to a
global variable. Furthermore, if multiple nodes
simultaneously initiate COMPARE-AND-WRITEs
with identical parameters except for the value to
write, then, when all of the COMPARE-AND-WRITEs
have completed, all nodes will see the same value in
the global variable. In other words, XFER-AND-
SIGNAL and COMPARE-AND-WRITE are sequen-
tially consistent operations [19].

3. Although TEST-EVENT and COMPARE-AND-WRITE

are traditional, blocking operations, XFER-AND-
SIGNAL is nonblocking. The only way to check for
completion is to invoke TEST-EVENT on a local event
which XFER-AND-SIGNAL signals.

4. The semantics do not dictate whether the STORM
primitives are implemented by the host CPU or by a
network coprocessor. Nor do they require that TEST-
EVENT yield the CPU (although not yielding the
CPU may adversely affect system throughput [1]).

2.4.2 Higher-Level Abstraction Layer

The three STORM primitives described in Section 2.4.1 are
general enough to be used for a wide variety of RM
functions. Continuing our bottom-up exposition, we now
examine how to construct the following functions out of
those primitives: 1) issue a heartbeat (data transfer þ
notification) to all nodes; 2) transfer a large file to a set of
nodes; and 3) detect termination of an application running
on a set of nodes. STORM’s implementations of job
launching and its various process-scheduling algorithms
follow in a straightforward manner from heartbeats, file
transfers, and termination detection.

Both heartbeat issuance and termination detection require
a remote queuing mechanism by which a master node can
multicast data into a queue read by a set of slave nodes. To
ensure that no data is lost, STORM uses a global flow-control
algorithm (AWAIT-SPACE, Algorithm 1). Algorithm 1 is

1574 IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 12, DECEMBER 2006

Fig. 1. STORM implementation structure.

implemented with a simple application of COMPARE-AND-

WRITE. If a designated queue is full on any node (i.e., 9p 2 P
such that QðpÞ:enqueued�QðpÞ:length ¼ QðpÞ:dequeued), the

algorithm waits and checks again. If no node’s queue is full

(i.e., QðpÞ:enqueued�QðpÞ:length < QðpÞ:dequeued 8p 2 P),

the algorithm returns. Algorithms 2 and 3 show how

remote queuing is implemented in terms of the flow-control

algorithm and the STORM primitives. The master uses

AWAIT-SPACE to wait until none of the nodes has a full

queue. It then uses XFER-AND-SIGNAL to transfer the data

and signal the slaves. The slave threads merely block on the

data-transfer event and process the new data when the

event occurs. Note that, in Algorithms 1 and 2, Q.dequeued

represents global data, as defined in Section 2.4.1.

Algorithm 1 Implementation of STORM flow-control

mechanism

function AWAIT-SPACE

(P , . Set of processes to write to

Q) . Queue in which to check for space

while COMPARE-AND-WRITE

(P;Q:enqueued�Q:length; ‘‘ < }; Q:dequeued, NULL,

NULL) = TRUE do

{ 9p 2 P such that p’s queue is full. Wait and try again

later.}

SLEEP (exponential backoff)

Algorithm 2 Remote queuing (master side: enqueue)

function ENQUEUE

(P , . Set of processes to write to

Q, . Queue on which to push data

data, . Data to write to P ’s queuetail
remote_event, . Remote event to signal upon completion

local_event) . Local event to signal upon completion

AWAIT-SPACE (P , queue)

XFER-AND-SIGNAL (P , Q:queueQ:tail, data, kdatak,
remote_event, local_event)

Q:tail ðQ:tailþ 1Þ mod Q:length

Q:enqueued Q:enqueuedþ 1

Algorithm 3 Remote queuing (slave side: blocking

dequeue)

function DEQUEUE

(Q, . Queue from which to pop data

new_data_event) . Local event signaled whenever data is

enqueued

TEST-EVENT (new_data_event, TRUE)

current head Q:head

Q:head ðQ:headþ 1Þ mod Q:length

Q:dequeued Q:dequeuedþ 1

return Q:queuecurrent head

Heartbeat issuance. The STORM master process (the

MM) communicates to its slaves (the NMs) only at

regular heartbeat intervals. Using a heartbeat minimizes
nondeterminism in the cluster. STORM heartbeats have
both a data transfer and a notification component. Data
are first multicast to all nodes and then the nodes are
awakened and notified that new data exist. Because the
remote queuing shown in Algorithms 2 and 3 already
supports both data transfer and notification, the heartbeat
functions (Algorithms 4 and 5) are trivial applications of
remote queuing.

Algorithm 4 Heartbeat (master side: issue)

function ISSUE-HEARTBEAT ðP Þ . Setofprocessestowriteto

{Trivial use of Algorithm 2}

ENQUEUE (P , heartbeat_queue, heartbeat_data,

heartbeat_event, NULL) {No need to wait for completion.}

Algorithm 5 Heartbeat (slave side: receive)

function ISSUE-HEARTBEAT ()

heartbeat_data DEQUEUE (heartbeat_queue,

heartbeat_event)

if heartbeat_data.type = RECEIVE-FILE-INFO then

{We were given a filename and file size; prepare to
receive a file.}

else if heartbeat_data.type = LAUNCH-JOB then

{We were given the filename of an executable

program; launch it.}

else if heartbeat_data.type = SCHEDULE-PROCESS then

{We were given a (STORM) process ID; schedule the

corresponding process.}

else if {other RM commands, to be added later} then
..
.

Data transfer. STORM uses Algorithms 6 and 7 to

distribute executable files across a cluster. However, the

same mechanisms can be used to distribute data files as

well. To increase throughput, STORM uses a double-

buffering scheme on the master (i.e., send side). That is,

the master divides the file into fixed-sized chunks and

overlaps the multicasting of one chunk with the reading

from disk of the next chunk. The chunks are maintained in a

queue on each slave. Using a queue enables data transfer to

continue briefly even when a slave is temporarily un-

responsive (e.g., because of contention on the I/O bus from

the host). At the end of the transfer, the master uses

STORM’s COMPARE-AND-WRITE mechanism to ensure

that all of the slaves have finished writing the file. This

avoids a race condition with the master’s instructing the

slaves to launch the executable.

Algorithm 6 Data transfer (master side: send)

function TRANSFER-FILE

(P , . Set of processes to write to

file, . Handle to a file opened for reading

num_chunks, . Number of fixed-size chunks of data in file

chunk_event) . Remote event to signal after each chunk

FRACHTENBERG ET AL.: STORM: SCALABLE RESOURCE MANAGEMENT FOR LARGE-SCALE PARALLEL COMPUTERS 1575

Prerequisite: We have already opened the file for reading
and issued a heartbeat of type RECEIVE-FILE-INFO that

contains the filename and the size of the file in chunks.

{Perform a double-buffered transmission.}

buf_num 0

FILE-READ (file, chunkbuf num {Elan threads can read the

host’s filesystems directly via the I/O bypass protocol.}

for ½0; . . . ; num chunks� 2� do {Both bounds are
inclusive.}

ENQUEUE (P , chunk_queue, chunkbuf num, chunk_event,

enqueue_event) {Asynchronous}

buf num ðbuf numþ 1Þ mod 2

FILE-READ (file, chunkbuf num)

TEST-EVENT (enqueue_event, TRUE) {Wait for the

ENQUEUE to finish.}

{No need to FILE-READ on the final iteration.}
ENQUEUE (P , chunk_queue, chunknum chunks�1,

chunk_event, enqueue_event)

TEST-EVENT (enqueue_event, TRUE) {Wait for the final

ENQUEUE to finish.}

Algorithm 7 Data transfer (slave side: receive)

function RECEIVE-FILE

(P , . Set of processes to write to

file, . Handle to an file opened for writing

num_chunks, . Number of fixed-size chunks of data in file

chunk_event) . Local event announcing chunk reception

Prerequisite: We have already received a heartbeat of type

RECEIVE-FILE-INFO that contained the filename and the size
of the file in chunks and opened the file for writing.

{We repeatedly dequeue a chunk and write it to disk.}

for chunk num 2 ½0; . . . ; num chunks� 1� do

chunk_data DEQUEUE (chunk_queue, chunk_event)

FILE-WRITE (file, chunk_data)

Termination detection. The MM must detect when all of

the processes in an application have terminated so it can

reclaim the application’s resources. Algorithms 8 and 9

illustrate how STORM implements termination detection.

The procedure is identical, regardless of whether the

application terminated normally, crashed, or was killed.

The interesting aspect of STORM’s termination detection is

that the MM blocks until a designated NM detects that all of

the processes under its control have terminated and notifies

the MM. Only then does the MM begin polling for

termination of the application’s remaining processes. The

insight is that, in an SPMD programming model, all of an

application’s processes tend to terminate at approximately

the same time. Many MPI [31] implementations exacerbate

this effect by barrier-synchronizing as part of their

MPI_Finalize() routine. Blocking on the first node’s

termination ensures that no network traffic related to

termination detection will occur in the common case while

the application is running. Polling thereafter minimizes

network traffic during termination detection.

Algorithm 8 Termination detection (master side: wait)

function DETECT-TERMINATION

(P , . Set of nodes that are running jobs

Q, . Unprocessed termination announcements

terminated, . Global array of termination flags

term_event) . Local event signaled on new termination

{On heartbeat intervals, poll the job-termination queue. If
another job has begun to terminate, then add it to the set

of terminating jobs.}

if TEST-EVENT (term_event, FALSE) = TRUE then

job_info DEQUEUE (Q, term_event)

terminating_jobs terminating_jobs [{job_info.ID}

{Check each job that is in the process of terminating and

see if it has finished terminating on all nodes. If so, then
reset all of the terminated flags.}

for all j 2 terminating_jobs do

if COMPARE-AND-WRITE (P; terminatedj; “=”,

TRUE, terminatedj, FALSE) = TRUE then

{Job has finished on all nodes.}

terminating jobs terminating jobs� fjg

Algorithm 9 Termination detection (slave side: notify)

function ANNOUNCE-TERMINATION

(P , . Set of nodes that are running jobs

Q, . Unprocessed termination announcements

terminated, . Global array of termination flags

term_event) . Local event signaled on new terminations

{On heartbeat intervals, poll shared memory for

application process completion.}

if 6 9p such that proc terminatedp = TRUE then

num procs terminated num procs terminatedþ 1

if num_procs_terminated = APP-PROCS-PER-NODE

then

terminatedself:node ID TRUE

{Last NM notifies the MM when all of its
application processes have terminated.}

if self.node_ID = last_node_ID then

ENQUEUE (P , Q, self.job_ID, term_event, NULL)

{No need to wait for completion.}

2.4.3 Generality of Mechanisms

Although the algorithms presented in Section 2.4.2 have, to
date, been used by STORM to implement job launching and
process scheduling (local scheduling, batch scheduling with
and without backfilling, gang scheduling, and implicit
coscheduling), the mechanisms are sufficiently general as to
be used for the efficient implementation of a variety of RM
functions.

For example, fault tolerance is a rather different applica-
tion from process scheduling, but it relies on the same set of
mechanisms. A master process periodically multicasts a
heartbeat message and—using COMPARE-AND-WRITE—
queries the slaves for receipt. If COMPARE-AND-WRITE

returns FALSE, indicating that a slave missed a heartbeat,

1576 IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 12, DECEMBER 2006

the master can isolate the failed slave and commence
repairs. Another proposed use of the STORM mechanisms
is to implement a graphical interface for cluster monitoring.
As before, the master can multicast a request for status
information and gather the results from all of the slaves.
The point is that STORM’s mechanisms are general enough
for a variety of uses and fast enough to make their use
worthwhile.

3 IMPLEMENTATION

This section details a specific implementation of the STORM
primitives which were introduced in Section 2.4.1. Algo-
rithms 2-9 demonstrate that the STORM primitives are
sufficiently flexible to implement a variety of RM functions:
heartbeat issuance, data transfer, termination detection, and
—we believe—many others. Furthermore, porting STORM
to a new network architecture primarily requires that the
STORM primitives be retargeted for that architecture.

A prior publication [12] shows the expected performance
—based on the best performance reported in the literature
—of the STORM primitives on Gigabit Ethernet, Myrinet,
InfiniBand, QsNet, and BlueGene/L. The data indicate that,
with or without hardware support, the STORM primitives
represent an ideal abstract machine that, on the one hand,
can export the raw performance of the network and, on the
other hand, can provide a general-purpose basis for
designing simple and efficient resource managers.

We developed our initial implementation of STORM on
Quadrics’s QsNet network [25] because 1) we have
convenient access to a QsNet cluster and 2) QsNet is a
convenient platform for implementing the STORM primi-
tives. There is a smaller semantic gap between the STORM
and QsNet primitives than there is between the STORM
primitives and those offered by some of the other networks
to which we have ready access. In particular, QsNet has
hardware support for atomic transactions, PUT operations,
and local and remote events. Algorithms 10-12 present
pseudocode for the QsNet implementation of the STORM
mechanisms. XFER-AND-SIGNAL (Algorithm 10) follows
directly from QsNet’s multicast PUT operation and TEST-
EVENT (Algorithm 11) is a trivial application of QsNet’s
event-waiting primitive. Algorithm 12, COMPARE-AND-
WRITE, uses a QsNet network conditional for the compar-
ison operation and chains this in the same transaction to a
call to XFER-AND-SIGNAL.

Algorithm 10 QsNet implementation of the STORM data-
transfer primitive

function XFER-AND-SIGNAL

(P , . Set of processes to write to

global_addr, . Address in global address space to write to

local_addr, . Addressinsender’saddressspacetoreadfrom

size, . Number of bytes to transfer

remote_event, . Remote event to signal upon completion
local_event) . Local event to signal upon completion

{Note that XFER-AND-SIGNAL is asynchronous. Status is

returned by signaling a local event.}

try

{Multicast data using a trivial application of QsNet’s
DMA primitives. Important: The following PUT and

SIGNAL calls (if any) must be executed as a single,

atomic operation.}

PUT (global_addr, local_addr, size) 8p 2 P
if remote_event 6¼ NULL then

SIGNAL (remote_event, SUCCESS) 8p 2 P
if local_event 6¼ NULL then

SIGNAL (local_event, SUCCESS)
except

SIGNAL (local_event, FAILURE)

Algorithm 11 QsNet implementation of the STORM event-

synchronization primitive

function TEST-EVENT

(event, . Local event to wait for

blocking) . Block if TRUE; poll if FALSE

if blocking = TRUE then

{Blocking maps trivially to QsNet’s event-blocking

primitive.}

return BLOCK-ON-EVENT (event)
else

{Polling is implemented by directly examining the

hardware-set field of QsNet’s event data structure.}

if event.num_pending_signals � 1 then

return TRUE

else

return FALSE

Algorithm 12 QsNet implementation of the STORM global-

comparison primitive

function COMPARE-AND-WRITE

(P , . Set of processes to write to

global varR, . Variable to compare
relation, . One of f�; <;¼; 6¼g
valueR, . Value to compare to

global varW , . Variable to write if relation is TRUE

valueW) . Value to write to global varW

try

if global varW ¼ NULL then

{Multicast a QsNet network conditional.}
return ðglobal varRhrelationivalueR 8p 2 P)

else

{Multicast a QsNet network conditional with a

chained PUT transfer. This results in a single,

atomic, QsNet network operation.}

if global varRhrelationivalueR 8p 2 P then

XFER-AND-SIGNAL (P , global varW , value,

kintegerk, NULL, xfer_finished)
return TEST-EVENT (xfer_finished, TRUE)

else

return FALSE

except

return FAILURE

FRACHTENBERG ET AL.: STORM: SCALABLE RESOURCE MANAGEMENT FOR LARGE-SCALE PARALLEL COMPUTERS 1577

Algorithms 10-12 demonstrate that STORM’s primitives
are straightforward to implement. Even on networks with
no collectives support, XFER-AND-SIGNAL and COMPARE-
AND-WRITE can be implemented with scalable, logarith-
mic-time broadcast and reduction algorithms [12].

4 ANALYSIS

In this section, we analyze STORM’s performance. In
particular, we 1) measure the costs of launching jobs in
STORM and 2) test various aspects of the gang scheduler
(effect of the timeslice quantum, node scalability, and
multiprogramming level).

4.1 Experimental Framework

We evaluated STORM on a 256-processor Alpha cluster
with a QsNet network [25]. The cluster comprises 64 ES40
nodes, each having four 667 MHz Alpha EV67 processors,
8 GB of RAM, two QM-400 Elan 3 NICs on independent
66 MHz, 64-bit PCI buses, and running Red Hat Linux 7.1.
At the time of the evaluation, this cluster was rated as the
world’s 83rd fastest supercomputer [34]. The experiments
we review here relate to job-launching and multiprogram-
ming mechanisms.

4.2 Job Launching Time

We first study the overhead associated with launching jobs
with STORM and analyze STORM’s scalability with the size
of the binary and the number of PEs. We use the approach
taken by Brightwell and Fisk in their study of job launching
on Cplant [3], viz., we measure the time it takes to run a do-
nothing program of size 4 MB, 8 MB, or 12 MB that
terminates immediately.2

4.2.1 Launch Times in STORM

STORM logically divides the job-launching task into two
separate operations: the transferal reading + broadcasting +
writing + notifying the MM) of the binary image and the
actual execution, which includes sending a job-launch
command, forking the job, waiting for its termination, and
reporting back to the MM. To reduce nondeterminism, the
MM can issue commands and receive notification of events
only at the beginning of a timeslice. Therefore, both the
binary transfer and the actual execution take at least one
timeslice. In the following job-launching experiments, we
use a timeslice of 1 ms.

Fig. 2a shows the time needed to transfer and execute a
do-nothing application of sizes 4 MB, 8 MB, and 12 MB on
1-256 processors. Observe that the send times are propor-
tional to the binary size, but grow only slowly with the
number of nodes. This is explained by the highly scalable
algorithms and hardware broadcast that are used for the
send operation. On the other hand, the execution times are
independent of the binary size, but grow more rapidly with
the number of nodes. The reason for this growth is
performance skew, which is caused by OS overhead and
accumulated by the processes in the job [27]. In the largest
configuration tested, a 12 MB file can be launched on all
64 nodes within 110 ms, a remarkably low latency. In this

case, the average transfer time is 96 ms (a protocol
bandwidth of 125 MB/s per node with an aggregate
bandwidth of 7.87 GB/s on 63 nodes3) and an average
execution time of 14 ms. In Section 4.4, we analyze in depth
the launch-time scalability.

4.2.2 Launching on a Loaded System

To test how a heavily loaded system affects the launch
times of jobs, we created a pair of programs that artificially
load the system in a controlled manner. The first program
performs a tight spin-loop to introduce CPU contention.
The second program repeatedly issues point-to-point
messages between pairs of processes to introduce network
contention. Both programs are run on all 256 processors.
The following experiments are the same as those used in
Section 4.2.1, but with one of the load-inducing programs
simultaneously running on all nodes of the cluster.

Fig. 2b shows the results of launching the same three
binaries while the CPU-consuming program is running in
the background. In this case, STORM must make a
scheduling decision every timeslice and notify the MM
when the application terminates. (Note the different scale
on the y axis from that in Fig. 2a.) Observe that CPU load
exacts a large increase in both send time and execution time.
The launch and execution time is now a second in the
largest configuration and with a 12 MB binary. This increase
in time is due to the interference of the computation with
the I/O activities (reads and writes). Because the STORM
NM and PL dæmons plus the application plus the CPU-
consuming program utilize all four CPUs, there are no
CPUs remaining to service the NIC’s I/O-handling process.
The result is the sensitivity to CPU load depicted in Fig. 2b.

The second test is particularly relevant to STORM
because, as a previous networking study [23] shows, a
heavily loaded network can have an adverse effect on
collective-communication performance. In Fig. 2c, we can
see how running the network-loading program in the
background affects the launch time of the test binaries.
(Again, note the different y-axis scale.) The execution time
does increase to 160 ms in the worst case, caused mostly by
the increased delays in the collection of the termination info.
However, it increases less than in the previous experiment.
In contrast, the send operation is considerably slower than
on a CPU-loaded or unloaded system. This agrees with the
networking study as the the send operation is implemented
with a collective operation.

Fig. 2d summarizes the differences among the launch
times on loaded and unloaded systems. In this figure, the
send and execute times are shown under the three loading
scenarios (unloaded, CPU loaded, and network loaded), but
only for the 12 MB file. Even in the worst case, with a
network-loaded system, it still takes only 1 1/2 seconds to
launch a 12 MB file on 256 processors.

4.3 Gang Scheduling Performance

Although STORM supports a variety of process scheduling
algorithms—with more under development—we have
chosen to focus our evaluation specifically on GS [8], which
is one of the most popular coscheduling algorithms. The
following are the important issues regarding GS:

1578 IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 12, DECEMBER 2006

2. The program contains a static array which pads the binary image to
the desired size, although the total dynamic memory usage may exceed
that. The target sizes were selected as representative of large, scientific
applications at LANL. 3. The binary transfer does not include the source node.

. Effect of timeslice on overhead. Smaller timeslices
yield better response time at the cost of decreased
throughput (caused by scheduling overhead which
cannot be amortized). In Section 4.3.1, we show that
STORM’s scheduling overhead is so low that
STORM can support workstation time quanta with
virtually no performance penalty.

. Node scalability. Because GS requires global co-
ordination, the cost of enacting a global decision
typically increases with the number of processors.
Section 4.3.2 demonstrates that STORM exhibits such
low overhead that applications running on large
clusters can be coscheduled almost as rapidly as
small clusters.

. Effect of MPL. The multiprogramming level (MPL)
is the amount of oversubscription of processors to
processes. Ideally, if there are P processes per
processor (i.e., MPL ¼ P), the turnaround time will
be P times what it would be with a single process
per processor (i.e., MPL ¼ 1). In practice, schedulers
require a certain amount of time to switch processes,
which causes performance degradation. Also, the
process context switch can destroy the working set
that resides in the cache memory. Section 4.3.3
provides data showing that application performance
under STORM is not harmed by increased MPL; an

MPL of P will cause applications to complete only
P times slower than with an MPL of 1.

The application we use for our experiments in this section
is Sweep3D [18], a time-independent, Cartesian-grid, single-
group, “discrete ordinates,” deterministic, particle-transport
code which is representative of the DOE Advanced Simula-
tion and Computing (ASC) workload. Sweep3D represents
the core of a widely utilized method of solving the Boltzmann
transport equation. Estimates are that deterministic particle
transport accounts for 50-80 percent of the execution time of
many realistic simulations on current DOE systems.

In tests that involve an MPL of more than one, we further
stress the scheduler by—somewhat unrealistically—launch-
ing all of the jobs simultaneously.

4.3.1 Effect of Time Quantum

As a first gang-scheduling experiment, we analyze the
range of usable timeslice values to better understand the
limits of STORM’s gang scheduler. Fig. 3 shows the average
runtime of the jobs for various timeslice values, from 300 �s
to 8 s, running on 32 nodes/64 PEs. The smallest timeslice
value that the scheduler can handle gracefully is � 300 �s,
below which the NM cannot process the incoming strobe
messages at the rate at which they arrive. More importantly,
even with a timeslice as small as 2 ms, STORM can still run
multiple concurrent instances of an application with
virtually no performance degradation relative to a single

FRACHTENBERG ET AL.: STORM: SCALABLE RESOURCE MANAGEMENT FOR LARGE-SCALE PARALLEL COMPUTERS 1579

Fig. 2. Send and execute times for a 4 MB, 8 MB, and 12 MB binary. (a) Unloaded system. (b) CPU-loaded system. (c) Network-loaded system.

(d) Launch summary 12 MB.

instance of the application.4 This timeslice is an order of
magnitude smaller than the local Linux scheduler’s quan-
tum and multiple orders of magnitude better than the
smallest time quanta that conventional gang schedulers can
handle with no performance penalties [11]. This allows for
good system responsiveness and usage of the parallel
system for interactive jobs. Furthermore, a short quantum
allows the implementation of advanced scheduling algo-
rithms that can greatly benefit from short time quanta, such
as buffered coscheduling (BCS) [24], implicit coscheduling
(ICS) [1], and periodic boost (PB) [22]. Because STORM can
handle small time quanta with no performance penalty, we
chose the value of 50 ms for the next sets of experiments.
This value provides a fairly responsive system yet with
minimal overhead.

4.3.2 Node Scalability

An important metric of a resource manager is its scalability
with the number of nodes. To test this, we measured the
effect on application runtime when running on an increas-
ing number of nodes.

Fig. 4 shows the results for running the programs on a
varying number of nodes in the range 1-64 for MPL values
of 1 and 2 and a timeslice of 50 ms. (Results for MPL 2 are
normalized by dividing the total runtime of all jobs by 2.)
We can observe that there is no visible increase in either the
application runtime or overhead with the increase in the
number of nodes.

4.3.3 Effect of MPL

Another important property of a gang scheduler is the
overhead incurred by a context-switch operation. Context
switches can cause performance degradation due to loss of
cache state, synchronization difficulties across nodes, and
the need to change the communication context gracefully,
including the handling of in-transit messages. The context
switch in STORM requires very little computation to
determine the next process to run, suspend the current
process, and resume the next one. This is actually less work
than the UNIX scheduler typically takes for a context switch
[32], so we can hypothesize that it incurs little overhead. To
verify this hypothesis, we measure the effect of the
overhead incurred by the scheduler on Sweep3D. Fig. 5

shows the results of running one, two, four, or eight jobs
together, with a timeslice of 50 ms. All jobs were launched
concurrently and run on 32 nodes. It can clearly be seen that
the scheduling overhead is minimal.

4.4 Performance and Scalability Analysis

In this section, we analyze all of the components involved in
the launching of a job on an unloaded system, and we
present an analytical model showing how STORM’s
performance is expected to scale to cluster configurations
containing thousands of processing nodes.

4.4.1 Performance Analysis

The time needed to launch a parallel job can be broken
down into the following components:

. Read time. This is the time taken by the manage-
ment node to read the application binary from the
file system. The image can be read from a distributed
filesystem such as NFS [30], from a local hard disk,
or from a RAM disk.5 In our cluster, the NIC can
read a file directly from the RAM disk at 218 MB/s.
In previous work [12], we measured the bandwidth
achieved when the NIC—with assistance from a
lightweight process on the host—reads a 12 MB file
from NFS, local disk, and RAM disk into either a
host- or NIC-resident buffer. We found that it makes
little difference whether the target buffers reside in
main memory (11.4 MB/s and 30.5 MB/s, respec-
tively) or NIC memory (11.2 MB/s and 31.5 MB/s,
respectively). However, when reading from a (fast)
RAM disk, keeping data buffers in main memory
gives a bandwidth of 218 MB/s as opposed to only
120 MB/s in Elan memory.

. Broadcast time. This is the time to broadcast the
binary image to all of the compute nodes. If the file is
read from a networked filesystem like NFS, which
supports demand paging, the distribution time and
the file read time are intermixed. However, if a
dedicated mechanism is used to disseminate the file,
as in ParPar [17], Cplant [3], BProc [15], or STORM,
broadcast time can be measured separately from the
other components of the total launch time. QsNet’s

1580 IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 12, DECEMBER 2006

Fig. 3. Effect of time quantum with an MPL of 2, on 32 nodes. Fig. 4. Effect of node scalability, varying the number of nodes in the

range 1-64.

4. This result is also influenced by the poor memory locality of Sweep3D;
running multiple processes on the same processor does not further pollute
their caches.

5. A RAM disk is a segment of RAM that mimics a disk-based filesystem.
RAM disks provide better performance than mechanical media, but make
the corresponding amount of RAM unavailable to applications.

broadcast is both scalable and extremely fast. On the
ES40 AlphaServer, the performance for a main-
memory-to-main-memory broadcast is therefore
limited by the PCI I/O bus. The hardware broadcast
on 64 nodes can deliver 312 MB/s when the buffers
are in NIC memory, but only 175 MB/s when the
buffers are placed in main memory [12].

. Write time. We are primarily concerned with the
overhead component of the write time. It does not
matter much if the file resides in the buffer cache or
is flushed to the (RAM) disk. A number of
experiments—for brevity, not reported here—show
that the read bandwidth is consistently lower than
the write bandwidth. Thus, the write bandwidth is
not the bottleneck of the file-transfer protocol.

. Execution overhead. Some of the time needed to
launch a job in STORM is spent waiting for a time slot
in which to run the job and collect the termination
information in the management node. In our experi-
ments, the execution overhead is about 10 ms.

. Timeslice overhead. In addition, events such as
process termination are collected by the MM at
heartbeat intervals only, so a delay of a few heartbeat
quanta can be spent in MM overhead.

The overall launch time Tlaunch can be expressed by the
following equation:

Tlaunch ¼ Ttransfer þ Texec þ Ttimeslice; ð1Þ

where Ttransfer represents the binary transfer delay, Texec the
execution overhead, and Ttimeslice the overhead induced by
STORM’s scheduling policy.

Our implementation tries to pipeline the three compo-
nents of file-transfer overhead—read time, broadcast time,
and write time—by dividing the file transmission into
fixed-size chunks and writing these chunks into a remote
queue that contains a given number of slots. To optimize
the overall bandwidth of the pipeline, BWtransfer, we need to
maximize the bandwidth of each single stage. BWtransfer is
bounded above by the bandwidth of the slowest stage of the
pipeline:

BWlaunch � minðBWread; BWbroadcast; BWwriteÞ
¼ minðBWread; BWbroadcastÞ:

ð2Þ

The buffers into which data is read and from which data
is broadcast can reside in main memory or NIC memory.
We have seen that reading into main memory is faster,

while broadcasting from NIC memory is faster. The
preceding inequality dictates that the better choice is to
place the buffers in main memory as

minðBWread; BWbroadcastÞ ¼ minð218 MB=s; 175 MB=sÞ
¼ 175 MB=s;

when the buffers reside in main memory, versus

minðBWread; BWbroadcastÞ ¼ minð120 MB=s; 312 MB=sÞ
¼ 120 MB=s;

when they reside in NIC memory.
We empirically determined the optimal chunk size and

number of buffer slots (i.e., the receive-queue length) for
our cluster in a prior publication [12]. The communication
protocol is largely insensitive to the number of slots, and the
best performance is obtained with two slots of 512 KB.
Increasing the number of slots does not provide any extra
performance because doing so generates more TLB misses
in the NIC’s virtual memory hardware.

Fig. 2a showed that the transfer time of a 12 MB binary is
about 96 ms. Of those 96 ms, 4 ms are owed to skew caused
by the OS overhead and the way that STORM dæmons act
only on heartbeat intervals (1 ms). The remaining 92 ms is
determined by a file-transfer-protocol bandwidth of about
131 MB/s. The gap between the previously calculated
upper bound, 175 MB/s, and the actual value of 131 MB/s
is due to unresponsiveness and serialization within the
lightweight host process which services TLB misses and
performs file accesses on behalf of the NIC.

Fig. 6 illustrates all of the steps involved in the file-transfer
protocol and indicates the performance of each stage of the
pipeline. The file transfer protocol is initiated by the master
node, which broadcasts a descriptor containing information
about the binary: size, destination filename and directory,
access rights, etc. The master opens the source file in read
mode and each slave opens the destination file in write mode
(“Open file” in Fig. 6). In the main loop, the master reads a file
chunk from the filesystem (“Read chunk”), waits until all of
the slaves are ready to accept it (“Await space”), multicasts
the chunk to all of the slaves (“Send chunk”), and waits for an
acknowledgment from the network (“Await sent”). Note that
the master overlaps the sending of one chunk with the
reading of the subsequent chunk. The slaves perform the
complementary operations from the master; they repeatedly
wait for a chunk from the master (“Await received”) and
write it to disk (“Write chunk”). The filesystem is the
bottleneck in the file transfer. All of the network operations
(communication and flow control) take microseconds to
complete, while most of the filesystem operations have
latencies measured in milliseconds.

4.4.2 Scalability Analysis

Because all STORM functionality is based on three
mechanisms, the scalability of these primitives determines
the scalability of STORM as a whole. In fact, AWAIT-
SIGNAL is a local operation, so scalability is actually
determined only by the remaining two mechanisms.

Scalability of COMPARE-AND-WRITE. We analyzed the
scalability of QsNet’s barrier synchronization (on which
COMPARE-AND-WRITE is based) on the ASCI Q machine
[26], a cluster with 1,024 nodes/4,096 processors but
otherwise identical to our cluster. As shown in Fig. 7,

FRACHTENBERG ET AL.: STORM: SCALABLE RESOURCE MANAGEMENT FOR LARGE-SCALE PARALLEL COMPUTERS 1581

Fig. 5. Effect of multiprogramming level on runtime.

latency grows by a negligible amount—about 6 �s—across a
range of 1,024 nodes. This is a reliable indicator that
COMPARE-AND-WRITE, when implemented with the same
hardware mechanism, will scale as efficiently.

Scalability of XFER-AND-SIGNAL. To determine the
scalability of XFER-AND-SIGNAL to a large number of
nodes, we need to carefully evaluate the communication
performance of the hardware broadcast, consider details of
the hardware flow control in the network, and take into
account the wire and switch delays. QsNet transmits
packets with circuit-switched flow control. A message is
chunked into packets of 320 bytes of data payload and the
packet with sequence number i can be injected into the
network only after the successful reception of the acknowl-
edgment token of packet i� 1. On a broadcast, an acknowl-
edgment is received by the source only when all of the
nodes in the destination set have successfully received
packet i� 1. Given that the maximum transmission unit of
the QsNet network is only 320 bytes, in the presence of long
wires and/or many switches, the propagation delay of the
acknowledgment token can introduce a bubble in the
communication protocol’s pipeline and, hence, a reduction
of the asymptotic bandwidth.

QsNet’s end-to-end flow-control algorithm is based on
an acknowledgment token sent by the destination NIC. The
Elan’s DMA engine uses overlapped packet ACK mode to

maximize link utilization [28]. In this case, the destination

NIC sends the ACK token immediately after receiving the

packet header. If the token arrives at the source NIC while

the packet body is still being transmitted, the next packet in

the sequence can proceed without delay. Otherwise, the

protocol introduces a transmission gap (i.e., delay) before

injecting the following packet.

1582 IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 12, DECEMBER 2006

Fig. 6. Transmission pipeline.

Fig. 7. Barrier synchronization latency as a function of the number of

nodes, ASCI Q [26].

Equation (3) describes the asymptotic bandwidth of
QsNet as a function of the maximum cable length and the
number of switches that a packet traverses in the worst case.
The equation distinguishes the case where packets can be
pipelined without interruptions and the other case in which
the combination of wire and the switch delays introduces
communication gaps.

BWQsNetðCable; SwitchesÞ ¼
Packet size

maxðTpacket; Tbaseþ 2� Cable� Tcable þ Switches� TswitchÞ
:

ð3Þ

Table 2 describes the components of (3) and provides an
estimate of their values. This analytical model was used in
the procurement of the ASCI Q machine [4] at Los Alamos
National Laboratory and has been validated on several
network configurations with a prediction error of less than
5 percent. Table 3 shows the asymptotic bandwidth
BWQsNet for networks with up to 4,096 nodes and physical
diameters of up to 90 meters.

To make BWQsNet—and, as a consequence, BWbroadcast

—dependent upon only a single parameter, the number of
nodes, we compute a conservative estimate of the diameter
of the floor plan of the machine which approximates the
maximum cable length between two nodes. We assume that
computers in the cluster are arranged in a square.
Considering that, with current technology, we can stack
between four and six ES40 AlphaServer nodes in a single
rack with a footprint of a square meter,6 we estimate the
floor space required by four nodes to be 4 m2 (1 m2 for the
rack surrounded by 3 m2 of floor space). The following
equation therefore provides a conservative estimate of the
diameter in meters as a function of the number of nodes:

DiameterðnodesÞ ¼
ffi

2� nodes
p

: ð4Þ

In a quaternary fat tree, the maximum number of
switches traversed by a packet can be expressed as a
function of the number of nodes:

SwitchesðnodesÞ ¼ ð2� log4ðnodesÞÞ � 1: ð5Þ

By replacing the cable length and the number of switches
in (3), we obtain the asymptotic bandwidth BWQsNet as a
function of the number of nodes:

BWQsNetðnodesÞ ¼
Packet size

maxðTpacket ;Tbaseþ2�
ffiffiffiffiffiffiffiffiffiffi

2�nodes
p

�Tcableþ½ð2�log4ðnodesÞÞ�1��TswitchÞ
:

ð6Þ

Scalability of the Binary Transfer Protocol. We now
consider a model of the launch time for a 12 MB executable.
The model contains three parts. The first part represents the
actual transmission time and is inversely proportional to the
available bandwidth for the given configuration. The
second part is the local execution time of the job, followed
by the notification to the MM, which is about 10 ms. The
third part is the timeslice overhead, the time that is wasted
in OS overhead and waiting for the end of the STORM
timeslices. The launch-time model indicates that

TlaunchðnodesÞ ¼
12

BWtransferðnodesÞ
þ Texec þ Ttimeslice: ð7Þ

We now apply this model to two node configurations.
The first one, represented by (8), represents our current
cluster, which is based on ES40 AlphaServers that can
deliver at most 131 MB/s over the I/O bus. The second
configuration, (9), represents an idealized AlphaServer
cluster that is limited by the network broadcast bandwidth
(i.e., the I/O bus bandwidth is greater than the network
broadcast bandwidth).

BWES40
transferðnodesÞ ¼ minð131; BWbroadcastðnodesÞÞ; ð8Þ

FRACHTENBERG ET AL.: STORM: SCALABLE RESOURCE MANAGEMENT FOR LARGE-SCALE PARALLEL COMPUTERS 1583

TABLE 2
Legend of Terms Used in the STORM Scalability Model

TABLE 3
Bandwidth Scalability

6. See, for example, the photograph of ASCI Q at http://www.lanl.gov/
asci/.

BWideal
transferðnodesÞ ¼ BWbroadcastðnodesÞ: ð9Þ

Fig. 8 shows measured launch times for network config-
urations up to 64 nodes and estimated launch times for
network configurations up to 16,384 nodes. The model shows
that, in an ES40-based AlphaServer, the launch time is
scalable and only slightly sensitive to the machine size. A
12 MB executable can be launched in 135 ms on 16,384 nodes.
The graph also shows the expected launch times in an
ideal machine in which the I/O bus is not the bottleneck
(and in which a lightweight process on the host can
responsively handle the requests of the NIC). Both models
converge with networks larger than 4,096 nodes because,
for such configurations, they share the same bottleneck,
which is the network broadcast bandwidth.

5 RELATED WORK

Although powerful hardware solutions for high-perfor-
mance computing are already available, the greatest chal-
lenge in making large-scale clusters usable lies in the system
software. The CM-5’s system software relied upon a custom-
designed control network for RM tasks [20]. In contrast,
STORM provides scalable job launching and process
scheduling on commodity hardware. We now examine
others’ attempts at improving these two RM functions.

5.1 Job Launching

The ParPar cluster environment [17] addresses the problem
of the distribution of control messages from a management
node to a set of clients. ParPar utilizes a special-purpose
multicast protocol, reliable datagram multicast (RDGM),
which broadcasts UDP datagrams on the network and adds
selective multicast and reliability. Each datagram is
prepended by a bit string that identifies the set of
destinations and each node in the destination set sends an
acknowledgment to the management node after the
successful delivery of the broadcast datagram. By using
RDGM, a job can be launched in a few tens of seconds on a
cluster with 16 nodes and with relatively good scalability.
Nevertheless, this is still significantly slower than the
launch time of a sequential job on an individual workstation
and enough to annoy users who are waiting for an
interactive job to launch.

GLUnix [14] is a piece of operating system middleware for
clusters of workstations, designed to provide transparent

remote execution, load balancing, coscheduling of parallel
jobs, and fault-detection. The creators of GLUnix note that,
when forking a parallel job, the overhead in the master
node increases by a small, but linear-time, amount: an
average of 220 �s per client node. Extrapolating, this
implies just over 50 seconds to launch a job on 4,096 nodes
(16,384 processors).

When GLUnix launches a job, remote execution mes-
sages are sent from the management node to all of the
dæmons that will run the job. Each of these dæmons
generates a reply message, indicating success or failure.
When performing remote execution to more than 32 nodes
over switched Ethernet, the replies from earlier dæmons in
the communication schedule collide with the remote
execution requests sent to later dæmons [14]. This causes
a substantial performance degradation. STORM, however,
uses network conditionals [25], which utilize a combining
tree to reduce network contention and improve perfor-
mance and scalability.

Scalability problems are already evident in ASC-scale
machines (thousands of nodes). The Computational Plant
(Cplant) project [29] utilizes several large-scale commodity-
based clusters. To enhance scalability, Cplant uses a high-
performance interconnect, Myrinet [2], and a custom,
communication protocol based on Portals [3]. When
Cplant’s RM system launches a job, it first identifies a
group of active worker nodes, organizes them into a logical
tree structure, and then fans out the executable to the nodes.
Experimental results show that a large, parallel application
can be launched on a 1,010-node cluster in about 20 seconds
[3]. Cplant is the closest project in spirit to ours in that it
identifies poor RM performance as a problem worth
studying and approaches the problem by replacing a
traditionally nonscalable algorithm with a scalable one.

BProc [15], the Beowulf Distributed Process Space, takes
a fairly different approach to job launching from STORM
and the other works described above. Rather than copying a
binary file from a disk on the master to a disk on each of the
slaves and then launching the file from disk, BProc
replicates a running process into each slave’s memory—the
equivalent of Unix’s fork() and exec() plus an efficient
migration step. The advantage of BProc’s approach is that
no filesystem activity is required to launch a parallel
application once it is loaded into memory on the master.
Even though STORM utilizes a RAM disk-based filesystem,
the extra costs of reading and writing that filesystem add a
significant amount of overhead relative to BProc’s remote
process spawning. STORM’s advantage over BProc is that
the same functions STORM uses to transmit executable files
(Algorithms 6 and 7 in Section 2.4) can also be used to
transmit data files. BProc has no equivalent mechanism,
although a cluster could certainly use BProc for its single-
system-image features and STORM for the underlying
communication protocols.

Table 4 shows a sampling of job-launch times found in the
literature; Table 5 presents the same data extrapolated out to
4,096 nodes (twice the size of ASCI Q [4]); and Fig. 9a graphs
both the measured and extrapolated (to 16,384 nodes) data.
Although the different cluster types and sizes make the
comparison imprecise, these tables and figures give at
least a general indication that STORM does, in fact,
provide a significant performance improvement over
previous works.

1584 IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 12, DECEMBER 2006

Fig. 8. Measured and estimated launch times.

To clarify the performance improvement provided by
STORM, Fig. 9b renormalizes the extrapolated Cplant [3]
and BProc [15] data to the extrapolated STORM data, which
is defined as 1.0. Cplant and BProc are the two pieces of
related work that, like STORM, scale logarithmically, not
linearly, in the number of nodes. The figure shows a
decrease in the Cplant and BProc slowdown at 4,096 nodes.
This is an artifact of the conservative performance model
we used for STORM in Section 4.4, which indicates
decreased network bandwidth as cluster sizes—and, hence,
cable lengths—increase. We extrapolated the performance
of Cplant, BProc, and all of the other job-launchers
presented in Table 4, Table 5, and Fig. 9a under the
unrealistic assumption that network performance scales
indefinitely. Nevertheless, even though the STORM model
is more conservative than the other models, the crossover
point between BProc and STORM is expected to be on a
system containing approximately 1 billion nodes and the
crossover point between Cplant and STORM is expected to
be on a system containing approximately 17 billion nodes.

5.2 Process Scheduling

Many recent research results show that good job scheduling
algorithms can substantially improve scalability, respon-
siveness, resource utilization, and usability of large-scale
parallel machines [1], [7]. Unfortunately, the body of work
developed in the last few years has not yet led to many
practical implementations of such coscheduling algorithms

on production clusters. We argue that one of the main
problems is the lack of flexible and efficient runtime
systems that can support the implementation and evalua-
tion of new scheduling algorithms in order to convincingly
demonstrate their superiority over today’s entrenched,
space-shared schedulers. STORM’s flexibility positions it
as a suitable vessel for in vivo experimentation with
alternate scheduling algorithms, so researchers and cluster
administrators can determine the best way to manage
cluster resources.

As far as traditional gang-schedulers are concerned, the
SCore-D scheduler [16] is one of the fastest. By employing
help from the messaging layer, PM [33], SCore-D is able to
force communication into a quiescent state, save the entire
global state of the computation, and restore another
application’s global state with only � 2 percent overhead
when using a 100 ms time quantum. While this is admirable
performance, STORM is able to do significantly better.
Because the STORM mechanisms can be written to exploit
QsNet’s process-to-process communication (versus PM/
Myrinet’s node-to-node communication), STORM does not
need to force the network into a quiescent state before
freezing one application and thawing another. As a result,
STORM can gang-schedule applications with no noticeable
overhead when using quanta as small as 2 ms.

Prior schedulers for large-scale computer systems some-
times required time quanta on the order of minutes to
amortize scheduler overhead [7], [21]. Table 6 lists the

FRACHTENBERG ET AL.: STORM: SCALABLE RESOURCE MANAGEMENT FOR LARGE-SCALE PARALLEL COMPUTERS 1585

TABLE 4
A Selection of Job-Launch Times Found in the Literature

TABLE 5
Extrapolated Job-Launch Times

Fig. 9. Job-launching performance comparison. (a) Measured and predicted performance. (b) Relative performance to STORM.

minimal feasible scheduling quantum supported by
STORM and previous job schedulers. That is, the table
does not show the shortest possible quantum, but, rather,
the shortest quantum that leads to an application slowdown
of 2 percent or less. Again, this is not an entirely fair
comparison, but it does indicate that STORM is at least two
orders of magnitude better than the best reported numbers
from the literature.

6 CONCLUSIONS

While the purpose of a cluster is to run applications, it is the
goal of the resource-management system to ensure that
these applications load quickly, make efficient use of cluster
resources, and respond quickly to user input. While
resource management is comparatively simple to do well
on a small-scale cluster, it is more challenging on a large-
scale cluster. Current resource-management systems re-
quire many seconds to launch a large application; they
either batch-schedule jobs—precluding interactivity—or
gang-schedule them with such large quanta as to be
effectively noninteractive, and they make poor use of
resources because large jobs frequently suffer from internal
load imbalance or imperfect overlap of communication and
computation, yet scheduling decisions are too costly to
warrant lending unused resources to alternate jobs.

To address these problems, we presented STORM, a
lightweight, flexible, and scalable environment for per-
forming resource management in large-scale clusters. In
terms of both job launching and process scheduling,
STORM is 1-2 orders of magnitude faster than the best
reported results in the literature [15], [16]. The key to
STORM’s performance lies in its design methodology.
Rather than implement heartbeat issuance, job launching,
process scheduling, and other routines as separate entities,
we designed those functions in terms of a small, common
set of data-transfer and synchronization mechanisms: XFER-
AND-SIGNAL, AWAIT-SIGNAL, and COMPARE-AND-
WRITE. If each of these mechanisms is fast and scalable
on a given platform, then STORM as a whole is fast and
scalable as well. We validated STORM’s performance on a
256-processor Alpha cluster interconnected with a Quadrics
network and demonstrated that STORM performs well on
that cluster and is expected to perform comparably well on
significantly larger clusters.

An important conclusion of our work is that it is indeed
possible to scale up a cluster without sacrificing fast job-
launching times, machine efficiency, or interactive response
time. STORM can launch parallel jobs on a large-scale
cluster almost as fast as a node OS can launch a sequential
application on an individual workstation. And STORM can
schedule all of the processes in a large, parallel job with the
same granularity and with almost the same low overhead at
which a sequential OS can schedule a single process.

By improving the performance of various resource-
management functions by two orders of magnitude,
STORM represents an important step toward making
large-scale clusters as efficient and easy to use as a
workstation. While STORM is still a research prototype,
we foresee STORM or a tool based on our resource-
management research as being the driving force behind
making large-scale clusters usable and efficient.

ACKNOWLEDGMENTS

This work was supported by the US Department of Energy
through Los Alamos National Laboratory contract W-7405-
ENG-36 and the Spanish MCYT under grant TIC2003-
08154-C06-03. This work was performed entirely within the
Performance and Architecture Lab at Los Alamos National
Laboratory.

REFERENCES

[1] A.C. Arpaci-Dusseau, “Implicit Coscheduling: Coordinated Sche-
duling with Implicit Information in Distributed Systems,” ACM
Trans. Computer Systems, vol. 19, no. 3, pp. 283-331, Aug. 2001.

[2] N.J. Boden, D. Cohen, R.E. Felderman, A.E. Kulawick, C.L. Seitz,
J.N. Seizovic, and W.-K. Su, “Myrinet: A Gigabit-per-Second Local
Area Network,” IEEE Micro, vol. 15, no. 1, pp. 29-36, Feb. 1995.

[3] R. Brightwell and L.A. Fisk, “Scalable Parallel Application Launch
on Cplant,” Proc. IEEE/ACM Conf. Supercomputing (SC ’01), Nov.
2001.

[4] Compaq High Performance Technical Computing Group, “U.S.
DOE Selects Compaq to Build ASCI Q,” HPTC News, vol. 17,
Sept./Oct. 2000.

[5] D.G. Feitelson, “Packing Schemes for Gang Scheduling,” Proc. Int’l
Parallel Processing Symp. (IPPS ’96), Second Workshop Job Scheduling
Strategies for Parallel Processing, D.G. Feitelson and L. Rudolph,
eds., pp. 89-110, Apr. 1996.

[6] D.G. Feitelson, A. Batat, G. Benhanokh, D. Er-El, Y. Etsion, A.
Kavas, T. Klainer, U. Lublin, and M. Volovic, “The ParPar System:
A Software MPP,” High Performance Cluster Computing, R. Buyya,
ed., vol. 1: Architectures and Systems, pp. 758-774, 1999.

[7] D.G. Feitelson and M.A. Jette, “Improved Utilization and
Responsiveness with Gang Scheduling,” Proc. Int’l Parallel Proces-
sing Symp. (IPPS ’97), Third Workshop Job Scheduling Strategies for
Parallel Processing, D.G. Feitelson and L. Rudolph, eds., pp. 238-
261, Apr. 1997.

[8] D.G. Feitelson and L. Rudolph, “Gang Scheduling Performance
Benefits for Fine-Grain Synchronization,” J. Parallel and Distributed
Computing, vol. 16, no. 4, pp. 306-318, Dec. 1992.

[9] E. Frachtenberg, D.G. Feitelson, J. Fernandez-Peinador, and F.
Petrini, “Parallel Job Scheduling under Dynamic Workloads,”
Proc. Ninth Workshop Job Scheduling Strategies for Parallel Processing,
D.G. Feitelson, L. Rudolph, and U. Schwiegelshohn, eds., pp. 208-
227, Springer-Verlag, 2003.

[10] E. Frachtenberg, D.G. Feitelson, F. Petrini, and J. Fernandez,
“Adaptive Parallel Job Scheduling with Flexible Coscheduling,”
IEEE Trans. Parallel and Distributed Systems, vol. 16, no. 11,
pp. 1066-1077, Nov. 2005.

[11] E. Frachtenberg, F. Petrini, S. Coll, and W. Feng, “Gang
Scheduling with Lightweight User-Level Communication,” Proc.
Int’l Conf. Parallel Processing (ICPP ’01), Workshop Scheduling and
Resource Management for Cluster Computing, Sept. 2001.

[12] E. Frachtenberg, F. Petrini, J. Fernandez, S. Pakin, and S. Coll,
“STORM: Lightning-Fast Resource Management,” Proc. IEEE/
ACM Conf. Supercomputing (SC ’02), Nov. 2002.

[13] H. Franke, J. Jann, J.E. Moreira, P. Pattnaik, and M.A. Jette, “An
Evaluation of Parallel Job Scheduling for ASCI Blue-Pacific,” Proc.
IEEE/ACM Conf. Supercomputing (SC ’99), Nov. 1999.

[14] D.P. Ghormley, D. Petrou, S.H. Rodrigues, A.M. Vahdat, and T.E.
Anderson, “GLUnix: A Global Layer Unix for a Network of
Workstations,” Software—Practice and Experience, vol. 28, no. 9,
pp. 929-961, July 1998.

[15] E. Hendriks, “BProc: The Beowulf Distributed Process Space,”
Proc. ACM Int’l Conf. Supercomputing (ICS ’02), June 2002.

1586 IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 12, DECEMBER 2006

TABLE 6
A Selection of Scheduling Quanta Found in the Literature

[16] A. Hori, H. Tezuka, and Y. Ishikawa, “Highly Efficient Gang
Scheduling Implementation,” Proc. IEEE/ACM Conf. Supercomput-
ing (SC ’98), Nov. 1998.

[17] A. Kavas, D. Er-El, and D.G. Feitelson, “Using Multicast to Pre-
Load Jobs on the ParPar Cluster,” Parallel Computing, vol. 27, no. 3,
pp. 315-327, Feb. 2001.

[18] K.R. Koch, R.S. Baker, and R.E. Alcouffe, “Solution of the First-
Order Form of the 3-D Discrete Ordinates Equation on a
Massively Parallel Processor,” Trans. Am. Nuclear Soc., vol. 65,
no. 108, pp. 198-199, 1992.

[19] L. Lamport, “How to Make a Multiprocessor Computer that
Correctly Executes Multiprocess Programs,” IEEE Trans. Compu-
ters, vol. 28, no. 9, pp. 690-691, Sept. 1979.

[20] C.E. Leiserson, Z.S. Abuhamdeh, D.C. Douglas, C.R. Feynman,
M.N. Ganmukhi, J.V. Hill, W.D. Hillis, B.C. Kuszmaul, M.A.
St. Pierre, D.S. Wells, M.C. Wong-Chan, S.-W. Yang, and R. Zak,
“The Network Architecture of the Connection Machine CM-5,”
J. Parallel and Distributed Computing, vol. 33, no. 2, pp. 145-158,
Mar. 1996.

[21] J.E. Moreira, H. Franke, W. Chan, L.L. Fong, M.A. Jette, and A.B.
Yoo, “A Gang-Scheduling System for ASCI Blue-Pacific,” Proc.
High-Performance Computing and Networking Conf. in Europe (HPCN
Europe), pp. 831-840, Apr. 1999.

[22] S. Nagar, A. Banerjee, A. Sivasubramaniam, and C.R. Das, “A
Closer Look at Coscheduling Approaches for a Network of
Workstations,” Proc. ACM Symp. Parallel Algorithms and Architec-
tures (SPAA ’99), June 1999.

[23] F. Petrini, S. Coll, E. Frachtenberg, and A. Hoisie, “Hardware- and
Software-Based Collective Communication on the Quadrics Net-
work,” Proc. Int’l Symp. Network Computing and Applications (NCA
’01), Oct. 2001.

[24] F. Petrini and W. Feng, “Improved Resource Utilization with
Buffered Coscheduling,” J. Parallel Algorithms and Applications,
vol. 16, pp. 123-144, 2001.

[25] F. Petrini, W. Feng, A. Hoisie, S. Coll, and E. Frachtenberg, “The
Quadrics Network: High-Performance Clustering Technology,”
IEEE Micro, vol. 22, no. 1, pp. 46-57, Jan./Feb. 2002.

[26] F. Petrini, J. Fernández, E. Frachtenberg, and S. Coll, “Scalable
Collective Communication on the ASCI Q Machine,” Proc. Symp.
High Performance Interconnects (HotI ’03), Aug. 2003.

[27] F. Petrini, D. Kerbyson, and S. Pakin, “The Case of the Missing
Supercomputer Performance: Achieving Optimal Performance on
the 8,192 Processors of ASCI Q,” Proc. IEEE/ACM Conf. Super-
computing (SC ’03), Nov. 2003.

[28] Quadrics Supercomputers World Ltd, Elan Reference Manual, first
ed., Jan. 1999.

[29] R. Riesen, R. Brightwell, L.A. Fisk, T. Hudson, J. Otto, and A.B.
Maccabe, “Cplant,” Proc. USENIX Ann. Technical Conf., Second
Extreme Linux Workshop, June 1999.

[30] S. Shepler, B. Callaghan, D. Robinson, R. Thurlow, C. Beame, M.
Eisler, and D. Noveck NFS Version 4 Protocol, RFC 3010, Internet
Eng. Task Force, Network Working Group, Dec. 2000.

[31] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra,
MPI: The Complete Reference, vol. 1, The MPI Core, second ed. The
MIT Press, Sept. 1998.

[32] J.H. Straathof, A.K. Thareja, and A.K. Agrawala, “UNIX Schedul-
ing for Large Systems,” Proc. USENIX 1986 Winter Conf., Jan. 1986.

[33] H. Tezuka, A. Hori, Y. Ishikawa, and M. Sato, “PM: An Operating
System Coordinated High Performance Communication Library,”
Proc. High-Performance Computing and Networking: Int’l Conf. and
Exhibition (HPCN Europe), B. Hertzberger and P.M.A. Sloot, eds.,
pp. 708-717, Apr. 1997.

[34] Top 500 supercomputers, http://www.top500.org/, 2006.

Eitan Frachtenberg is a Director’s Postdoctoral
Fellow at Los Alamos National Laboratory.
Architecture Lab, part of the Modeling, Algo-
rithms and Informatics Group (CCS-3) at Los
Alamos National Laboratory. His current re-
search interests include operating systems for
parallel desktops and supercomputers, parallel
job scheduling, and interconnect protocols. He
received the BS degree in mathematics/compu-
ter xcience in 1993, the MS degree in computer

science in 2001, and the PhD degree in computer science in 2003, all
from The Hebrew University in Jerusalem, Israel. He is a member of the
IEEE.

Fabrizio Petrini is a laboratory fellow in the
Applied Computer Science Group in the Com-
putational Sciences and Mathematics Division at
Pacific Northwest National Laboratory (PNL).
His research interests include various aspects of
supercomputers, including high-performance in-
terconnection networks and network interfaces,
fault tolerance, job scheduling algorithms, par-
allel architectures, operating systems, and par-
allel programming languages. He has received

numerous awards from the US Department of Energy (DOE) for
contributions to supercomputing projects, and from other organizations
for scientific publications. He is a member of the IEEE.

Juan Fernández received the PhD degree in
computer science from the Universidad de
Murcia, Spain, in 2005. He worked as a graduate
research assistant at Los Alamos National
Laboratory from 2001 to 2003 and as a
postdoctoral researcher at Pacific Northwest
National Laboratory in 2006. He is currently an
assistant professor in the Computer Engineering
Department at the Universidad de Murcia. His
research interests include cluster computing,

high-performance networking, and network protocols and architecture.

Scott Pakin received the BS degree in mathe-
matics/computer science with research honors
from Carnegie Mellon University in May 1992,
the MS degree in computer science from the
University of Illinois at Urbana-Champaign in
January 1995, and the PhD degree from the
University of Illinois at Urbana-Champaign in
October 2001. He is a technical staff member in
the Performance and Architecture Lab, part of
the Modeling, Algorithms and Informatics Group

(CCS-3) at Los Alamos National Laboratory. His current research
interests include analyzing and improving the performance of high-
performance computing systems, with particular emphasis on the
communication subsystem. He has published papers on such topics
as high-speed messaging layers, language design and implementation,
job-scheduling algorithms, and resource-management systems.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

FRACHTENBERG ET AL.: STORM: SCALABLE RESOURCE MANAGEMENT FOR LARGE-SCALE PARALLEL COMPUTERS 1587

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

