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Abstract—The importance of transient faults is predicted to grow due to current technology trends of increased scale of integration. One
of the components that will be significantly affected by transient faults is the interconnection network of chip multiprocessors (CMPs). To
deal efficiently with these faults and differently from other authors, we propose to use fault-tolerant cache coherence protocols that
ensure the correct execution of programs when not all messages are correctly delivered. We describe the extensions made to a
directory-based cache coherence protocol to provide fault tolerance and provide a modified set of token counting rules which are useful
to design fault-tolerant token-based cache coherence protocols. We compare the directory-based fault-tolerant protocol with a token-
based fault-tolerant one. We also show how to adjust the fault tolerance parameters to achieve the desired level of fault tolerance and
measure the overhead achieved to be able to support very high fault rates. Simulation results using a set of scientific, multimedia, and
commercial applications show that the fault tolerance measures have virtually no impact on execution time with respect to a non-fault-
tolerant protocol. Additionally, our protocols can support very high rates of transient faults at the cost of slightly increased network traffic.

Index Terms—fault tolerance, cache coherence, transient faults, interconnection network.

1 INTRODUCTION

HIP Multiprocessors (CMPs) have become the preferred

way to effectively take advantage of the increased
availability of transistors while keeping design complexity
manageable. Further, tiled architectures which are built by
replicating several tiles comprised by a core, private cache,
part of the shared cache, and a network interface help in
keeping complexity more manageable, scale well to a larger
number of cores, and support families of products with
varying number of tiles. In this way, it seems likely that
they will be the choice for future many-core CMP designs
[23], [24]. Fig. 1b shows a 16-core CMP organized by
replicating the tile structure shown in Fig. la.

A main drawback of current technology trends is that,
due to the miniaturization and the lower voltages used for
power efficiency reasons, the susceptibility of future chips
to transient faults will increase. Transient faults [3], [17],
also known as soft errors or single event upsets, occur when
a component produces an erroneous output but continues
working correctly after the event. Any event which upsets
the stored or communicated charge can cause soft errors.
Typical causes include alpha-particle strikes, cosmic rays,
radiation from radioactive atoms which exist in trace
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amounts in all materials, and electrical sources like power
supply noise, electromagnetic interference (EMI), or radia-
tion from lightning.

Reliability is not only required for some critical applica-
tions: even for commodity systems, reliability needs to be
above a certain level for the system to be useful for anything.

In fact, since the number of components in a chip
increases and the reliability of each component decreases, it
is no longer economical to design new chips and test
assuming a worst case reliability scenario. Instead, new
designs will target the common case and assume a certain
rate of transient faults. Hence, transient faults will have to
be handled across all the levels of the system to avoid actual
errors. Transient faults are already a problem for memories
and caches which routinely use error detection and
correction codes (ECC) to deal with them. Other parts of
the system will need to use fault tolerance techniques to
deal with transient faults as their frequency increases.

One of the components which will be affected by
transient faults in a CMP is the interconnection network.
It occupies a significant part of the chip real estate and is
critical to the performance of the system. It handles the
communication between the cores and caches, which is
done by means of a cache coherence protocol. Communica-
tion is usually very fine-grained (at the level of cache lines)
and requires very small and frequent messages. Hence, to
achieve good performance, the interconnection network
must provide very low latency.

Fault tolerance in the interconnection network has
traditionally been provided at the network level. Several
proposals on how to do this are mentioned in Section 2.
Ensuring the reliable transmission of all messages through
the network imposes significant overheads in latency,
power consumption, and area. Differently from other
authors, we propose to deal with transient faults in the
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Fig. 1. Tiled chip multiprocessors. (a) Diagram of an individual tile.
(b) 16-Way tiled CMP with 2D mesh interconnection network.

interconnection network of CMPs at the level of the cache
coherence protocol. This allows for more flexibility to
design a high-performance on-chip network which can be
unreliable. At the same time, the higher-level information
available to the coherence protocol enables it to achieve
fault tolerance with lower overhead, avoiding acknowl-
edgment messages in most cases, protecting only those
messages which are critical to the correctness of the
protocol. The few necessary acknowledgments are sent
out of the critical path of coherence transactions to
minimize the effect of fault tolerance on performance.

In a previous work [5], [6], we showed that a token-based
[12] coherence protocol can be extended to tolerate transient
faults. Unfortunately, token coherence is not the cache
coherence protocol of choice in current CMP proposals.

Tiled CMPs implement a point-to-point interconnection
network which is best suited for directory-based cache
coherence protocols. Furthermore, compared with snoopy-
based or token-based protocols which usually require
frequent broadcasts, directory-based ones are more scalable
and energy-efficient. In this work, we apply some of the
lessons learned there to guarantee fault tolerance in a
directory-based cache coherence protocol.

A fault-tolerant cache coherence protocol needs to
provide at least the following things: a fault detection
mechanism, a fault recovery mechanism, and a mechanism
to ensure that data are never lost or corrupted.

In both protocols, fault detection is achieved by means of
a number of timeouts which detect deadlocks caused by
discarded messages. This fault detection mechanism is
reliable and valid for every coherence protocol where a
discarded message can be either harmless or lead to a
deadlock in the same or a subsequent memory transaction.
This is the case of TOKENCMP (the non-fault-tolerant token-
based cache coherence protocol), where discarded transient
requests are harmless and the rest of message types lead to
deadlock; and in the case of DIRCMP (the non-fault-tolerant
directory-based cache coherence protocol), where every
discarded message leads to a deadlock. However, not all
cache coherence protocols have this property: for example,
some protocols do not require acknowledgments for
invalidation messages; hence, discarding an invalidation
message would lead to an incoherence instead of a
deadlock. The number and precise function of timeouts
depend on the way that each protocol works. Also, both
protocols ensure the integrity of data when they travel
through the network by means of explicit acknowledgments
out of the critical path of cache misses. However, the
recovery mechanisms used by each protocol are different.
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Our two proposals do not add any requirements to the
interconnection network; hence, they are applicable to
current and future designs. Actually, since the network
does not need to guarantee correct delivery of every
message, we expect that it could take advantage of a more
aggressive design to reduce latency even at the cost of
dropping a few messages, thus improving overall perfor-
mance. Also, our proposals could be used in conjunction
with other techniques which provide fault tolerance to
individual cores and caches in the CMP to achieve full
coverage against transient faults inside the chip.

Some parts of this work were presented in a prelimin-
ary version in [8] and [7]. The main contributions of this
paper are:

e A cache coherence protocol which extends a stan-
dard directory-based coherence protocol with fault-
tolerant measures and assumes a point-to-point
unordered interconnection network. Unlike the
protocol presented in [8], which assumed a point-
to-point ordered interconnection network, this pro-
tocol can work with reconfigurable interconnection
networks or with adaptive routing. These character-
istics are highly desirable for being able to deal with
permanent errors both in the interconnection net-
work and in the processor cores and for other
purposes beyond fault tolerance.

e A modified set of token counting rules that ensure
reliable ownership transference and formalize the
modifications to the token coherence framework
required by the protocol presented in [6].

e A comparison of the two fault-tolerant cache coher-
ence protocols under a common framework and
using a wider selection of benchmarks than in [7];
including scientific, multimedia, and commercial
applications. In this new evaluation, we explain
how to adjust the fault detection timeouts and how
to trade between the overhead introduced by request
serial numbers and the desired rate of fault tolerance.

e We explain the fault model used in our previous
works and extend it to model faults when they
happen in bursts (instead of isolated).

The rest of the paper is organized as follows: In Section 2,
we review relevant previous work. The base architecture and
cache coherence protocols are described in Section 3. Section 4
explains our fault model. Sections 5 and 6 explain the fault-
tolerant coherence protocols. A performance evaluation is
done in Section 7. Finally, Section 9 concludes the paper.

2 RELATED WORK

Fault tolerance for multiprocessors has been thoroughly
studied in the past. Most proposals deal with transient
errors by means of checkpointing and recovery. For
example, Prvulovic et al. presented ReVive [21], which
performs checkpointing, logging, and memory-based dis-
tributed parity protection with low overhead in error-free
execution and is compatible with off-the-shelf processors,
caches, and memory modules. At the same time, Sorin et al.
presented SafetyNet [22], which aims at the same objectives
but has less overhead and uses custom caches.

Recently, Meixner et al. proposed error detection
techniques [15], [16] for multiprocessors which can detect
errors that lead to memory consistency or coherence
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violations, but do not provide any recovery mechanism.
Also, Aggarwal et al. [1] proposed a mechanism to provide
dynamic reconfiguration of CMPs which enables fault
containment and reconfiguration, but does not directly
address the problems caused by a faulty interconnection
network in the coherence protocol.

Instead of ensuring fault tolerance at the cache coherence
protocol level like we propose, a more straightforward way
to solve the problem of transient faults in the on-chip
interconnection network is making the network itself fault-
tolerant. There are several proposals [2], [4], [19] exploring
this approach.

Usually, these proposals achieve fault tolerance using
error detection or correction codes and message retransmis-
sion [18]. Both end-to-end and switch-to-switch retransmis-
sion schemes are possible. In an end-to-end scheme, error
detection codes are added to messages and network
interfaces have additional message buffers to store mes-
sages, which have been transmitted until it receives an
acknowledgment signal. The messages can be retransmitted
when a negative acknowledgment signal is received or
when a timeout triggers at the sender. If timeouts are used,
messages require sequence numbers to detect duplicates.
Switch-to-switch schemes are similar, but error detection
and retransmission hardware are added at each switch
instead of at each network interface. Error correction can be
done at message level or flit level also.

Other way to provide fault tolerance at the interconnec-
tion network level is using fault-tolerant routing techniques
[20] relying on flooding. These techniques trade increased
network traffic (and power consumption) for reliability.

A system could combine both interconnection-level fault
tolerance measures and cache-coherence-protocol-level
ones. This way, the fault rate that the coherence protocol
would need to support would decrease, while part of the
reliability of the interconnection network could be traded
for increased performance.

Also, most interconnection network fault tolerance
proposals rely on adding a certain amount of fault resiliency
to the network interfaces and/or network switches by means
of hardware redundancy or VLSI transient fault mitigation
techniques to avoid single points of failure. Our approach
could also benefit from these measures, although we have
not identified any component of the interconnection net-
work that would require it to guarantee correctness.

However, ensuring the reliable transmission of all mes-
sages through the network limits the flexibility of the network
design and imposes significant overheads in latency, power
consumption, and area. Those overheads are constant per
message since the interconnection network lacks information
about the meaning of the communication that is taking place.
In contrast, ensuring fault tolerance at the higher lever of the
cache coherence protocol allows for more flexibility to design
a high-performance on-chip network which can be not totally
reliable, but have better latency and power consumption in
the common case. Since the protocol has more information, it
can ensure the reliable retransmission of those few messages
that carry owned data and could cause data loss; achieving
better performance overall as long as enough messages are
transmitted correctly through the network.

3 BAse CMP ARCHITECTURES AND PROTOCOLS

In this work, we assume a single CMP system built using
a number of tiles [23]. Each tile contains a processor core,
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private L1 data, and instruction caches, and a bank of the
L2 cache. The L2 cache is logically shared by all cores,
but it is physically distributed among tiles. Each tile has
its network interface to connect to the on-chip inter-
connection network. We assume in-order processors since
that seems the most reasonable approach to build power-
efficient CMPs with many cores.

While we have assumed a tiled architecture and in-order
processors, these choices are not constraints of the
evaluated coherence protocols, whose functionality and
correctness are not affected if out-of-order cores are used or
a different arrangement is used instead of tiles.

We consider two base architectures whose main differ-
ence lies in the coherence protocol: one uses a token-based
cache coherence protocol called TOKENCMP [14] and
another uses a more traditional directory-based protocol
adapted for CMP systems that we will refer to as DIRCMP.

TOKENCMP is a cache coherence protocol based on token
coherence which targets hierarchical multiple CMP systems
and is well suited for single CMPs. Token coherence provides
a framework for defining several particular coherence
protocols by separating the protocol definition in a correct-
ness substrate and a performance policy which define how
the nodes exchange a fixed number of tokens among them.
Most requests are transient requests which, in the case of
TOKENCMP and most other token coherence protocols, are
sent using broadcast to all other nodes with no ordering
guarantees and without even a guarantee of being success-
fully satisfied. Token counting rules ensure that coherency is
maintained while persistent requests ensure forward progress
by providing serialization when races between transient
requests are detected. TOKENCMP uses a performance
policy similar to TOKENB (Token-using-broadcast) with a
distributed arbitration scheme for persistent requests.

DIRCMP is a traditional MOESI-based directory cache
coherence protocol which uses an on-chip directory to
maintain coherence between several private L1 caches and a
shared noninclusive L2 cache. It uses a directory cache in L2
and the L2 effectively acts as the directory for the L1 caches.
It uses per line busy states to defer requests to lines with
outstanding requests. Hence, the directory will attend only
one request for each line at the same time. Also, it uses
three-phase writebacks to coordinate writebacks and the
rest of requests.

The two base protocols implement a migratory sharing
optimization in which a cache holding a modified cache line
invalidates its copy when responding to a request to read
that line (GetS), thus granting write permission to the
requesting cache. This optimization substantially improves
performance of many workloads with read-modify-write
sharing behavior.

4 FAuLT MODEL

As mentioned in Section 1, a transient fault in the
interconnection network of a CMP can have a number of
causes. For example, any event that changes the value stored
in a flip-flop which is part of a buffer or that affects the signal
transmitted through a wire would cause a transient error.
The actual effect of these errors is hard to predict, but we can
assume that one or more messages are either corrupted or
misrouted as the final consequence.

Corrupted messages will be discarded upon reception.
This can be achieved by means of using an error detection
code (CRC) in each message. The particular error detection
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TABLE 1 TABLE 2
Message Types Used by DIRCMP Additional Message Types Used by FTDIRCMP
[ Type | Description | [ Type | Description |
GetX Request data and permission to write. AckO Ownership acknowledgment.
GetS Request data and permission to read. AckBD Backup deletion acknowledgment.
Put Sent by the L1 to initiate a write-back. UnblockPing | Asks confirmation that a cache miss is still in progress.
WbAck Sent by the L2 to let the L1 actually perform the write- ‘WbPing Asks confirmation that a writeback is still in progress.
back. The L1 will not need to send the data. WhbCancel Confirms that a previous writeback has already finished.
WbAckData | Sent by the L2 to let the L1 actually perform the write- OwnerPing Asks confirmation of ownership.
back. The L1 will need to send the data. NackO Negative response to an OwnerPing.
‘WbNack Sent by the L2 when the write-back cannot be attended

(probably due to some race) and needs to be reissued.
Inv Invalidation request sent to invalidate sharers before
granting exclusive access. Requires an ACK response.

Ack Invalidation acknowledgment.

Data Message carrying data and granting read permission.

DataEx Message carrying data and granting write permission
(invalidation acknowledgments may still be pending).

Unblock Informs the L2 that the data has been received and the
sender is now a sharer.

UnblockEx Informs the L2 that the data has been received and the
sender has now exclusive access to the line.

WhbData Write-back containing data.

WhbNoData Write-back containing no data.

code employed for this purpose is out of the scope of this
paper, but we assume that all corrupted messages are
detected and discarded.' In addition to checking the error
detection code, nodes also check that they are the intended
recipient of a message before responding. This way, a
misrouted message that arrives uncorrupted to the wrong
destination will be discarded. Even if a misrouted message
were not detected as such, the protocols would handle it
gracefully except for invalidation requests that could lead to
incoherence in some cases.

Hence, from the point of view of the coherence protocol,
we assume that all errors cause the loss of any affected
messages. That is, in our fault model, we assume that the
interconnection network will either deliver a message
correctly or not at all. We also assume that caches and
memories are protected by means of ECC.

In our evaluation, we consider several fault rates
expressed as “number of corrupted messages per million
of messages that travel through the network.” This rate
measures the probability that every message has of being
affected by a transient fault while it is in the network. We
consider two ways of distributing faults in time: in the first
one, faults are distributed uniformly among messages,
while in the second one, faults affect messages in bursts of a
constant size.

5 A FAULT-TOLERANT DIRECTORY COHERENCE
PRoTOCOL

From now on, we consider a CMP system whose inter-
connection network is not reliable due to the potential
presence of transient faults. In the rest of this section, we
explain the fault tolerance mechanisms of FTDIRCMP in
detail, as an example of how to add fault tolerance to a
cache coherence protocol.

Losing a message in DIRCMP will always lead to a
deadlock situation, since either the sender will be waiting
indefinitely for a response or the receiver was already
waiting for the lost response. Additionally, losing a message

1. With our protocols, an undetected corrupted message could lead to
incoherence or silent data corruption in some cases, but never to a deadlock.

carrying data can lead to loss of data if the corresponding
memory line is not in any other cache and it has been
modified since the last time that it was written to memory.
Notice that losing any message cannot lead to an incoher-
ence, since write access to a line is only granted after all the
necessary invalidation acknowledgments have been actu-
ally received.

Table 1 shows a simplified list of the main types of
messages used by DIRCMP and a short explanation of their
main function.

Directory protocols used in most cache-coherent nonuni-
form memory access machines (cc-NUMAs) usually assume
that the network is point-to-point unordered. That is, two
messages sent from a node to another can arrive in a
different order than they were sent. Unlike our previous
work, the version of the FTDIRCMP protocol presented here
does support unordered networks. This improvement
requires the addition of a new timeout and two new
message types (see Section 5.6).

FTDIRCMP is an extension of DIRCMP which assumes
an unreliable interconnection network. It will guarantee the
correct execution of a program even if coherence messages
are lost or discarded by the interconnection network due to
transient errors.

FTDIRCMP uses extra messages to acknowledge the
reception of a few critical data messages and to detect faults.
When possible, those messages are kept out of the critical path
of any cache miss and they are piggybacked in other messages
in the most frequent cases. Table 2 shows the message types
that are added by FTDIRCMP to those mentioned in Table 1.

Thanks to the fact that every message lost in DIRCMP
leads to a deadlock, FTDIRCMP can use timeouts to detect
potentially lost messages. It uses a number of timeouts to
detect faults and start corrective measures. Table 3 sum-
marizes these timeouts.

Usually, when a fault occurs and a timeout triggers,
FTDIRCMP reissues the request using a different serial
number. These reissued requests need to be identified as
such by the node that answers to them and not be treated like
an usual request. In particular, a reissued request should not
wait in the incoming request buffer to be attended by the L2
or the memory controller until a previous request is satisfied,
because that previous request may be precisely the older
instance of the request that is being reissued. Hence, the L2
directory needs to remember the blocker (last requester) of
each line to be able to detect reissued requests. This
information can be stored in the Miss Status Holding
Register (MSHR) table or in a dedicated structure for the
cases when it is not necessary to allocate a full MSHR entry.

5.1 Reliable Data Transmission

A fault-tolerant cache coherence protocol needs to ensure
that there is always at least one updated copy of the data of
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TABLE 3

Summary of Timeouts Used in FTDIRCMP
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Timeout

When is it activated?

Where is it activated?

When is it deactivated?

What happens when it trig-
gers?

Lost request

When a request is issued.

At the requesting L1 cache.

When the request is satis-
fied.

The request is reissued with
a new serial number.

Lost unblock

When a request is answered
(and writebacks).

At the responding L2 or
memory.

When the unblock / write-
back message is received.

An UnblockPing | WbPing
is sent.

Lost data

When owned data is sent
through the network.

At the node that sends
owned data.

When the AckO message is
received.

An OwnerPing is sent.

Lost backup deletion
acknowledgment

When the AckO message is
sent.

At the node that sends the
AckO.

When the AckBD message
is received.

The AckO is reissued with
a new serial number.

each line off the network and that such a copy can be
readily used for recovery in case of a fault that corrupts the
data while it travels through the network.

There is always one owner node” for each line which is
responsible for sending data to other nodes to satisfy read
or write requests or to perform writeback when the data
is modified.

Data transmission needs to be reliable when ownership
is transferred. Ownership can be transferred either with an
exclusive data response or a writeback response. On the
other hand, when ownership is not being transferred, data
transmission does not need to be reliable because if the data
carrying message is lost, the data can be sent again from the
owner node when the request is reissued.

In order to ensure reliable data transmission of owned
data, FTDIRCMP adds some additional states to the usual
set of MOESI states:

e Backup (B): This state is similar to the Invalid (I)
state, but the data are kept in the cache to be used for
potential recovery (that is, when leaving the Mod-
ified, Owned, or Exclusive states) and will abandon
it once an ownership acknowledgment is received.

e Blocked ownership (Mb, Eb, and Ob): To prevent
having more than one backup for a line at any given
point in time, which is important to be able to recover
in case of a fault, a cache that acquires ownership
(entering the Modified, Owned, or Exclusive states)
will avoid transmitting the ownership to another
cache until it receives a backup deletion acknowl-
edgment message from the previous owner. For
achieving this, we have added blocked versions of
the Modified, Exclusive, and Owned states. While a
line is in one of these states, the cache will not attend
external requests to that line which require owner-
ship transference.

Using the states described above, the transmission of
owned data between two nodes works as follows:

1. When a node sends owned data to another node, it
does not transition to an Invalid state. Instead, it enters
a Backup state in which the data are still kept for
recovery, although no read or write permission on the
line is retained. Depending on the particular case, the
data may be kept in the same cache block, in a backup
buffer [5] or in a writeback buffer. The cache will keep
the data until it receives an ownership acknowledgment,

2. From the point of view of the coherence protocol, a node can be either
an L1 cache, an L2 cache bank, or a memory bank.

which can be received as a message by itself or
piggybacked along with an UnblockEx message.

2. When the data message is received by the new owner,
it sends an ownership acknowledgment to the node that
sent the data. Also, it does not transition toan M, O, or
E state. Instead, it enters one of the blocked owner-
ship states (Mb, Eb, or Ob) until it receives the backup
deletion acknowledgment. While in these states, the
node will not transfer ownership to another node.
This ensures that there is never more than one backup
copy of the data. However, at this point, the node has
received the data (and, possibly, write permission to
it) and the miss is already satisfied. The ownership
acknowledgment will carry a serial number too, which
can be the same as the data carrying message.

3. When the node that sent the data receives the
ownership acknowledgment, it transitions to an Invalid
state and sends a backup deletion acknowledgment to
the other node with the same serial number as the
received message.

4. Finally, once the backup deletion acknowledgment is
received, the node that received the data transitions
to an M, O, or E state and can now transfer the
ownership to another node if necessary.

Fig. 2 shows an example of how a cache-to-cache transfer
miss which requires ownership change is handled in
FTDIRCMP and compares it with DIRCMP.?

The ownership acknowledgment can be piggybacked in
the UnblockEx message when the data are sent to the
requesting L1 by the L2 (or to L2 by the memory). In that
case, only an extra message (the backup deletion acknowl-
edgment) needs to be sent. An example of this situation can
be seen in Fig. 3.

These rules ensure that, for every cache line, there is
always either an owner node that has the data, a backup node
which has a backup copy of the data or both. They also ensure
that there is never more than one owner or one backup node.

5.1.1 Optimizing Ownership Transference from Memory
to L1 Caches
The rules explained above ensure the reliable transmission
of owned data in all cases without adding any message to the
critical path of cache misses in most cases. However, there
are potential performance problems created by the blocked
ownership states, since a node (L1 cache, L2 cache bank, or
memory controller) cannot transfer the recently received

3. In owned state, additional invalidation messages and their corre-
sponding acknowledgments would be needed.
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4 UnblockEx

3 DataEx

DIRCMP

4 UnblockEx

FTDIRCMP

Fig. 2. Message exchange for a cache-to-cache write miss. Initially, for
both protocols, L1b has the data in modifiable (M), exclusive (E), or
owned (O) state and L1a requests write access to L2 (1) which forwards
the request to L1b (2). In DIRCMP, L1b sends the data to L1a (3) and
transitions to invalid state. Subsequently, when L1a receives the data, it
transitions to a modifiable (M) state and sends an UnblockEx message to
L2. In FTDIRCMP, when L1b receives the forwarded GetX, it sends the
data to L1a and transitions to the backup state (3). When L1a receives the
data, it transitions to the blocked ownership and modifiable (Mb) state and
sends the UnblockEx message to L2 and an AckO message to L1b (4).
When L1b receives the AckO, it discards the backup data, transitions to
invalid (l) state, and sends an AckBD message to Lia (5), which
transitions to the usual modifiable (M) state on receipt.

owned data until the backup deletion acknowledgment message
is received.

This is not a problem when the data are received by an
L1 cache since the node can already use the data while it
waits for the said acknowledgment. However, in the case of
L2 misses, L2 cannot answer the L1 request immediately
after receiving the data from memory because, according to
the rules described above, it first needs to send an ownership
acknowledgment to memory and wait for the backup deletion
acknowledgment. Hence, in the case of L2 misses, these rules
would add two messages in the critical path of misses.

To avoid increasing the latency of L2 misses, we relax the
rules in these cases. We allow L2 to send the data directly to
the requesting L1 just after receiving it, keeping a backup
until it receives the ownership acknowledgment from L1. In
fact, L2 does not send the ownership acknowledgment to
memory until it receives it from L1 (most times piggy-
backed on an unblock message), since this way we can
piggyback it with an UnblockEx message. Fig. 4 shows an
example of how an L2 miss would be resolved without and
with this optimization.

To implement this behavior, we modify the set of states
for the L2 cache so that a line can be either internally
blocked or externally blocked, or both (which would
correspond to the blocked states already described).

A line enters an externally blocked state when L2 receives
data from memory and leaves it when it receives the backup
deletion acknowledgment from memory. While in one of
those states, L2 cannot send the data to the memory again,*
but it can send it to an L1 cache keeping a backup until the
respective ownership acknowledgment is received. This
ensures that there is at most one backup of the data out of
the chip, although there may be another in the chip. This is
enough to guarantee correctness in case of faults.

Conversely, a line enters an internally blocked state
when the L2 cache receives data from an L1 cache and

4. In a multiple CMP setting, it would not be able to send it to other L2 in
different chips either. In other words, the ownership of the line cannot leave
the chip.
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FTDIRCMP | DIRCMP

° 3 UnblockEx+AckO e

Fig. 3. Message exchange for an L1 write miss that hits in L2. In both
protocols, the L1 cache sends a GetX message (1) to the L2, which has
the data in an exclusive state (M or E). In DIRCMP, when L2 receives the
request, it sends the data to L1 (2) which, on receipt, transitions to
modifiable (M) state and answers to L2 with an UnblockEx message. In
FTDIRCMP, when L2 receives the request, it sends the data to L1 (2) but
it also keeps a backup copy of the data. When L1 receives the data, it
transitions to blocked ownership and modifiable (Mb) state and answers
with a message (3) which serves both as the UnblockEx and as the
AckO messages used in Fig. 2. The backup copy in L2 will be kept until
the UnblockEx+AckO message send by L1 is received and the AckBD
message (4) is sent to L1, which transitions to the modifiable (M) state
on receipt.

leaves it when the corresponding backup deletion acknowl-
edgment is received. While in an internally blocked state,
ownership cannot be transferred to another L1 cache.

5.2 Request Serial Numbers

As will be explained in Section 5.3, when a lost request
timeout triggers, FTDIRCMP assumes that the request
message or some response message has been lost due to a
transient fault and then reissues the request hoping that no
fault will occur this time. However, sometimes the timeout
may trigger before the response has been received due to
unusual network congestion or any other reason that causes

1 GetX 2 GetX

[a)
f[-‘\]J 6 DataEx DataEx
H
o5 7 UnblockEx 4 AckO
Z = *ACkO 5 AckBD
8 8 AckBD, 8 UnblockEx
a 1 GetX 2 GetX
m
N 4 DataEx
=
E 5 UnblockEx
= +AckO
A
@) 6 AckBD,

Fig. 4. L2 miss optimization of ownership transference. In both cases,
the L1 sends a GetX message (1) to L2 which, since it does not have the
data, forwards (2) it to the memory controller. The memory controller
fetches the data and sends it to L2 using a DataEx message (3). Now, in
the unoptimized case, when the L2 receives the owned data, it sends an
ownership acknowledgment (4) to the memory controller and waits for
the backup deletion acknowledgment (5) before answering to L1 with the
data (6). Once L1 receives the data, it sends a message to L2
(7) carrying the ownership acknowledgment and the unblock. When L2
receives this message, it will send a backup deletion acknowledgment to
L1 and an unblock message to the memory controller (8). On the other
hand, in the optimized version, when L2 receives the DataEx
(3) message from memory, it sends another DataEx message (4) to
L1. Notice that now the critical path of the miss requires only 4 hops
instead of 6. Once the L1 has received the data, it will send a message
(5) with the unblock and the ownership acknowledgment to L2 which will
then send the unblock to memory and the backup deletion acknowl-
edgment to L1 (6). Finally, when the memory controller receives the
ownership acknowledgment, it will answer with a backup deletion
acknowledgment message (7).



FERNANDEZ-PASCUAL ET AL.: DEALING WITH TRANSIENT FAULTS IN THE INTERCONNECTION NETWORK OF CMPS AT THE CACHE...

1 GetX

Fig. 5. Transaction where request serial numbers avoid using stale data.
L1a makes a request (1) to L2 which forwards it to L1b (2). L1b sends
the data (3) to L1a, but this message gets delayed in the network for
such a long time that the request timeout triggers and L1a reissues the
request (4) which is forwarded again to L1b (5) which has a backup copy
of the data and resends it (6). This time, it arrives to L1a which sends
(7) an unblock to L2 and an ownership acknowledgment to L1b. L1b
answers with a (8) backup deletion acknowledgment to L1a. After
modifying the data, L1a performs a writeback to L2 (messages 9-13),
and after that, it issues another request (14). If the first data message
(8) arrives at this moment and is not discarded using its serial number, it
would allow L1a to use the old data.

an extraordinarily long latency for solving a miss. That is,
there may be false positives.

In case of a false positive, two or more duplicate
response messages would arrive to the requester and, in
some cases, the extra messages could lead to an incoher-
ence. For this reason, FTDIRCMP uses request serial numbers
to discard responses which arrive too late, when the request
has already been reissued.

Every request and every response message carries a
serial number. Request serial numbers are chosen by the L1
cache that issues the request (or by the L2 in case of
writebacks from L2 to memory). Responses or forwarded
requests will carry the serial number of the request that they
are answering to. When a request is reissued, it will be
assigned a new serial number which will allow to
distinguish between responses to the old request and
responses to the new one.

The L1 cache, L2 cache, and memory controller must
remember the serial number of the requests that they are
currently handling and discard any message which arrives
with an unexpected serial number or from an unexpected
sender. This information needs to be updated when a
reissued request arrives. Discarding any message in
FTDIRCMP is always safe (even if it could be not strictly
necessary in some cases) since the protocol already has
provisions for lost messages of any type.

Fig. 5 shows a case where not using request serial
numbers to discard a message that arrives too late would
lead to incoherency or using stale data. The example
assumes that the interconnection network is not point-to-
point ordered, but similar situations are also possible on
point-to-point ordered networks [8].

Analogously, serial numbers are also used to be able to
discard duplicated unblock messages, duplicated writeback
messages, or duplicated backup deletion acknowledg-
ments. These duplicated messages can appear due to
unnecessary UnblockPing, WbPing, or duplicated ownership
acknowledgment messages sent in the case of false
positives of the lost unblock timeout or the lost backup deletion
acknowledgment timeout.
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5.3 Faults Detected by the Lost Request Timeout
The lost request timeout starts when a request (GetX, GetS, or
Put message) is issued and stops once it is satisfied (that is,
when the L1 cache acquires the data and the requested
access rights for it). Hence, it will trigger whenever a
request takes too much time to be satisfied or cannot be
satisfied because any of the involved messages has been
dropped, causing a deadlock. It is maintained by the L1 for
each pending miss. Hence, the extra hardware required to
implement it is one extra counter for each MSHR entry.

When this timeout triggers, FTDIRCMP assumes that
some message which was necessary to finish the transaction
has been lost due to a transient fault and retries the request.
The particular message that may have been lost is not very
important: it can be the request itself (GetX or GetS), an
invalidation request sent by the L2 or the memory controller
(Inv), a response to the request (Data or DataEx), or an
invalidation acknowledgment (Ack). The timeout is re-
started after the request is reissued to be able to detect
additional faults.

To retry the request, L1 chooses a new request serial
number and will ignore any response which arrives with
the old serial number after the lost request timeout triggers.
See Section 5.2 for more details.

As mentioned before, L2 needs to be able to detect
reissued requests and merge them in the MSHR with the
original request (assuming it was not lost). The L2 will
identify an incoming request as reissued if it has the same
requester and address as another request currently in the
MSHR but with a different request serial number.

A node which holds a line in backup state should also
detect reissued requests to be able to resend the data (using
the new serial number). Hence, every cache that transmits
owned data needs to remember the destination node of that
data at least until the ownership acknowledgment is
received. This way, if a DataEx response is lost, it will be
detected using the lost request timeout and corrected by
resending the request.

This timeout is also used for writeback requests (Put
messages). The timeout starts when the Put message is sent
and stops once the writeback acknowledgment (WbAck or
WbAckData messages) is received. When it triggers, the Put
message will be reissued with a different serial number. This
way, this timeout can detect the loss of Put, WbAck, and
WbAckData messages but not the loss of WbData or WbNoData
messages which is handled by the lost unblock timeout.

5.4 Faults Detected by the Lost Unblock Timeout

Unblock messages (Unblock or UnblockEx) are sent by the L1
once it receives the data and all required invalidation
acknowledgments to notify the L2 that the miss has been
satisfied. When L2 receives one of these messages, it
proceeds to attend the next miss for that line, if any.

When an unblock message is lost, L2 will be blocked
indefinitely and will not be able to attend further requests
for the same line. Lost unblock messages cannot be detected
by the lost requests timeout because that timeout is
deactivated once the request is satisfied, just before sending
the unblock message.

To avoid a deadlock due to a lost unblock message, the
L2 starts the lost unblock timeout when it answers to a
request and waits for an unblock message to finalize the
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transaction. When this timeout triggers, it will send an
UnblockPing message to L1.

When an L1 cache receives an UnblockPing message and
it has already satisfied that miss (hence, it has already sent a
corresponding unblock message which may have been lost
or not), it will answer with a reissued Unblock or UnblockEx
message, depending on whether it has exclusive or shared
access to the line. If the miss has not been resolved yet
(hence, no unblock message could have been lost because it
was not sent in the first place), the UnblockPing message will
be ignored. The L1 cache can check whether the miss has
been already resolved or not by looking at its MSHR for a
pending miss for the same address.

Unblock messages are also exchanged between L2 and
the memory controller in an analogous way. Hence,
FTDIRCMP uses an unblock timeout and UnblockPing in
the memory controller too.

Also, this timeout is used to detect lost writeback
messages (WbData and WbNoData) in a similar manner.
When a Put is received by the L2 (or the memory), the
timeout is started and a WbAck or WbAckData is sent to L1 (or
L2) to indicate that it can perform the eviction and whether
data must be sent or not. Upon receiving this message, L1
stops its lost request timeout, sends the appropriate writeback
message, and assumes that the writeback is already done.
Once the writeback message arrives to L2, the lost unblock
timeout is deactivated. If the writeback message is lost (or it
just takes too long to arrive), the timeout will trigger and L2
will send a WbPing message to L1. L1 will answer with a new
writeback message (in case, it still has the data) or a
WhCancel message which tells L2 that the writeback has
already been performed. Note that modified data cannot be
lost thanks to the rules described in Section 5.1.

5.5 Faults Detected by the Lost Backup Deletion
Acknowledgment Timeout

As explained in Section 5.1, when ownership has to be
transferred from one node to another, FTDIRCMP uses a pair
of acknowledgments to ensure the reliable transmission of the
data. These acknowledgments are sent out of the critical path
of a miss when they are not piggybacked with the unblock
message. Losing any of these acknowledgments would lead
to a deadlock which will not be detected by the lost request or
lost unblock timeout (unless the ownership acknowledgment
was lost along with an unblock message) because these
timeouts are deactivated once the miss has been satisfied.

For these reasons, we introduce the lost backup deletion
acknowledgment timeout which starts when an ownership
acknowledgment is sent and stops when the backup
deletion acknowledgment arrives. This way, it will trigger
if any of these acknowledgments is lost or arrives too late.
When it triggers, a new AckO message will be sent with a
newly assigned serial number.

If the ownership acknowledgment was actually lost, the
new message will hopefully arrive to the node that is
holding a backup of the line and that backup will be
discarded and an AckBD message will be returned.

If the first ownership acknowledgment did arrive to its
destination (false positive), the new message will arrive to a
node which no longer has a backup and which already
responded with an AckBD message. Anyway, a new AckBD
message will be sent using the serial number of the new
message. The old AckBD message will be discarded (if it was
not actually lost) because it carries an old serial number.
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Fig. 6. Transaction where the lost data timeout detects data which have
been wrongly discarded. L1a makes a request (1) to L2 which forwards it
to L1b. The forwarded message (2) gets delayed in the network, and
hence, the lost request timeout triggers in L1a. When this happens, L1a
reissues the request (3) which is forwarded again by L2 (4). This time,
the request arrives to L1b which sends the data (5) to L1a. When L1a
receives the data, it sends (6) an unblock message to L2 and an
ownership acknowledgment to L1b which responds with a backup
deletion acknowledgment (7) to L1a. Later, L1b makes a new request
which is handled in a similar way (messages 8-12), so it has the only
copy of the data again with exclusive access. If the first forwarded
request (2) arrives now to L1b, it will send the data to L1a which will
discard it (since it does not expect a response with that serial number
anymore). In this situation, no node will have the data nor expect it; so,
future accesses to the line would cause a deadlock.

5.6 Faults Detected with the Lost Data Timeout

The rules described in Section 5.1 guarantee that when an
owned data carrying message is lost or discarded due to a
wrong serial number, the data will always be in backup
state in some node. Usually, when this happens, the node
that requested the data in the first place will reissue the
request after its lost request timeout triggers and the data will
be resent using the backup copy. Alternatively, if the data
ownership transference was due to a writeback, the lost
unblock timeout will trigger in the L2 (or memory) and the
data will be resent when the WbPing message is received.

In the previous situations, the fault was detected (either
with the lost request timeout or the lost backup deletion
acknowledgment timeout) because there was still some node
which expected the data to arrive, and for that reason, had a
timeout enabled to detect the situation.

However, if request messages can be reordered while
traveling through the network, it can happen that the owned
data is sent to some node which does not expect the data, and
hence, will discard it. Since in that case, the data will be kept
only in backup state in the sender node, no node will be able
to access it and this will lead to a deadlock the next time that
the line is accessed.

To be able to detect this situation, we have added the lost
data timeout which is started whenever an owned data
carrying message is sent and stopped once the ownership
acknowledgment is received. The lost data timeout is not
activated when the unblock timeout is activated in the same
node, since the latter can detect the same faults too. This
timeout is not necessary if the network guarantees point-to-
point ordering of messages.

Fig. 6 shows a case where a message-carrying owned
data is discarded by a node which receives it unexpectedly
and the lost data timeout is needed to detect the situation.

When the lost data timeout triggers, an OwnerPing message
is sent to the node that was sent the data before. Upon
receiving this message, a node will react as described below:



FERNANDEZ-PASCUAL ET AL.: DEALING WITH TRANSIENT FAULTS IN THE INTERCONNECTION NETWORK OF CMPS AT THE CACHE...

TABLE 4

Summary of Timeouts Used in FTTOKENCMP
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sent.

backup.

knowledgement arrives.

Timeout When is it activated? Where is it activated? When is it deactivated? What happens when it trig-
gers?
Lost token When a persistent request | At the starver cache. When the persistent request | Request a token recreation.
becomes active. is deactivated.
Lost data When the owner token is | At the cache that holds the | When the ownership ac- | Request a token recreation.

Lost backup deletion
acknowledgement

When a line enters the
blocked state.

At the cache that holds the
owner token.

When the backup deletion
acknowledgement arrives.

Request a token recreation.

Lost persistent deac-
tivation

When an external persistent
request is activated.

At every cache (by the per-
sistent request table).

When the persistent request
is deactivated.

Send a persistent request
ping.

e If the node does not have the ownership of the line, it
will answer with an NackO message with the same
serial number than the received ping message.
Additionally, if it has a pending request for that
address, it should reissue it with a new serial
number to avoid gaining ownership after sending
the NackO due to some data message currently
delayed in the network.

e If the node has the ownership in a blocked state (i.e.,
it has already sent an ownership acknowledgment
and is waiting for the corresponding backup dele-
tion acknowledgment), it will reissue the ownership
acknowledgment with a new serial number. Basi-
cally, it will act as if the lost backup deletion acknowl-
edgment timeout had triggered.

e In other cases (the node has ownership but it is not
blocked), the ownership ping should be ignored.

The node that has the backup will regain ownership if it

receives a NackO message with the expected serial number,
avoiding the potential deadlock if owned data had been
discarded. It will forget the serial number of the issued
NackO (hence, canceling the ping) if it receives an AckO or a
new reissued request.

6 A TOKEN-BASED FAULT-TOLERANT CACHE
COHERENCE PROTOCOL

Prior to the design of FTDIRCMP, we had already designed
and evaluated a token-based fault-tolerant cache coherence
protocol which we call FTTOKENCMP [5]. In this section,
we briefly describe FTTOKENCMP and compare it with
FTDIRCMP.

The fault tolerance measures of both protocols are
similar in their intent and functionality and differ mostly
in the implementation. Table 4 shows a summary of the
timeouts used by FTTOKENCMP.

FTTOKENCMP uses a mechanism similar to the one of
FTDIRCMP to avoid data loss, ensuring reliable transmission
of owned data as described in Section 5.1. Section 6.1
formalizes that mechanism with a modified version of token
counting rules.

The fault recovery mechanism is different for each
protocol. In FTTOKENCMP, fault recovery is achieved by
means of a centralized mechanism called the token recreation
process arbitrated by the memory controller. This process
works as long as there is a valid copy of data in some cache or
one and only one backup copy (which is guaranteed by the
rules in Section 6.1). The memory controller attends token

recreation requests in FIFO order to avoid livelock and it
works by sending messages to every cache asking it to
invalidate all tokens and send back to memory any data thatit
may have. Once the memory receives the data or invalidation
acknowledgments from every cache, it sends it to the cache
which requested the recovery with a new set of tokens.

To avoid the risk of creating an incoherence due to stale
responses still traveling through the interconnection net-
work after a token recreation, all coherence responses are
tagged with a foken serial number which is increased during
the token recreation process. Messages with a wrong token
serial number are discarded when received by any node.
Token serial numbers are stored in every node in a
dedicated structure (the token serial number table), but only
for those cache lines which have a serial number different
than zero. We have found that having a very small number
of entries of only a few bits each is enough for good
results. When all entries are used, one of them is evicted
setting its serial number to zero by means of the token
recreation process.

The token serial numbers used in FTTOKENCMP serve a
similar purpose to the request serial numbers used in
FTDIRCMP (e.g., being able to discard stale messages after
fault recovery which could cause an incoherence), but the
latter are easier to implement and more scalable. Token serial
numbers are associated with each cache line and need to be
updated in a coordinated fashion during the foken recreation
process. Hence, they require an additional structure in each
cache to store them (not only for those hopefully few lines
that had a token serial number different than zero, but even
for lines which are not currently in any cache). On the other
hand, request serial numbers are associated with individual
requests and so they are short-lived information which can
be stored in the MSHR. However, token serial numbers do not
need to be carried in request messages (only in responses)
while request serial numbers are sent with every request and
need to be propagated with every message which is sent as
a consequence of the request.

In some cases, FTTOKENCMP achieves deadlock recov-
ery issuing ping messages when a timeout triggers to force
the reissue of a message which is expected to finish a
coherence transaction, like a Persistent Request Deactivation.
These ping messages are analogous to the UmnblockPing
messages used by FTDIRCMP.

6.1 Fault-Tolerant Token Counting Rules

The main observation of the token framework is that simple
token counting rules can ensure that the memory system
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behaves in a coherent manner. To implement fault
tolerance, we have modified the token counting rules to
ensure that data cannot be lost when some message fails to
arrive at its destination. The following token counting rules
are based on those introduced by Martin [11], and extend
them to ensure reliable ownership transference (modifica-
tion with respect to the original rules are emphasized):

e Conservation of Tokens: Each line of shared memory
has a fixed number of T" + 1 tokens associated with it.
Once the system is initialized, tokens may not be
created or destroyed. One token for each block is the
owner token. The owner token may be either clean or
dirty. Another token is the backup token.

e  Write Rule: A component can write a block only if it
holds all T tokens for that block which are not the
backup tokens and has valid data. After writing the
block, the owner token is set to dirty.

e Read Rule: A component can read a block only if it
holds at least one token different than the backup token
for that block and has valid data.

e Data Transfer Rule: If a coherence message carries a
dirty owner token, it must contain data.

o  Owner Token Transfer Rule: If a coherence message
carries the owner token, it must not carry the backup
token also.

e  Backup Token Transfer Rule: The backup token can only
be sent to another node that already holds the owner token.

e  Blocked Ownership Rule: The owner token cannot be sent
to other component until the backup token has been received.

e Valid-Data Bit Rule: A component sets its valid-
data bit for a block when a message arrives with data
and at least one token different than the backup token.
A component clears the valid-data bit when it no
longer holds any tokens or when it holds only the
backup token. The home memory sets the valid-data
bit whenever it receives a clean owner token, even if
the message does not contain data.

e Clean Rule: Whenever the memory receives the
owner token, the memory sets the owner token to
clean.

The above token counting rules along with the starvation
and deadlock avoidance measures implemented by persis-
tent requests and the token recreation process compose the
correctness substrate of FTTOKENCMP. These rules enforce
the same global invariants as the original rules and,
additionally, they enforce the following invariant: “For any
given line of shared memory at any given point in time, there
will be at least one component holding a valid copy of the
data, or one and only one component holding a backup copy
of it, or both.” In other words: when the data is sent through
the network (where it is vulnerable to corruption), it is
guaranteed to be stored also in some component (where it is
assumed to be safe) either as a valid and readable cache block
or as a backup block to be used for recovery if necessary.

We have modified the conservation of tokens rule to add a
special backup token. We have also modified the write rule
and the read rule so that, unlike the rest of the tokens, this
token does not grant any permission to its holder. Instead, a
cache holding this token will keep the data only for
recovery purposes. The new owner token transfer rule ensures
that whenever a cache has to transfer the ownership to
another cache, it will keep the backup token (and the
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associated data as a backup). The new backup token transfer
rule ensures that the backup token is not transferred until
the owner token (and hence, the data) has been received by
another cache. Of course, this implies that the component
holding the owner token has to communicate that fact to the
component that holds the backup token, usually by means
of an ownership acknowledgement. It also implies that a cache
receiving the backup token has always received the data
before. Finally, the new blocked ownership rule ensures that
there is at most one backup copy of the data, since there is
only one backup token. The reliable ownership transference
mechanism used by TOKENCMP (explained in [5]) complies
with these rules.

7 EVALUATION

The goals of this section are to measure the overheads
introduced by our fault-tolerant measures in the fault-free
case and the performance degradation due to faults when
they occur.

We have also performed an extensive functional valida-
tion of these measures using randomized testing and
manually checking many possible cases. The randomized
testing stresses protocol corner cases by issuing requests
that simulate very contended accesses to a few memory
lines, using random latencies for message delivery, and
performing fault injection with very high fault rates. The
tester also issues many concurrent requests, like a very
aggressive out-of-order processor would do. Hence,
although we have not done a formal verification of the
protocols, we are fairly confident of the correctness of our
fault-tolerant measures.

7.1 Methodology

We have used full system simulations of a mix of applica-
tions with fault injection with the aims of determining
adequate values for some protocol parameters, assess the
fault tolerance capability of each protocol, and measure the
overhead introduced by the fault tolerance measures. For
this, we have used a custom version of Multifacet GEMS [13]
detailed memory model and Virtutech Simics [10]. Every
simulation has been performed several times using different
random seeds to account for the variability of multithreaded
execution; such variability is represented by the error bars in
the figures which enclose the resulting 95 percent confidence
interval of the results. We have simulated tiled CMP
systems, as described in Section 3. Table 5 shows the relevant
parameters common to all the simulations. We have
performed experiments to adjust some protocol-specific
parameters, as shown in Sections 7.5 and 7.6.

We have used a mix of scientific, multimedia, and
commercial applications for the evaluation: Apache (10,000
http transactions) is version 2.2.4 of the http server serving
static pages of different sizes. SpecJbb (8,000 transactions) is
a Java server workload based on SPEC JBB 2000. Barnes
(8,192 bodies, four time steps), FFT (256K complex
doubles), Ocean (258 x 258 ocean), Raytrace (10 Mb,
teapot.env scene), and Water-SP (512 molecules, four time
steps) are from the SPLASH-2 [25] benchmark suite.
Unstructured (Mesh.2K, five time steps) is a computational
fluid dynamics application. FaceRec (ALPBench training
input), MPGdec (525_tens_040.m2v), and SpeechRec (ALP-
Bench default input) are from the ALPBench [9] benchmark
suite. The experimental results reported here correspond to
the parallel phase of each program only.
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TABLE 5
Characteristics of Simulated Systems

16-Way Tiled CMP System

Processor speed

[ 2GHz

Cache parameters

Cache line size

L1 cache:
Size, associativity
Hit time

Shared L2 cache:
Size, associativity
Hit time

64 bytes

32 KB, 4 ways
3 cycles

1024 KB, 4 ways
15 cycles

Memory parameters

Memory access time
Memory interleaving

160 cycles
4-way

Network parameters

Topology

Non-data message size
Data message size
Channel bandwidth

2D Mesh
8 bytes
72 bytes
64 GB/s

7.2 Execution Time Overhead

We have measured the execution time of each one of the
fault-tolerant protocols using the fault tolerance parameters
determined above with several message loss rates and
compared it to the execution time of the non-fault-tolerant
protocols in a fault-free scenario. The results are shown in
Fig. 7a. Fault rates are expressed in number of messages
discarded per million of messages that travel through the
network and all results are normalized with respect to the
execution time of the DIRCMP protocol. Of course, results
for non-fault-tolerant protocols are only shown in the fault-
free cases.

We can see that the runtime overhead of each fault-tolerant
protocol when compared to its non-fault-tolerant counterpart
in a fault-free scenario is not measurable. This is consistent
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with the fact that, when no faults occur, the only significant
difference in the behavior of the fault-tolerant protocols with
respect to the non-fault-tolerant ones is just the extra
acknowledgments used to ensure reliable owned data
transmission, which are sent out of the critical path of misses.

These results assume that there is enough bandwidth so
that the extra messages required by our protocols (see
Section 7.3) do not increase the latency of the network. This
is likely to be the case in a CMP environment.

As the fault rate increases, so does the execution time.
However, this performance degradation is very moderate,
and only one application (Raytrace) suffers a performance
degradation higher than five percent even with 125 corrupted
messages per million.

7.3 Network Overhead

In the absence of faults, the most important difference in the
behavior of our protocols with respect to their non-fault-
tolerant counterparts is the exchange of acknowledgments to
ensure thatowned datais transferred safely soas toavoid data
loss. Although they are sent out of the critical path of cache
misses so that they donot have effect in the miss latency, these
acknowledgments introduce additional network traffic
which is the main cost of the fault tolerance measures.

We have measured the network overhead of our proposal
in terms of the relative increase in the number of messages
and the number of bytes transmitted. We have increased by
one byte the message sizes of the fault-tolerant protocols
with respect to the non-fault-tolerant ones to accommodate
the request serial numbers and token serial numbers. This means
a 1.14 percent increase in size for data messages and a
12.5 percent increase for control messages. The results of
these measurements are shown in Figs. 7b and 7d. To allow
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Fig. 7. Execution time and network overhead of each cache coherence protocol compared to DIRCMP. (a) Execution time overhead with several fault
rates. (b) Number of messages (no faults). (c) Network overhead (bytes) with several fault rates. (d) Bytes transmitted (no faults).
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Fig. 8. Relative execution time with burst faults of several lengths with
respect to single message faults. The fault rate is fixed to 125 corrupted
messages per million. (a) Execution time overhead. (b) Network traffic
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a comparison with simple interconnection-level fault toler-
ance measures, we also include bars showing the network
overhead of using the base protocols with end-to-end
reliable delivery (DIRCMP+NLFT and TOKENCMP+NLFT),
using an acknowledgment for each message.

We can see that, in terms of message traffic, the overhead
of the fault-tolerant protocols comes entirely from the
acknowledgments used to ensure reliable data transmission
(“Ownership” part of each bar). This overhead is less than
40 percent on average for our fault-tolerant protocols.
Moreover, the overhead drops considerably when it is
measured in terms of bytes, even considering that every
message is one byte longer in the fault-tolerant protocols.
FTDIRCMP has a higher relative overhead because network
traffic is much lower for DIRCMP than for TOKENCMP.

Fig. 7c shows the network overhead under several fault
rates. The network traffic increases slowly with the fault
rate due to the reissued messages or the token recreation
messages. In the case of FTDIRCMP, the increase is almost
unmeasurable for the fault rates shown for all applications
except Raytrace.

7.4 Effect of Bursts of Faults

Until now, we have assumed that all faults are distributed
evenly in time and that each fault only affects one message.
However, it is possible for a single fault to affect more than
one message. For example, a fault may hit a buffer holding
several messages and make it discard all of them. Note that
usually those messages will be part of different transactions
involving different addresses.

We have performed experiments to determine the effect
of the burst length in the performance of our fault-tolerant
cache coherence protocols. Fig. 8 shows how the execution
time and network overhead vary with the length of burst.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 21,

NO. 8, AUGUST 2010

2.47 | W FtDir-1500 Z FtDir-3000 [] FtToken-1500 [l FtToken-3000
€o5 [0 FtDir-2000 M FtDir-4000 [ FtToken-2000 M FtToken-4000
=7 protocol-timeout
5 2.07
3 1.8]
& 3
o 1.67 |
o 117 I
g 1.4 i
© I
£ 1.2
2otk il ikarmill
0.8 SRR RIS w ‘
apache barnes ocean watersp facerec speechrec
specjbb fft raytrace  unstructured mpgdec Average

Fig. 9. Relative execution time with respect to DIRCMP without faults for
each fault-tolerant protocol with 250 corrupted messages per million
using different values for the fault detection timeouts.

When performing fault injection of bursts of length L, we
determine for each message, whether it has been corrupted
or not, based on the probability given by the fault rate
divided by L. If the message is determined to have been
corrupted, then this message and the next L — 1 messages to
arrive will be discarded. This ensures that the total number
of corrupted messages is the same for the same amount of
traffic and fault rate, independently of the burst size.

As can be seen in Fig. 8a, on average and for most
applications, the length of the burst of dropped messages has
little effect in the execution time. Some applications (like
ocean and unstructured) show a modest slowdown as the
fault rate increases. More surprisingly, some applications
seem to benefit from longer bursts. This can be explained due
to the fact that since the total number of messages that get
corrupted is approximately the same (125 messages per
million of messages that travel through the network), longer
bursts actually mean fewer faults (each fault affects more
messages). Since the recovery of each message usually
happens in parallel to the recovery of other messages, the
overhead of the recovery process may actually be reduced
over the whole execution of the program. Raytrace is also the
application which is most affected by single message faults, as
can be seen in Fig. 7a.

The effect in network traffic is similar, as can be seen in
Fig. 8b. It is important to note that the effect of burst length
in performance is more dependent on the application than
on the particular coherence protocol: the behavior for each
application is very similar with FTDIRCMP and with
FTTOKENCMP.

7.5 Adjusting the Fault Detection Timeouts

As explained above, all fault-tolerant protocols achieve
fault detection by means of a number of timeouts. Each
protocol requires up to four timeouts which are active at
different places and times during a memory transaction or
cache replacement. The value of these timeouts determines
the latency of fault detection; hence, shorter values help to
achieve lesser performance degradation in the presence of
faults since fault recovery will start earlier. For example, for
the two fault-tolerant protocols considered in this work,
Fig. 9 shows how the execution time increases more than
15 percent on average when the value of these timeouts
vary from 1,500 cycles to 4,000 cycles under a fixed fault
rate of 250 corrupted messages per million of messages that
travel through the network.
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Fig. 10. Maximum miss latency (in cycles) of each protocol without
faults.

Since false positives occur when a timeout triggers before
a miss has had enough time to be satisfied, to avoid false
positives, the timeout values should be large enough to
allow every memory transaction to finish, assuming that no
fault occurs. Fig. 10 shows the measured maximum latency
in CPU cycles of each protocol when no faults occur and
disabling all the timeouts.

Looking at Fig. 10, we can see that the maximum
latency of the fault-tolerant protocols is almost the same as
that of their corresponding non-fault-tolerant counterpart.”
This is expected, since the behavior of the fault-tolerant
protocols when no timeout triggers is almost the same as
that of the non-fault-tolerant ones, except for the owner-
ship acknowledgments which are sent out of the critical
path of cache misses.

This latency is less than 1,200 cycles for the FTDIRCMP
protocol and less than 1,900 cycles for the FTTOKENCMP
protocol. Hence, we can choose any value greater than those
for the timeouts to avoid having any false positive for these
workloads. Using shorter values is still possible but would
increase the number of false positives and could degrade
performance and increase network traffic due to the retried
requests or token recreation requests. However, if the
chosen values are too low (lower than the time required to
finish the transaction), the recovery mechanism would be
invoked too frequently preventing forward progress.

We have considered using different values for each of
the four timeouts of each protocol, but our experiments do
not show any significant advantage in doing so.

We have chosen a value of 2,000 cycles for all timeouts in
the FTTOKENCMP protocol and 1,500 cycles in the
FTDIRCMP protocol. These values are large enough to
avoid false positives in every case and, as shown below,
achieve very low performance degradation when faults
actually occur.

7.6 Effect of the Request Serial Number Size in
Fault Tolerance

The ability of FTDIRCMP to correctly recover from faults

depends on the number of bits used for encoding the request

serial number which is used to discard stale responses to

requests which have been reissued (for example, to be able to

discard old acknowledgments to reissued invalidation

5. In some cases, the maximum latency of the fault-tolerant protocol is
slightly lower that its non-fault-tolerant counterpart, which may be
surprising. This is accidental and is not due to any optimization. Slight
changes in the behavior of the protocols produce these variations due to the
nondeterministic nature of parallel applications.
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Fig. 11. Required RSN bit length to discard every old response to a
reissued message in FTDIRCMP.

requests which could lead to incoherence in some cases).
Ideally, this number should be as low as possible to reduce
overhead in terms of increased message size and hardware
resources to store it, while being sufficient to ensure that
when a request is reissued (even several times in a row and in
case of false positives) every response to the old request is
discarded. Since the number of reissued messages increases
as the fault rate increases, the number of bits used to encode
request serial numbers determines the maximum fault rate
supported by each protocol.

To measure this, we have performed simulations of
FTDIRCMP using a wide variety of fault rates. We have
used 32-bit request serial numbers in our simulator to
encode the request serial number for these simulations, but
we have recorded how many lower order bits were
required to distinguish all the request serial numbers that
needed to be compared (every time that two request serial
numbers are compared, we record the position of the least
significant bit which is different in both numbers). Then, we
assume that the maximum of all these measures is an upper
bound of the number of bits required to ensure correctness
for each fault rate. These results are shown in Fig. 11.

As can be seen, when using the FTDIRCMP protocol, nine
bits are enough for all the tested fault rates and eight bits
suffice for fault rates up to 250 corrupted messages per
million. Hence, we have chosen to use eight bits to encode the
request serial numbers in the rest of our experiments which is
enough to achieve fault tolerance up to 250 corrupted
messages per million, which is already an unrealistic and
unreasonably high fault rate. For the rest of the evaluation,
we will show fault rates only up to 125 corrupted messages
per million. This fault rate should be supported by both
protocols with the configuration described above.

8 HARDWARE IMPLEMENTATION OVERHEADS

The token serial number table is implemented with a small
associative table in each tile and at the memory controller to
store those serial numbers whose value is not zero. We have
found that using two bits to encode the serial number and
16 entries at each node are enough for supporting the fault
rates used in this paper. If the tokens of any line need to be
recreated more than four times, the counter wraps to zero
(effectively freeing a table entry table), and if more than 16
different lines need to be stored in the table, the least
recently modified line is evicted by means of using the
token recreation process to set its serial number to zero.
On the other hand, request serial numbers need not be kept
once the memory transaction is complete. They can be
stored in the MSHR or in a small associative structure in
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cases where a full MSHR is not needed. As shown in
Section 7.6, using 8 bits to encode request serial numbers is
enough to achieve tolerance to very high fault rates.

To be able to detect reissued requests in FTDIRCMP, the
identity of the requester currently being serviced by the L2
or the memory controller needs to be recorded, as well as
the receiver when transferring ownership from one L1
cache to another.

The timeouts used for fault detection require the
addition of counters to the MSHRs or a separate pool of
timeout counters. Although there are up to four different
timeouts involved in any coherence transaction, no more
than one counter is required at any time in the same node
for a single coherence transaction. In the case of FTTO-
KENCMP, all but one timeout can be implemented using the
same hardware already used to implement the starvation
timeout required by token protocols.

We have analyzed FTDIRCMP from the point of view of
its implementation using deterministic routing on a 2D
mesh. Due to the exchange of ownership acknowledgments
to ensure reliable data transmission, the worst case message
dependence chains of FTDIRCMP are one message longer
than those of DIRCMP. Hence, a correct implementation
requires an additional virtual network to ensure deadlock-
free operation.

A less important source of overhead is the increased
pressure in caches and writeback buffers because of the
blocked ownership and backup states and the effect of the
reliable ownership transference mechanism in replace-
ments. When a backup buffer or a writeback buffer is used,
we have not been able to detect any effect in the execution
time due to these reasons. The size of the writeback buffer
may need to be increased, but our previous work [5] shows
that one extra entry would be enough.

Finally, the design complexity of the cache coherence
protocol increases due to the fault tolerance measures.
However, the additional complexity is assumable, and the
fault tolerance measures may simplify the handling of some
corner cases.

9 CONCLUSION

We have shown that it is possible to deal with transient
faults in the interconnection network of CMPs at the cache
coherence protocol level. For this task, we have designed a
fault-tolerant directory-based coherence protocol which
ensures the correct execution of programs even if the
network is subject to transient faults and does not correctly
deliver all the coherence messages, and we have presented
a set of fault-tolerant token counting rules and a fault-
tolerant token-based protocol that uses them.

We have compared and evaluated the performance of the
two protocols using full system simulation and performing
fault injection to check the correctness of the protocol and to
measure the performance degradation caused by several
fault rates. We have shown that the overhead imposed in the
execution time due to the fault-tolerant measures is
negligible. Further, we have shown that the performance
impact of moderate fault rates in the interconnection
network is insignificant when using our protocols.

We have explained how to tune the fault tolerance
parameters of the protocols to achieve the desired level of
fault tolerance, performance degradation in the presence of
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faults, and overhead in the absence of faults. We have
shown that, even for fault rates which are unrealistically
high, the hardware overhead of our proposals is low. The
main cost of our fault tolerance measures is a moderate
increase in network traffic.

We have found that the network usage of our protocols
increases with the fault rate, and hence, network capacity
can be a limiting factor for fault tolerance. Due to the
efficient network usage of directory-based protocols, we
think that FTDIRCMP is a good cache coherence protocol for
large-scale tiled CMPs.

As future work, we would want to explore whether
similar techniques can be used to deal with intermittent
faults. Also, since the main feature of our protocol is that it
does not assume that every coherence message arrives to its
destination while still guaranteeing correct program execu-
tion, we want to try to take advantage of this ability to allow
the interconnection network to occasionally drop messages
if that helps with performance in the common case or
enables simpler interconnection network designs.
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