
© 2003 Association for Computing Machinery. ACM acknowledges that this contribution was authored
or co-authored by a contractor or affiliate of the U.S. Government. As such, the Government retains
a nonexclusive, royalty-free right to publish or reproduce this article, or to allow others to do so, for
Government purposes only.

SC’03, November 15–21, 2003, Phoenix, Arizona, USA
Copyright 2003 ACM 1-58113-695-1/03/0011 . . . $5.00

BCS-MPI: A New Approach in the System Software Design
for Large-Scale Parallel Computers∗

Juan Fernández1,2 Eitan Frachtenberg1 Fabrizio Petrini1

1Performance and Architecture Laboratory (PAL)
Computer and Computational Sciences (CCS) Division

Los Alamos National Laboratory, NM 87545, USA
{juanf,eitanf,fabrizio}@lanl.gov

2Dpto. Ingenieŕıa y Tecnoloǵıa de Computadores
Universidad de Murcia, 30071 Murcia (SPAIN)

Abstract

Buffered CoScheduled MPI (BCS-MPI) introduces a new approach to design the communication layer for large-
scale parallel machines. The emphasis of BCS-MPI is on the global coordination of a large number of communicating
processes rather than on the traditional optimization of the point-to-point performance. BCS-MPI delays the inter-
processor communication in order to schedule globally the communication pattern and it is designed on top of
a minimal set of collective communication primitives. In this paper we describe a prototype implementation of
BCS-MPI and its communication protocols. Several experimental results, executed on a set of scientific applications,
show that BCS-MPI can compete with a production-level MPI implementation, but is much simpler to implement,
debug and model.
Keywords: MPI, buffered coscheduling, STORM, Quadrics, system software, communication protocols, cluster com-
puting, large-scale parallel computers.

1 Introduction

One of the oft-ignored and yet vitally important as-
pects of large-scale parallel computers is system soft-
ware. This software, which consists essentially of ev-
erything that runs on the computer other than user
applications, is required to make the hardware usable
and responsive. However, experience in the develop-
ment of large-scale machines, and in particular of the
ASCI1 ones, shows that it can take several years to de-
sign, implement, debug and optimize the entire soft-
ware stack before these machines become reliable and
efficient production-level systems [14].

The complexity of these machines has risen to a
level that is comparable to that of the scientific simula-
tions for which they are used. Such high-performance-

1http://www.lanl.gov/projects/asci/

computing (HPC) applications routinely use thousands
of processes and each process can have a large memory
image and multiple outstanding messages, resulting in
a very large and complicated global state.

System software consists of various aspects, includ-
ing communication libraries, resource management
(the software infrastructure in charge of resource al-
location and accounting), services for parallel file sys-
tem, and fault tolerance. The current state of the
art is to design these components separately, in or-
der to have a modular design and allow different
developers to work concurrently while limiting cross-
dependencies. Many of these components have many
elements in common, such as communication mech-
anisms, that are implemented and re-implemented
several times. In some cases the lack of a single
source of system services is also detrimental to perfor-
mance: most parallel systems cannot guarantee qual-
ity of service (QoS) for user-level traffic and system-
level traffic in the same interconnection network. Low-
priority, best-effort traffic generated by the parallel

1

Proceedings of the ACM/IEEE SC2003 Conference (SC’03)
1-58113-695-1/03 $ 17.00 © 2003 ACM

file system can interfere with higher-priority, latency-
sensitive traffic generate at user level. As another ex-
ample, system dæmons that perform resource manage-
ment can introduce computational “holes” of several
hundreds of ms that can severely impact fine-grained
scientific simulations, since they are not coordinated
with the communication library’s activities [20].

Buffered Coscheduling (BCS) [18] is a new design
methodology for the system software that attempts to
tackle both problems: the complexity of a large-scale
parallel machine and the redundancy of its software
components. The vision behind BCS is that both size
and complexity of the system software can be substan-
tially reduced by using a common and coordinated
view of the system. BCS tries to globally organize
all the activities of such machines at a fine granular-
ity, (in the order of a few hundreds of µs). In a sense,
BCS represents an effort to implement a SIMD global
operating system (OS) at a granularity coarser than
the single instruction, and yet fine enough so as not
to harm application performance. Both computation
and communication are globally scheduled at regular
intervals, and the scheduling decisions are taken after
exchanging all the required information. The separate
operating systems of each node are coalesced into a
single system view, without incurring any significant
performance penalty.

FILE SYSTEM

BCS Core Primitives

RESOURCE
MANAGEMENT LIBRARIES

COMMUNICATION

Figure 1: Hierarchical organization of the system soft-
ware. Parallel file system, resource management, and
communication libraries rely on the BCS core primi-
tives for their interactions.

A major innovative aspect of BCS is that most, if
not all, of the various elements of the system software
can be implemented on top of a small set of primitives
(Figure 1). We call this set of only three functions
the BCS core primitives [8]. We argue that the BCS
core primitives are on the one hand general enough
to cover many of the requirements of system software,
and yet on the other hand, close enough to the hard-
ware layer to exploit the highest level of performance.
In [8] we demonstrated that it is possible to imple-
ment a scalable resource management system, called
STORM, that is orders of magnitude faster than exist-
ing production-level software, by using the BCS core
primitives.

In this paper we extend and generalize our research
to another aspect of system software, the communica-
tion library. We have chosen to implement a variant of
the popular MPI library, called BCS-MPI. BCS-MPI is
designed following the BCS methodology. It is hierar-
chically built on top of the BCS core primitives and its
scheduling decisions are globally coordinated.

The main research trend in the design of commu-
nication libraries over the past decade has been to
minimize the point-to-point latency by removing ker-
nel overhead and moving the data communication into
the user level [2, 7, 9, 12, 17, 21, 26, 29]. BCS-MPI
follows a different path, which may seem counterin-
tuitive at first sight. Rather than optimizing the sin-
gle point-to-point communication in isolation, it tries
to optimize the entire communication pattern. Com-
munication is scheduled globally by dividing time into
short slices, and using a distributed algorithm to sched-
ule the point-to-point communication that will occur
at each time slice. Communication is scheduled only
at the beginning of a time slice and performed at ker-
nel level [6]. The shortest latency that a message will
experience will be at least one time slice, which is in
the order of few hundreds of µs with current technol-
ogy. On the other hand, we gain total ordering and de-
terminism of the communication behavior, which can
have significant benefits. For example, the fact that the
communication state of all processes is known at the
beginning of every time slice facilitates the implemen-
tation of checkpointing and debugging mechanisms.

The primary contribution of this paper is in demon-
strating that a constrained communication library such
as BCS-MPI provides approximately the same perfor-
mance of a production-level version of MPI on a large
set of scientific applications, but with a much simpler
software design. In fact, BCS-MPI is so small that
it runs almost entirely on the network interface pro-
cessor, and its activity is completely overlapped with
the computation of the processing node. In the fi-
nal part of the paper we also discuss the importance
of the non-blocking communication and how minor
changes in the communication pattern (e.g. replacing
blocking communication with non-blocking communi-
cation) can substantially improve the application per-
formance.

Secondary contributions include a detailed descrip-
tion of the innovative software design and the global
coordination mechanisms, and an extensive perfor-
mance evaluation with synthetic benchmarks and sci-
entific applications. We also demonstrate the potential
of using hardware mechanisms in the interconnection
network to perform global coordination.

The rest of this paper is organized as follows. In Sec-
tion 2 we describe the BCS core mechanisms that are

2
Proceedings of the ACM/IEEE SC2003 Conference (SC’03)
1-58113-695-1/03 $ 17.00 © 2003 ACM

the basis of BCS-MPI. Section 3 presents various de-
sign issues of BCS-MPI. In Section 4, the implementa-
tion of BCS-MPI is discussed. Performance evaluation
results are shown and analyzed in Section 5. Finally,
we present our concluding remarks and directions for
future work in Section 6.

2 The BCS Core Primitives

Our goals in identifying the BCS core primitives were
simplicity and generality. We therefore defined our ab-
straction layer in terms of only three operations. Nev-
ertheless, we believe this layer encapsulates most com-
munication and synchronization mechanisms required
by the system software components. The primitives
we use are as follows:

Xfer-And-Signal Transfers a block of data from local
memory to the global memory of a set of nodes
(possibly a single node). Optionally signals a local
and/or a remote event upon completion.

Test-Event Polls a local event to see if it has been sig-
naled. Optionally, blocks until it is.

Compare-And-Write Compares (using ≥, <, =, or �)
a global variable on a set of nodes to a local value.
If the condition is true on all nodes, then (option-
ally) assigns a new value to a – possibly different
– global variable.

The following are some important points about the
mechanisms’ semantics:

1. Global data refers to data at the same virtual ad-
dress on all nodes. Depending on the implemen-
tation, global data may reside in main memory or
network-interface memory.

2. Xfer-And-Signal and Compare-And-Write are both
atomic operations. That is, Xfer-And-Signal either
puts data to all nodes in the destination set (which
could be a single node) or – in case of a network
error – no nodes. The same condition holds for
Compare-And-Write when it writes a value to a
global variable. Furthermore, if multiple nodes
simultaneously initiate Compare-And-Writes with
overlapping destination sets then, when all of the
Compare-And-Writes have completed, all nodes
will see the same value in the global variable. In
other words, Xfer-And-Signal and Compare-And-
Write are sequentially consistent operations [15].

3. Although Test-Event and Compare-And-Write are
traditional, blocking operations, Xfer-And-Signal

is non-blocking. The only way to check for com-
pletion is to Test-Event on a local event that Xfer-
And-Signal signals.

4. The semantics do not dictate whether mecha-
nisms are implemented by the host CPU or by a
network co-processor. Nor do they require that
Test-Event yield the CPU (although not yielding
the CPU may adversely affect system throughput).

Quadrics’ QsNet network [19], which we chose for
our initial implementation, provides these primitives
at hardware level: ordered, reliable multicasts; net-
work conditionals (which return True if and only if a
condition is True on all nodes); and events that can
be waited upon and remotely signaled. We also quote
some expected performance numbers from the litera-
ture about other networks, for the two global opera-
tions. In some of these networks (Gigabit Ethernet,
Myrinet and Infiniband) the BCS primitives need to be
emulated through a thin software layer, while in the
other networks there is a one-to-one mapping with na-
tive hardware mechanisms.

We argue that in both cases – with or without hard-
ware support – the BCS primitives represent an ideal
abstract machine that on the one hand can export the
raw performance of the network, and on the other
hand can provide a general-purpose basis for design-
ing simple and efficient system software. While in
[8] we demonstrated their utility for resource manage-
ment tasks, this paper focuses on their usage as a basis
for a user-level communication library, BCS-MPI.

3 BCS-MPI Design

BCS-MPI is a novel implementation of MPI that glob-
ally schedules the system activities on all the nodes:
a synchronization broadcast message or global strobe
– implemented with the BCS core primitive Xfer-And-
Signal – is sent to all nodes at regular intervals or time
slices. Thus, all the system activities are tightly cou-
pled since they occur concurrently on all the nodes.
Both computation and communication are scheduled
and the communication requests generated by each
application process are buffered. At the beginning
of every time slice a partial exchange of communica-
tion requests – implemented with the BCS core prim-
itives Xfer-And-Signal and Test-Event – provides infor-
mation to schedule the communication requests issued
during the previous time slice. Consequently, all the
scheduled communication operations are performed
using the BCS core primitives Xfer-And-Signal and Test-
Event.

3
Proceedings of the ACM/IEEE SC2003 Conference (SC’03)
1-58113-695-1/03 $ 17.00 © 2003 ACM

TABLE 1: Measured/expected performance of the BCS core mechanisms as a function of the number of nodes n

Network Compare-and-Write (µs) Xfer-and-Signal (MB/s)

Gigabit Ethernet [25] 46 log n Not available
Myrinet [3, 4, 5] 20 log n ∼ 15n
Infiniband [12] 20 log n Not available
QsNet ([19]) < 10 > 150n

BlueGene/L [10] < 2 700n

The BCS-MPI communication protocol is imple-
mented almost entirely in the network interface card
(NIC). This enables BCS-MPI to overlap the commu-
nication with the computation executed on the host
CPUs. The application processes interact directly with
threads running on the NIC. When an application pro-
cess invokes a communication primitive, it posts a de-
scriptor in a region of NIC memory that is accessible
to a NIC thread. Such a descriptor includes all the
communication parameters that are required to com-
plete the operation. The actual communication will
be performed by a set of cooperating threads running
on the NICs involved in the communication protocol.
In the Quadrics network these threads can directly
read/write from/to the application process memory
space so that no copies to intermediate buffers are
needed. The communication protocol is divided into
microphases within every time slice and its progress is
also globally synchronized, as described in Section 4.2.

To better explain how BCS-MPI communication
primitives work, two possible scenarios for blocking
and non-blocking MPI point-to-point primitives are de-
scribed below.

3.1 Blocking Send/Receive Scenario

In this scenario, a process P1 sends a message to pro-
cess P2 using MPI Send and process P2 receives a mes-
sage from P1 using MPI Recv (see Figure 2(a)):

1. P1 posts a send descriptor to the NIC and blocks.

2. P2 posts a receive descriptor to the NIC and
blocks.

3. The transmission of data from P1 to P2 is sched-
uled since both processes are ready (all the pend-
ing communication operations posted before time
slice i are scheduled, if possible). If the message
cannot be transmitted in a single time slice, then
it is chunked and scheduled over multiple time
slices.

4. The communication is performed (all the sched-
uled operations are performed before the end of
time slice i + 1).

5. P1 and P2 are restarted at the beginning of time
slice i.

6. P1 and P2 resume computation.

Note that the delay per blocking primitive is 1.5 time
slices on average. However, this performance penalty
can be alleviated by using non-blocking communica-
tion (see Section 5.4) or by scheduling a different par-
allel job in time slice i + 1.

3.2 Non-Blocking Send/Receive Scenario

In this scenario, a process P1 sends a message to pro-
cess P2 using MPI Isend and process P2 receives a mes-
sage from P1 using MPI Irecv (see Figure 2(b)):

1. P1 posts a send descriptor to the NIC.

2. P2 posts a receive descriptor to the NIC.

3. The transmission of data from P1 to P2 is sched-
uled since both processes are ready (all the pend-
ing communication operations posted before time
slice i are scheduled if possible).

4. The communication is performed (all the sched-
uled operations are performed before the end of
time slice i + 1).

5. P1 and P2 verify that the communication has been
performed and continue their computation.

In this scenario, the communication is completely over-
lapped with the computation with no performance
penalty.

4 BCS-MPI Implementation

To evaluate and validate the framework proposed in
the previous section, we developed a fully functional
version of BCS-MPI for QsNet-based systems. For quick
prototyping and portability, BCS-MPI is initially im-
plemented as a user-level communication library, and

4
Proceedings of the ACM/IEEE SC2003 Conference (SC’03)
1-58113-695-1/03 $ 17.00 © 2003 ACM

P2

P1

Time slice i

MPI_Recv

Message
Transmission
Time slice i

Global
Message

Scheduling
Time slice i

Computation

Computation

Computation

ComputationIdle

Idle Idle

Idle

NIC1

NIC2

1

2

3

MPI_Send

4

5

5

Time slice i+1 Time slice i+2

D
A

T
A

6

6

(a) Blocking MPI Send/MPI Recv

P2

P1

Time slice i

MPI_Irecv

Computation

Computation

NIC1

NIC2

1

2

3

MPI_Isend

4

5

5

Time slice i+1 Time slice i+2

Computation

Computation

MPI_Wait

MPI_Wait

Global
Message

Scheduling
Time slice i

Message
Transmission
Time slice i D

A
T

A

(b) Non-Blocking MPI Send/MPI Recv

Figure 2: Blocking and Non-Blocking MPI Send/MPI Recv Scenarios

some typical kernel level functionalities such as pro-
cess scheduling are implemented with the help of dæ-
mons. This user-level implementation is expected to
be slower than a kernel-level one, though more flex-
ible and easier to use. An overview of the software
structure of BCS-MPI is provided in Figure 3.

The communication library is hierarchically de-
signed on top of a small set of communica-
tion/synchronization primitives, the BCS core primi-
tives (Figure 4(a)), while higher-level primitives (the
BCS API, described in Appendix A) are implemented
on top of the BCS core. This approach greatly sim-
plifies the design and implementation of BCS-MPI in
terms of complexity, maintainability and extensibility.
BCS-MPI is built on top of the BCS API by simply map-
ping MPI calls to BCS calls (see Appendix A). Note
that scalability is enhanced by tightly coupling the BCS
core primitives with the collective primitives provided
at hardware level by the interconnection network.

BCS-MPI is integrated in STORM [8], a scalable,
flexible resource management system for clusters, run-
ning on Pentium-, Itanium2- and Alpha-based archi-
tectures. STORM exploits low-level collective com-
munication mechanisms to offer high-performance job
launching and resource management. In this way, we
provide the necessary infrastructure to run MPI paral-
lel jobs using BCS-MPI.

The rest of this section describes the architecture of
BCS-MPI in terms of the processes and NIC threads
that compose the BCS-MPI runtime system, the global
synchronization protocol, and the communication pro-
tocols for the point-to-point and collective primitives.

4.1 Processes and Threads

With the current user-level implementation, the BCS-
MPI runtime system consists of a set of dæmons and a
set of threads running on the NIC. The processes and
NIC threads that constitute the BCS-MPI runtime sys-
tem are shown in Figure 4(b). The Machine Manager
(MM), runs on the management node. This dæmon
coordinates the use of system resources issuing regu-
lar heartbeats and controls the execution of parallel
jobs. The Strobe Sender (SS) is a NIC thread forked
by the MM that implements the global synchronization
protocol as described in Section 4.2. The Node Man-
ager (NM) dæmons run on every compute node. This
process executes all the commands issued by the MM,
manages the local resources, and schedules the execu-
tion of the local processes. The Strobe Receiver (SR),
the Buffer Sender (BS), the Buffer Receiver (BR), the
DMA Helper (DH), the Collective Helper (CH) and the
Reduce Helper (RH) are all NIC threads forked by the
NM in each compute node. The SR is the counterpart
of the SS in the compute nodes and coordinates the ex-
ecution of all the local threads. The BS and the BR han-
dle the descriptors posted by the application processes
whenever a communication primitive is invoked, and
schedule the point-to-point and collective communica-
tion operations. The DH carries out the actual data
transmission for the point-to-point operations. Finally,
the CH and the RH perform the barrier and broadcast
operations, and the reduce operations, respectively.

4.2 Global Synchronization Protocol

The BCS-MPI runtime system globally schedules all the
computation, communication and synchronization ac-
tivities of the MPI jobs at regular intervals. Each time

5
Proceedings of the ACM/IEEE SC2003 Conference (SC’03)
1-58113-695-1/03 $ 17.00 © 2003 ACM

. . .T T T n-10 1 . . .T T T n-10 1 . . .T T T n-10 1

AP0 AP1 APp-1. . . AP0 AP1 APp-1. . . AP0 AP1 APp-1. . .

BCS Core

BCS API

BCS Core BCS Core

0 1 N-1

. . .

. . .

BCS API U
se

r
S

p
ac

e

U
se

r
S

p
ac

e

K
er

n
el

S
p

ac
e

K
er

n
el

S
p

ac
e

NICNIC

U
se

r
S

p
ac

e
K

er
n

el
S

p
ac

e

NIC

Compute Node Compute Node Compute Node

MPI LIBRARY MPI LIBRARYMPI LIBRARY

BCS API

G
L

O
B

A
L

LY
S

Y
N

C
H

R
O

N
IZ

E
D

Figure 3: BCS-MPI Overview

BCS API

BCS-MPI

BCS Core

Quadrics Network

qsnetlib

MPI User Applications

(a) Library Hierarchy

MM

SS NIC Thread

AP1 APp-1AP0

SR BS BR DH CH RH

Management Node Compute Node

M
ai

n
M

em
o

ry
E

L
A

N
M

em
o

ry

M
ai

n
M

em
o

ry
E

L
A

N
M

em
o

ry

ProcessNM . . .

(b) Processes and Threads

Figure 4: BCS-MPI Architecture

slice is divided into two main phases and several mi-
crophases, as shown in Figure 5. The two phases are
the global message scheduling and the message transmis-
sion. The global message scheduling phase schedules
all the descriptors posted to the NIC during the pre-
vious time slice. A partial exchange of control infor-
mation is performed during the descriptor exchange mi-
crophase (DEM). The point-to-point and collective com-
munication operations are scheduled in the message
scheduling microphase (MSM) using the information
gathered during the previous microphase. The message
transmission phase performs point-to-point operations,
barrier and broadcast collectives, and the reduce oper-
ations, respectively, during its three microphases.

In order to implement the global synchronization
mechanism, the SS and the SR threads synchronize at
the beginning of every microphase with a microstrobe
implemented using Xfer-And-Signal. The SS checks
whether all the nodes have completed the current mi-
crophase (using Compare-And-Write) and, if so, sends
a microstrobe to all the SRs. The SR running on every
node consequently wakes up the local NIC thread(s)
that must be active in the new microphase. The BS
and the BR run during the descriptor exchange mi-

Global
Message

Scheduling
Phase

Message
Transmission

Phase

NIC

Time slice i

Descriptor
Exchange

MicroPhase
(DEM)

Message
Scheduling
MicroPhase

(MSM)

Point-to-point
MicroPhase

(PM)

Broadcast
and Barrier
MicroPhase

(BBM)

Reduce
MicroPhase

(RM)

Figure 5: Global synchronization protocol

crophase to process the descriptors and during the
message scheduling microphase to schedule the mes-
sages. The DH, the CH and the RH run during the
point-to-point microphase, the broadcast and barrier
microphase, and the reduce microphase, respectively,
to perform all the operations scheduled for execution
in the global message scheduling phase.

4.3 Point-to-point

As shown in Figure 2, every time a user process in-
vokes a point-to-point MPI primitive, it initializes a de-

6
Proceedings of the ACM/IEEE SC2003 Conference (SC’03)
1-58113-695-1/03 $ 17.00 © 2003 ACM

scriptor in a region of memory accessible to the NIC
threads which will initiate the operation on its behalf.
All the descriptors for either blocking or non-blocking
send operations are posted to the BS thread while all
the descriptors for either blocking or non-blocking re-
ceive operations are posted to the BR thread. Each ap-
plication process involved in the communication proto-
col is suspended only if the invoked primitive is block-
ing. All the descriptors posted during time slice i − 1
will be scheduled for execution, if possible, at time
slice i as follows (see Figure 6 for further details).

Descriptor Exchange Microphase The BS delivers
each send descriptor posted in time slice i − 1 to
the BR running on the destination node.

Message Scheduling Microphase The BR matches
the remote send descriptor list against the local
receive descriptor list. For each matching pair, the
BR builds a matching descriptor with all the in-
formation required to complete the data transfer,
and schedules the point-to-point operation for ex-
ecution. If the message is too large and cannot
be scheduled within a single time slice, the BR
splits it into smaller chunks. The first chunk of
the message is scheduled during the current time
slice and the remaining chunks in the following
time slices. In the current implementation, these
two phases take approximately 125 µs.

Point-to-point Microphase For each matching de-
scriptor created in the previous microphase by the
BR, the DH performs the real data transmission.
Note that no intervention from the two applica-
tion processes involved is required.

4.4 Collective Communication

Every time a user process calls a collective MPI func-
tion such as MPI Barrier, MPI Broadcast, MPI Reduce
or MPI Allreduce, BCS-MPI posts a descriptor to the
BR thread, which in turn initiates the operation on its
behalf, and blocks. The BR pre-processes all the collec-
tive descriptors. If all the local processes of a parallel
job have invoked the collective primitive, a local flag
for that job is set. Following that, all the collective
descriptors, except for those corresponding to the job
master processes, are discarded. All the descriptors
posted during time slice i − 1 will be scheduled, if pos-
sible, in time slice i as follows:

Message Scheduling Microphase For each collective
descriptor corresponding to a job master process,
the BR tests if all the application processes of that
MPI parallel job had invoked the collective primi-
tive in all nodes. In order to accomplish this, the

BR issues a query broadcast (using Compare-And-
Write) message that checks the flag for that job in
all the nodes. If the flag is set on all nodes, the
collective operation is scheduled for execution.

Broadcast and Barrier/Reduce Microphase The
scheduled broadcast operations are performed by
the CH broadcasting the data to all the processes
of the MPI parallel job. The barrier operation is a
special case of a broadcast operation with no data.
The scheduled reduce operations are carried out
by the RH on the NIC by using a binomial tree to
gather the partial reduce results. The QsNet NIC
has no floating-point unit. Hence, an IEEE com-
pliant library for binary floating-point arithmetic
has been used to compute the reduce in the NIC
(SoftFloat [30]). Since most applications reduce
over a very small number of elements [28, 16],
computing the reduce in the NIC is faster than
sending the data through the PCI bus to perform
the operation in the host [16].

Figure 7 illustrates the execution of a broadcast op-
eration. The MPI program in this example is composed
of four processes running on two different nodes.

4.5 Features and Limitations

This section discusses some important features of the
current user-level implementation of BCS-MPI.

• MPI groups are not fully implemented yet.

• The NM dæmon that belongs to the BCS-MPI run-
time system schedules the user processes at every
time slice, instead of the kernel.

Since we have little control over the OS scheduler at
user level, the NM dæmon may not always be sched-
uled on time. This anomaly introduces noise in the
system that can potentially cause a considerable per-
formance degradation [20]. To eliminate this problem,
we are developing a kernel-based implementation of
BCS-MPI.

In order to avoid the overhead of a system call to
post the descriptors, we use a FIFO queue in a shared
memory region accessible by both the application pro-
cess and the kernel.

5 Experimental Results

In this section we compare the performance of our
user-level implementation of BCS-MPI to that of
Quadrics MPI using several benchmarks and applica-
tions. Quadrics MPI [31] is a production-level imple-
mentation for QsNet-based systems, based on MPICH

7
Proceedings of the ACM/IEEE SC2003 Conference (SC’03)
1-58113-695-1/03 $ 17.00 © 2003 ACM

SendD

SendL

APS

RecD

RecL

DH

ListThreadNode Process

Matching

SendD

SendL

MM SS

Send Strobe

Send Ds

SR BS RAP SR BR

Start MSM

SendD

Match Ds

Process Ds

DMA

MatchD

tim
e

Start DEM Start DEM

Start PM Start PM

SendD

2

4

6

9

5

8

3

7

1

Compute NodeCompute Node
Node

Management
S R

MatchD

MatchD

RSendL

DMAL

DMAL

Start MSM

Figure 6: Send/Receive Scenario: (1) The sender process posts a descriptor to the BS (2) The receiver process
posts a descriptor to the BR (3) SS sends a microstrobe to signal all the SRs the beginning of the Descriptor
Exchange Microphase (DEM) (4) BS sends the descriptor to the BR running on the receiving end (5) SS sends a
microstrobe to signal the beginning of the Message Scheduling Microphase (MSM) (6) BR matches the remote
send and the local receive descriptors (7) SS sends a microstrobe to signal the beginning of the Point-to-point
Microphase (PM) (8) BR schedules the operation for execution (9) DH performs the get (one-sided communica-
tion).

8
Proceedings of the ACM/IEEE SC2003 Conference (SC’03)
1-58113-695-1/03 $ 17.00 © 2003 ACM

SendL

BcastD

SendL

BcastD

BcastD

ColL

AP
0

AP1
AP

0
AP1

F=T

BcastD

ColL

BcastD

SendL

F=T

Compute Node Compute Node
tim

e
Node

Management

SRSSMM

G0 G1

0BR

G2 G3

SR BS

BcastD

BcastD

BcastD

Send Strobe

CH

BcastD

SendL

DMA DataDMA Data DMA Data

Start MSM

Start DEM

Start BBMStart BBM

Send Ds Send Ds

Match Ds

Process Ds

ListThreadNode Process

BS

Start DEM

F=T?

F=TF=T

2

3

1

5

6

9

7

8

10

MatchD
BcastD

BcastD

PColL

PColL

BcastD

4

B0 B1

Start MSM

Figure 7: Broadcast Scenario (1) Application Process (AP) G0 posts a descriptor to the local BS. G0 is the master
process and its descriptor is copied to the Collective List (2) G3 posts a descriptor to the local BS. The descriptor
is processed and discarded (3) G2 posts a descriptor to the local BS. The descriptor is processed: all the local
processes have reached the barrier and Flag F is set to True. Descriptor is discarded (4) G4 posts a descriptor
to the local BS. The descriptor is processed: all the local processes have reached the barrier and Flag F is set to
True. The descriptor is discarded (5) SS sends a microstrobe to signal all the SRs the beginning of the Descriptor
Exchange Microphase (DEM) (6) SS sends a microstrobe to signal the beginning of the Message Scheduling
Microphase (MSM) (7) BR checks whether all the processes are ready (8) BR schedules the broadcast operation
for execution (9) SS sends a microstrobe to signal the beginning of the Broadcast and Barrier Microphase (BBM)
(10) CH performs the broadcast.

9
Proceedings of the ACM/IEEE SC2003 Conference (SC’03)
1-58113-695-1/03 $ 17.00 © 2003 ACM

1.2.4. Quadrics MPI is currently used by six of the ten
fastest systems in the Top500 list [32], at the time of
this writing. To evaluate and validate our implementa-
tion of BCS-MPI we use a set of synthetic benchmarks,
the NAS suite of benchmarks, and two real applica-
tions which are representative of the ASCI workload
at LANL.

5.1 Experimental Setup

The hardware used for the experimental evaluation is
the “crescendo” cluster at LANL/CCS-3. This cluster
consists of 32 compute nodes (Dell 1550), one man-
agement node (Dell 2550), and a 128-port Quadrics
switch [19, 23] (using only 32 of the 128 ports). Each
compute node has two 1 GHz Pentium-III processors, 1
GB of ECC RAM, two independent 66MHz/64-bit PCI
buses, a Quadrics QM-400 Elan3 NIC [19, 22, 24]
for the data network, and a 100Mbit Ethernet NIC
for the management network. All the nodes run Red
Hat Linux 7.3, and use kernel modules provided by
Quadrics and the low-level communication library qs-
netlibs v1.5.0-0 [31]. All the benchmarks and the ap-
plications analyzed in this section are compiled with
the Intel C/Fortran Compiler v5.0.1 for IA32 using the
-O3 optimization flag. Finally, a 500µs time slice is
used by BCS-MPI for all the experiments in this paper.

5.2 Synthetic Benchmarks

Many scientific codes display a bulk-synchronous be-
havior [27] and can be characterized by a nearest-
neighbor communication stencil, optionally followed
by a global synchronization operation such as bar-
rier, broadcast or reduce [11, 13]. Therefore, we de-
signed two synthetic benchmarks that represent this
pattern to compare our experimental BCS-MPI with
the production-level Quadrics MPI.

In the first synthetic benchmark, every process com-
putes for a parametric amount of time and globally
synchronizes with all the other processes in a loop.
Figure 8(a) shows the slowdown of BCS-MPI when
compared to Quadrics MPI for different computational
granularities. As expected, the slowdown decreases as
we increase the computational granularity since the ef-
fect of the delay introduced by the barrier synchroniza-
tion is amortized. The figure shows that the slowdown
is less than 7.5% with a computation granularity of
10 ms when we run this benchmark on the entire ma-
chine. Figure 8(b) shows the slowdown of BCS-MPI
versus Quadrics MPI as a function of the number of
processes. In this case, the results indicate that BCS-
MPI scales well for barrier synchronization operations,

and it is almost insensitive to the number of proces-
sors.

In the second synthetic benchmark, every process
computes for a parametric amount of time, exchanges
a fixed number of non-blocking point-to-point mes-
sages with a set of neighbors, and waits for the com-
pletion of all the communication operations in a loop.
The slowdown for different computational granulari-
ties is shown in Figure 8(c). Like in the previous case,
the slowdown decreases as the computational granu-
larity increases, remaining below 8% for granularities
larger than 10 ms. Finally, from Figure 8(d) we can
observe that BCS-MPI scales well with point-to-point
operations too.

5.3 NAS Benchmarks and Applications

In this section we use the NAS Parallel Benchmarks
(NPB 2.4) [1] and SAGE (SAIC’s Adaptive Grid Eule-
rian hydrocode) [13]. The NAS Parallel Benchmarks
are a set of eight programs designed to help in evaluat-
ing the performance of parallel supercomputers. The
suite, which is derived from computational fluid dy-
namics (CFD) applications, consists of five kernels and
three applications. Since BCS-MPI does not support
MPI groups yet, we were only able to use four ker-
nels and one application: Integer Sort (IS), Embarrass-
ingly Parallel (EP), Conjugate Gradient (CG), Multi-
grid (MG) and LU solver (LU). All programs are writ-
ten in Fortran 77 (except for IS which is written in C)
and use MPI for inter-processor communications. All
the benchmarks were compiled for the class C work-
load.

SAGE is a multidimensional (1D, 2D and 3D), multi-
material, Eulerian, hydrodynamics code with adaptive
mesh refinement. SAGE represents a large class of
production ASCI applications at LANL. SAGE comes
from LANL’s Crestone project, whose goal is the inves-
tigation of continuous adaptive Eulerian techniques to
stockpile stewardship problems. It is characterized by
a nearest-neighbor communication pattern that uses
non-blocking communication operations followed by
a reduce operation at the end of each compute step.
The code is written in Fortran 90 and uses MPI for
inter-process communications. The timing.input data
set was used in all the experiments. In each case, we
compare the runtime of BCS-MPI to that of Quadrics
MPI, and analyze the results. The final runtime was
computed as the average of five executions.

The run times of NPB and SAGE for both Quadrics
MPI and BCS-MPI are shown in Figure 9. The slow-
down of BCS-MPI in comparison to Quadrics MPI is
computed in Table 2. All NPB benchmarks (except LU)
and SAGE perform reasonably well with BCS-MPI. The

10
Proceedings of the ACM/IEEE SC2003 Conference (SC’03)
1-58113-695-1/03 $ 17.00 © 2003 ACM

5 10 20 30 40 50

Granularity (ms)

0

0.05

0.1

0.15

0.2

0.25

S
lo

w
do

w
n

Computation + Barrier

(a) Computation and Barrier: 62 processes

2 4 8 16 32 48 62

Number of Processes

0

0.05

0.1

0.15

0.2

0.25

S
lo

w
do

w
n

Computation + Barrier

(b) Computation and Barrier: 10 ms granularity

5 10 20 30 40 50

Granularity (ms)

0

0.05

0.1

0.15

0.2

0.25

S
lo

w
do

w
n

Computation + Point to point

(c) Computation and Nearest-neighbor Communication: 62 pro-
cesses, 4 neighbors and 4KB messages

8 16 32 48 62

Number of Processes

0

0.05

0.1

0.15

0.2

0.25

S
lo

w
do

w
n

Computation + Point to point

(d) Computation and Nearest-neighbor Communication: 10 ms
granularity, 4 neighbors and 4KB messages

Figure 8: Synthetic Benchmarks

NPB are coarse-grained bulk-synchronous applications
that, as discussed in Section 5.2, show an expected
moderate slowdown of up to 8%. However, three
programs do not meet the expectations. IS takes ap-
proximately 12s to run in this configuration and con-
sequently pays a relatively high price for the overhead
of initializing the BCS-MPI runtime system. CG and
LU use several consecutive blocking calls inside a loop
which introduce a considerable delay, since no overlap
between computation and communication is possible
for several time slices. This problem can be mitigated
by using non-blocking communication, as described in
the context of SWEEP3D in Subsection 5.4 below.

SAGE is a medium-grained application and the non-
blocking communications mitigate the performance
penalty of the global synchronization operation per-
formed at the end of each compute step. The slight
performance improvement is obtained thanks to the
negligible overhead of the non-blocking calls, that only
initialize a communication descriptor.

TABLE 2: Benchmark and Application Slowdown

Application Slowdown
SAGE -0.42%
SWEEP3D -2.23%
IS 10.14%
EP 5.35%
MG 4.37%
CG 10.83%
LU 15.04%

5.4 Blocking vs. Non-blocking Communi-
cations

As stated in Section 5.3, bulk-synchronous applica-
tions with non-blocking or infrequent blocking com-
munications run efficiently with BCS-MPI. However,
fine-grained applications that use blocking communi-

11
Proceedings of the ACM/IEEE SC2003 Conference (SC’03)
1-58113-695-1/03 $ 17.00 © 2003 ACM

SW
EEP3D

SAGE IS EP
M

G CG LU

Application

10

100

1000

R
un

tim
e

(s
ec

on
ds

)

Quadrics MPI
BCS-MPI

Figure 9: Benchmarks and Applications

cations or applications that group blocking commu-
nications are expected to perform poorly with BCS-
MPI. The delays introduced by the blocking commu-
nications can considerably increase the applications’
run time. Two approaches can alleviate this problem.
The simplest option is to schedule a different paral-
lel job whenever the application blocks for communi-
cation, thus making use of the CPU. This addresses
the problem without requiring any code modification,
but is not always practical due to memory and perfor-
mance considerations. Alternatively, we have empiri-
cally seen that in such cases it is often possible to trans-
form the blocking communication operations into non-
blocking ones, with a few simple code modifications.

To illustrate the second technique, we look at
the SWEEP3D application [11]. SWEEP3D is a
time-independent, Cartesian-grid, single-group, dis-
crete ordinates, deterministic, particle transport code.
SWEEP3D represents the core of a widely used method
of solving the Boltzmann transport equation. Es-
timates are that deterministic particle transport ac-
counts for 50–80% of the execution time of many
realistic simulations on current DOE ASCI systems.
SWEEP3D is characterized by a fine granularity (each
compute step takes ≈ 3.5ms) and a nearest-neighbor
communication stencil with blocking send/receive op-
erations.

Figure 11(a) shows the run time of SWEEP3D for
both Quadrics MPI and BCS-MPI as a function of the
numbers of processes. The slowdown is approximately
30% in all configurations. Each process exchanges four
messages with its nearest neighbors on every compute
step using blocking send/receive operations. This com-
munication pattern together with the fine granularity

4 16 32 48 62

Number of Processes

100

105

110

115

120

R
un

tim
e

(s
ec

on
ds

)

Quadrics MPI
BCS-MPI

Figure 10: SAGE

incurs a very high overhead. On every compute step,
the process will block for 1.5 time slices on average for
every blocking operation. To eliminate this delay, we
replaced every matching pairs of MPI Send/MPI Recv
with MPI Isend/MPI Irecv and added MPI Waitall at
the end. That involved changing less than fifty lines
of source code and improved dramatically the applica-
tion performance, as shown in Figure 11(b). In this
case, the overlapping of computation and communica-
tion along with the minimal overhead of the MPI calls
allow BCS-MPI to slightly outperform Quadrics MPI.

6 Conclusions and Future Work

This paper presented an alternative approach to the de-
sign of communication libraries for large-scale parallel
computers. Rather than following the beaten track of
most communication protocols which focus on optimiz-
ing latency and bandwidth of pairs of communicating
processes, BCS-MPI tries to optimize the global state
of the machine in order to reduce the system software
complexity. We have provided insight on the global co-
ordination protocols used by BCS-MPI and described a
prototype implementation running almost entirely on
the network interface of the Quadrics network.

The experimental results have shown that the per-
formance of BCS-MPI is comparable to the production-
level MPI for most applications. The performance of
some applications, as SWEEP3D, can be improved by
modifying their communication pattern from a block-
ing one to a non-blocking one (typically with minimal
changes). Such applications can actually improve their
performance when compared to the production level

12
Proceedings of the ACM/IEEE SC2003 Conference (SC’03)
1-58113-695-1/03 $ 17.00 © 2003 ACM

4 9 16 25 36 49

Number of Processes

30

40

50

60

70

R
un

tim
e

(s
ec

on
ds

)

Quadrics MPI (Blocking)
BCS-MPI (Blocking)

(a) Blocking Version

4 9 16 25 36 49

Number of Processes

30

40

50

60

70

R
un

tim
e

(s
ec

on
ds

)

Quadrics MPI (Non-blocking)
BCS-MPI (Non-blocking)

(b) Non-Blocking Version

Figure 11: SWEEP3D

MPI, thanks to BCS-MPI’s low overhead in the com-
pute nodes.

These results pave the way to future advances in the
design of the system software for large-scale parallel
machines. We argue that with a globally constrained
system such as the one put forth with BCS-MPI, it is
possible to substantially simplify the implementation
of the resource management software, communication
libraries, and parallel file system. Moreover, a sched-
uled, deterministic communication behavior at system
level could provide a solid infrastructure for imple-
menting transparent fault tolerance.

System-level fault tolerance is our main path for fu-
ture research. However, we also plan to study the ad-
vantages of this simplified model for implementing sys-
tem wide parallel I/O, scheduling, and kernel-level sys-
tem management.

Acknowledgments

The authors would like to thank David Addison for his
help in debugging the Elan thread code, which is at
the base of BCS-MPI.

This work was supported by the U.S. Department of
Energy through the project LDRD-ER 2001034ER ”Re-
source Utilization and Parallel Program Development
with Buffered Coscheduling” and Los Alamos National
Laboratory contract W-7405-ENG-36.

References

[1] D. H. Bailey, E. Barszcz, J. T. Barton, D. S.
Browning, R. L. Carter, D. Dagum, R. A. Fatoohi,
P. O. Frederickson, T. A. Lasinski, R. S. Schreiber,
H. D. Simon, V. Venkatakrishnan, and S. K. Weer-
atunga. The NAS Parallel Benchmarks. The Inter-
national Journal of Supercomputer Applications,
5(3):63–73, Fall 1991. Available from http://
www.nersc.gov/~dhb/dhbpapers/benijsa.ps.

[2] Anindya Basu, Vineet Buch, Werner Vogels, and
Thorsten von Eicken. U-Net: A User-Level Net-
work Interface for Parallel and Distributed Com-
puting. In Proceedings of the 15th ACM Sympo-
sium on Operating Systems Principles (SOSP’95),
Copper Mountain, CO, December 1995. Avail-
able from http://www.cs.cornell.edu/tve/
u-net/papers/sosp.pdf.

[3] Raoul A.F. Bhoedjang, Tim Rühl, and Henri E.
Bal. Efficient Multicast on Myrinet Using
Link-Level Flow Control. In 27th Interna-
tional Conference on Parallel Processing (ICPP98),
pages 381–390, Minneapolis, MN, August 1998.
Available from http://www.cs.cornell.edu/
raoul/papers/multicast98.pdf.

[4] Darius Buntinas, Dhabaleswar Panda, José
Duato, and P. Sadayappan. Broadcast/Multicast
over Myrinet using NIC-Assisted Multidesti-
nation Messages. In Workshop on Commu-
nication, Architecture, and Applications for

13
Proceedings of the ACM/IEEE SC2003 Conference (SC’03)
1-58113-695-1/03 $ 17.00 © 2003 ACM

Network-Based Parallel Computing (CANPC
’00), High Performance Computer Architecture
(HPCA-6) Conference, Toulouse, France, Jan-
uary 2000. Available from ftp://ftp.cis.
ohio-state.edu/pub/communication/papers/
canpc00-nic-multicast.pdf.

[5] Darius Buntinas, Dhabaleswar Panda, and
William Gropp. NIC-Based Atomic Operations
on Myrinet/GM. In SAN-1 Workshop, High
Performance Computer Architecture (HPCA-8)
Conference, Boston, MA, February 2002. Avail-
able from ftp://ftp.cis.ohio-state.edu/
pub/communication/papers/san-1-atomic_
operations.pdf.

[6] Giovanni Chiola and Giuseppe Ciaccio. GAMMA:
a Low-cost Network of Workstations Based
on Active Messages. In Proceedings of 5th
EUROMICRO workshop on Parallel and Dis-
tributed Processing (PDP’97), London, UK, Jan-
uary 1997. Available from ftp://ftp.disi.
unige.it/pub/project/GAMMA/pdp97.ps.gz.

[7] Compaq, Intel, and Microsoft. The Virtual Inter-
face Architecture (VIA) Specification. Available
Available from http://www.viarch.org.

[8] Eitan Frachtenberg, Fabrizio Petrini, Juan Fer-
nandez, Scott Pakin, and Salvador Coll. STORM:
Lightning-Fast Resource Management. In
Proceedings of SC2002, Baltimore, Maryland,
November 16–22 2002. Available from http:
//sc-2002.org/paperpdfs/pap.pap297.pdf.

[9] William Gropp, Steven Huss-Lederman, Andrew
Lumsdaine, Ewing Lusk, Bill Nitzberg, William
Saphir, and Marc Snir. MPI - The Complete Ref-
erence, volume 2, The MPI Extensions. The MIT
Press, 1998.

[10] Manish Gupta. Challenges in Developing Scal-
able Scalable Software for BlueGene/L. In Scal-
ing to New Heights Workshop, Pittsburgh, PA,
May 2002. Available from http://www.psc.
edu/training/scaling/gupta.ps.

[11] Adolfy Hoisie, Olaf Lubeck, Harvey Wasserman,
Fabrizio Petrini, and Hank Alme. A General Pre-
dictive Performance Model for Wavefront Algo-
rithms on Clusters of SMPs. In Proceedings of the
2000 International Conference on Parallel Process-
ing (ICPP-2000), Toronto, Canada, August 21–
24, 2000. Available from http://www.c3.lanl.
gov/~fabrizio/papers/icpp00.pdf.

[12] Infiniband Trade Association. Infiniband Speci-
fication 1.0a, June 2001. Available from http:
//www.infinibandta.org.

[13] Darren J. Kerbyson, Hank J. Alme, Adolfy Hoisie,
Fabrizio Petrini, Harvey J. Wasserman, and
Michael Gittings. Predictive Performance and
Scalability Modeling of a Large-Scale Applica-
tion. In Proceedings of SC2001, Denver, Colorado,
November 10–16, 2001. Available from http:
//www.sc2001.org/papers/pap.pap255.pdf.

[14] Ken Koch. How Does ASCI Actually Complete
Multi-month 1000-processor Milestone Simula-
tions? In Proceedings of the Conference on
High Speed Computing, Gleneden Beach, Oregon,
April 22–25, 2002. Available from http://www.
ccs.lanl.gov/salishan02/koch.pdf.

[15] Leslie Lamport. How to Make a Multiprocessor
Computer That Correctly Executes Multiprocess
Programs. IEEE Transactions on Computers, C-
28(9):690–691, September 1979.

[16] Adam Moody, Juan Fernández, Fabrizio Petrini,
and Dhabaleswar Panda. Scalable NIC-based
Reduction on Large-scale Clusters. In Proceed-
ings of SC2003, Phoenix, Arizona, November 10–
16, 2003. Available from http://www.c3.lanl.
gov/~fabrizio/papers/sc03_reduce.pdf.

[17] Scott Pakin, Mario Lauria, and Andrew Chien.
High Performance Messaging on Workstations:
Illinois Fast Messages (FM) for Myrinet. In
Proceedings of IEEE/ACM Supercomputing 1995
(SC’95), San Diego, CA, December 1995. Avail-
able from http://www.supercomp.org/sc95/
proceedings/567_SPAK/SC95.PDF.

[18] Fabrizio Petrini and Wu-chun Feng. Improved
Resource Utilization with Buffered Coscheduling.
Journal of Parallel Algorithms and Applications,
16:123–144, 2001. Available from http://www.
c3.lanl.gov/~fabrizio/papers/paa00.ps.

[19] Fabrizio Petrini, Wu-chun Feng, Adolfy Hoisie,
Salvador Coll, and Eitan Frachtenberg. The
Quadrics Network: High-Performance Cluster-
ing Technology. IEEE Micro, 22(1):46–57, Jan-
uary/February 2002. ISSN 0272-1732. Avail-
able from http://www.computer.org/micro/
mi2002/pdf/m1046.pdf.

[20] Fabrizio Petrini, Darren Kerbyson, and Scott
Pakin. The Case of the Missing Supercomputer
Performance: Achieving Optimal Performance

14
Proceedings of the ACM/IEEE SC2003 Conference (SC’03)
1-58113-695-1/03 $ 17.00 © 2003 ACM

on the 8,192 Processors of ASCI Q. In Proceed-
ings of SC2003, Phoenix, Arizona, November 10–
16, 2003. Available from http://www.c3.lanl.
gov/~fabrizio/papers/sc03_noise.pdf.

[21] Löıc Prylli and Bernard Tourancheau. BIP: A
New Protocol Designed for High Performance
Networking on Myrinet. In Proceedings of
IPPS/SPDP’98 Workshop on Personal Computer
Based Networks of Workstations, Orlando, FL,
April 1998. Available from http://ipdps.eece.
unm.edu/1998/pc-now/prylli.pdf.

[22] Quadrics Supercomputers World Ltd. Elan Refer-
ence Manual, January 1999.

[23] Quadrics Supercomputers World Ltd. Elite Refer-
ence Manual, November 1999.

[24] Quadrics Supercomputers World Ltd. Elan Pro-
gramming Manual, May 2002.

[25] Piyush Shivam, Pete Wyckoff, and Dhabaleswar
Panda. EMP: Zero-copy OS-bypass NIC-driven
Gigabit Ethernet Message Passing. In Pro-
ceedings of SuperComputing 2001 (SC’01), Den-
ver, Colorado, November 10–16, 2001. Avail-
able from http://www.sc2001.org/papers/
pap.pap315.pdf.

[26] Marc Snir, Steve Otto, Steven Huss-Lederman,
David Walker, and Jack Dongarra. MPI - The Com-
plete Reference, volume 1, The MPI Core. The MIT
Press, 1998.

[27] L. G. Valiant. A Bridging Model for Paral-
lel Computation. Communications of the ACM,
33(8):103–111, 1990.

[28] Jeffrey S. Vetter and Frank Mueller. Com-
munication Characteristics of Large-Scale
Scientific Applications for Contemporary
Cluster Architectures. In Proceedings of the
International Parallel and Distributed Pro-
cessing Symposium 2002 (IPDPS’02), Fort
Lauderdale, FL, April 2002. Available from
http://www.csc.ncsu.edu/faculty/mueller/
ftp/pub/mueller/papers/jpdc02.pdf.

[29] Thorsten von Eicken, David E. Culler, Seth Copen
Goldstein, and Klaus Erik Schauser. Active Mes-
sages: A Mechanism for Integrated Commu-
nication and Computation. In Proceedings of
19th International Conference on Computer Ar-
chitecture (ISCA’92), Gold Coast, Australia, May
1992. Available from http://www.cs.cmu.edu/
~seth/papers/isca92.pdf.

[30] http://www.jhauser.us/arithmetic/
SoftFloat.html.

[31] http://www.quadrics.com.

[32] http://www.top500.org.

7 Appendix A

The BCS communication primitives are listed in Fig-
ure 12. The point-to-point primitives and the basic
collective primitives, that is, barrier, broadcast and re-
duce, are implemented in the NIC while the rest of
them are built on top of those. The MPI communica-
tion primitives currently available and the correspond-
ing BCS-MPI primitives are listed in Figure 13.

15
Proceedings of the ACM/IEEE SC2003 Conference (SC’03)
1-58113-695-1/03 $ 17.00 © 2003 ACM

BCS Primitive Description
bcs send() Blocking/non-blocking send
bcs recv() Blocking/non-blocking receive
bcs probe() Blocking/non-blocking test for a matching receive
bcs test() Blocking/non-blocking test for send/receive completion
bcs testall() Blocking/non-blocking test for multiple send/receive completions
bcs barrier() Barrier synchronization
bcs bcast() Broadcast
bcs reduce() Reduce and allreduce
bcs scatter() Vectorial/non-vectorial scatter
bcs gather() Vectorial/non-vectorial gather
bcs allgather() Vectorial/non-vectorial allgather
bcs alltoall() Vectorial/non-vectorial all-to-all

Figure 12: BCS API

MPI Primitive BCS API Primitive
MPI Send() bcs send(IN blocking)
MPI Isend() bcs send(IN non-blocking, OUT BCS Request)
MPI Recv() bcs recv(IN blocking)
MPI IRecv() bcs recv(IN non-blocking, OUT BCS Request)
MPI Probe() bcs probe(IN blocking, IN BCS Request)
MPI Iprobe() bcs probe(IN non-blocking, IN BCS Request)
MPI Test() bcs test(IN non-blocking, IN BCS Request)
MPI Wait() bcs test(IN blocking, IN BCS Request)
MPI Testall() bcs testall(IN non-blocking, IN BCS Request+)
MPI Waitall() bcs testall(IN blocking, IN BCS Request+)
MPI Barrier() bcs barrier()
MPI Reduce() bcs reduce(IN non-all)
MPI Allreduce() bcs reduce(IN all)
MPI Scatter() bcs scatter(IN non-vectorial)
MPI Scatterv() bcs scatter(IN vectorial)
MPI Gather() bcs gather(IN non-vectorial)
MPI Gatherv() bcs gather(IN vectorial)
MPI Allgather() bcs allgather(IN non-vectorial)
MPI Allgatherv() bcs allgather(IN vectorial)
MPI Alltoall() bcs alltoall(IN non-vectorial)
MPI Alltoallv() bcs alltoall(IN vectorial)

Figure 13: MPI-BCS Correspondence

16
Proceedings of the ACM/IEEE SC2003 Conference (SC’03)
1-58113-695-1/03 $ 17.00 © 2003 ACM

