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Abstract. The development of efficient and scalable cache coherence
protocols is a key aspect in the design of manycore chip multiprocessors.
In this work, we review a kind of cache coherence protocols that, despite
having been already implemented in the 90s for building large-scale com-
modity multiprocessors, have not been seriously considered in the current
context of chip multiprocessors. In particular, we evaluate a directory-
based cache coherence protocol that employs distributed simply-linked
lists to encode the information about the sharers of the memory blocks.
We compare this organization with two protocols that use centralized
sharing codes, each one having different directory memory overhead: one
of them implementing a non-scalable bit-vector sharing code and the
other one implementing a more scalable limited-pointer scheme with a
single pointer. Simulation results show that for large-scale chip multi-
processors, the protocol based on distributed linked lists obtains worse
performance than the centralized approaches. This is due, principally, to
an increase in the contention at the directory controller as a consequence
of being blocked for longer time while updating the distributed sharing
information.

1 Introduction

As the number of cores implemented in chip multiprocessors (CMPs) increases
following Moore’s law, design decisions about communication and synchroniza-
tion mechanisms among cores become a key aspect for the performance of the
multicore. If the current trend continues, multicore architectures with tens of
cores (i.e., manycores) will employ a sharing memory model that will rely on a
cache coherence protocol implemented in hardware to maintain the coherence of
the data stored in the private caches [9]. This way, communication and synchro-
nization (usually implemented through normal load and store instructions to
shared addresses) require an efficient cache coherence protocol to achieve good
performance levels.

The design of efficient cache coherence protocols for systems with a large
number of cores has been already studied for traditional multiprocessors. In
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that context, the most scalable protocols —those which kept sharing information
in a directory distributed among nodes— were classified in two categories [5]:
memory-based schemes and cache-based schemes. Memory-based schemes store
the sharing information about all the cached copies of each block in a single
place, which is the home node of that block. In traditional multiprocessors, the
home node was associated with the main memory, and that is why they were
called memory-based schemes. On the other hand, in cache-based schemes not all
the sharing information about a single block is stored in the home node. Instead,
it is distributed among the caches holding copies of the block while the home
node only contains a pointer to one of the sharers. Usually, one or two pointers
are stored along with each copy of the block, forming a distributed linked list of
sharers.

Nowadays, current cache coherence proposals for manycore architectures as-
sume centralized directory schemes. In the context of multicore architectures,
the name of memory-based is not very suitable because the home node is now
associated with the last level cache (LLC) in the chip, which is the L2 cache in
this work. Hence, we will use the term centralized sharing code. On the other
hand, although distributed schemes where employed in several commodity mul-
tiprocessors in the 90s ([6, 3, 7, 12]), they have not been analyzed in the context
of multicore architectures. The main advantage of these schemes, which we will
call distributed sharing code schemes, is that they have lower directory memory
overhead than the centralized sharing code ones with the same precision [5]. How-
ever, they show several disadvantages, such as higher cache miss latency, some
modifications that must be introduced in the private caches, and the increased
complexity for managing cache evictions.

In this work, we evaluate the performance of a distributed sharing code
scheme in the context of CMPs. Particularly, we implement the simplest ver-
sion of this scheme which is based on the use of simply-linked lists, which we
will call List. We compare the performance of the implemented sharing code
with two centralized organizations. The first one employs a non-scalable bit-
vector (full-map) sharing code. This configuration will be our baseline (called
Base). The second one is a limited pointer scheme that uses a single pointer. We
call this configuration 1-pointer. The three protocols use the MESI states and
behave as similarly as possible in all other aspects. Simulation results show that
the three configurations obtain similar performance for 16-core CMPs. However,
for 64-core CMPs, the distributed sharing code List obtains worse performance.
We found that the reason for this performance degradation is the increased con-
tention that the List protocol introduces at the level of the directory controller.
This due to excessive locking time for updating the list of sharers upon cache
misses and evictions.

2 A Coherence Protocol Based on Simply-Linked Lists

The main difference between the protocol considered and evaluated in this work
(called List) and a traditional directory-based MESI cache coherence protocol is



that the former stores directory information in a distributed way. Particularly,
the home node in the List protocol stores the identity of one of the sharers of
the memory block. This is done by means of a pointer field stored in the L2
entry of each memory block (in the tags’ portion of the L2 cache). The set of
sharers is represented using a simply-linked list, which is constructed through
pointers in each of the L1 cache entries. This way, each of the sharers can store
the identity of the next sharer in the list or the null pointer if it is the last
element in the list (the null pointer is represented by codifying the identity of
the sharer itself, i.e., the end of the list points to itself). Therefore, directory
information in this protocol is distributed between the home node and the set
of sharers of every memory block. As it will be shown, the fact that most of
the directory storage is moved to the L1 caches (which are much smaller than
the L2 cache) brings important advantages like reduced requirements of the
directory structure in terms of memory overhead (and thus, energy consumption)
and improved scalability. As an example, assuming a 6-core CMP configuration,
Figure 1 illustrates how directory information is stored when cores 1, 3 and 5
hold read-only copies of a memory block B, for which node 0 is the home node.
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Fig. 1. Example of a simply-linked list for memory block B when cores 1, 3 and 5 are
the sharers. Node 0 is the home for block B.

Since directory information is stored in a distributed way in the List protocol,
several messages are required between the sharers and the home node to update
this information. Some of these messages would not be needed in a traditional
directory protocol. List updates in the List protocol are always initiated from
the home node, which remains blocked (i.e., other requests for this memory block
are not attended) until the modification of the list structure has been completed.
This way, we guarantee that two or more update operations cannot take place
simultaneously.

2.1 How read misses are managed

The procedure to resolve read misses for uncached data (i.e., when the memory
block is not held by any of the private caches) is almost identical in both the
protocol with a distributed sharing code considered in this work (List) and a
traditional directory protocol with a centralized sharing code (such as Base):
once the request (read miss) reaches the corresponding home L2 bank, it sends
back a message with the memory block to the requester, which subsequently
responds with the Unblock message to the directory. The home L2 bank uses the
pointer available in the tags’ part of the L2 cache to store the identity of the
only sharer up to the moment.



When the home L2 bank does not maintain a copy of the requested memory
block, the directory controller will send a request to memory and once data is
received, it will be stored in the L2 cache and a copy of the memory block will
be sent to the requester. In this case, the memory block will be put in the E

(Exclusive) state in the private cache that suffered the miss.
The main difference between the List and Base protocols with respect to

read misses is observed when one or more copies of the memory block already
exist. In this case, the home L2 bank in List stores the identity of just one of the
sharers. This information is sent to the requester along with the corresponding
memory block. Then, the requester stores the memory block in its L1 cache and
sets up the pointer field in the corresponding entry of this cache level to the
identifier included in the response message (its next sharer). After this, it sends
an Unblock message to the home L2 bank, which overwrites the pointer field
with the identity of the requester. This way, the list structure keeps the identity
of the sharers of a particular memory block in reverse order to how read misses
were processed by the home L2 cache bank.

If, on the contrary, the memory block is found in the M (Modified) state in the
home L2 cache bank (it has been previously modified in one of the L1 caches),
the read miss is forwarded by the directory controller to the only L1 cache that
holds a valid copy of it (the one that modified it). Upon receiving the forwarded
request, the corresponding L1 cache responds directly to the requester with a
message containing the memory block and its own identity. Then, the requester
proceeds just like in the previous case.

As it can be observed, updates of the list structure used to keep the identity
of all the sharers of every memory block do not need to introduce any new
messages in the List protocol with respect to Base. This is because response
messages are used to transport all the information (one identifier in this case)
required to maintain the list structure.

2.2 How write misses are managed

Write misses are resolved by invalidating all the copies of the memory block
held by the L1 caches. The corresponding directory controller at the home L2
cache bank starts the invalidation process in parallel with sending the response
message with data back to the requester.

On a write miss, in a traditional directory protocol with a centralized shar-
ing code (such as Base), the directory controller at the corresponding home L2
cache bank sends one invalidation message to each one of the sharers. In this
case, all the information about the sharers is completely stored at the home
L2 cache bank, and therefore, invalidation messages can be sent in parallel (al-
though if the interconnection network does not provide multicast support they
would be created and dispatched by the directory controller sequentially). On the
contrary, the invalidation procedure in a directory protocol with a distributed
sharing code (such as List) must be done serially. In this case, the home L2
cache bank only knows the identity of one of the sharers, which in turn knows
the identity of the next one, and so on. This way, invalidation messages must be



created and sent one after another, as the list structure is traversed. Once the
last sharer is reached, a single acknowledgement message is sent to the requester
as a notification that all the copies in the L1 caches have been deleted. As it
can be noted, the latency of write misses is therefore increased, especially for
widely shared memory blocks. But this also brings one advantage: whereas in
the Base protocol all invalidation messages entail the corresponding acknowl-
edgement response, in the List protocol just one acknowledgement is required.
This obviously reduces network traffic when the number of sharers is large.

The memory block on a write miss is sent just like in the case of a read miss,
taking into account whether the block is in M state or not.

For both the Base and List protocols, the requester sends the Unblock mes-
sage to the home L2 cache bank only when the invalidation procedure has finished
(it has collected all the acknowledgements to the invalidation messages sent by
the directory controller in the case of the Base protocol, or the only acknowl-
edgement response that is needed in the List one) as well as the response with
data has arrived. As in the case of read misses, upon receiving the Unblock mes-
sage the directory controller takes note of the new holder of the memory block
using the pointer available at the L2 cache.

This way, the number of messages required in the List protocol to resolve
write misses is lower or equal than what is needed in the Base protocol. The
counterpart is that invalidation messages in List proceed serially, which presum-
ably can increase write miss latency.

2.3 How replacements are managed

Replacements of memory blocks in M state (i.e., blocks that have been modified
by the local core) proceed exactly the same way in both List and Base protocols.
In these cases, the private L1 cache sends a request to the corresponding home
L2 bank asking for permission, and upon receiving authorization from the L2
cache, the L1 cache sends the modified memory block, which is kept at the L2
cache. By requiring the L1 cache to ask for authorization before sending the
replaced data to L2, the protocol avoids some race conditions that complicate
its design (and that, if not correctly addressed, would lead to deadlocks).

However, the main difference between the List and Base protocols has to
do with the management of replacements of clean data (memory blocks that
have not been modified locally, and thus, for which the L2 cache has a valid
copy). Whereas in the Base protocol replacements of this kind are silent (the
replaced line is simply discarded and no message has to be sent to the L2 cache),
the List protocol requires involving the home L2 cache bank and other nodes
in the replacement process. This is needed to ensure that the list structure is
correctly maintained after a replacement has taken place. Although not sending
replacement hints for clean data in the Base protocol can lead to the appearance
of some unnecessary invalidations, previous works have demonstrated that this
is preferable to the waste of bandwidth and increase in the occupancy of cache
and directory controllers that otherwise would be suffered. This is especially true
when the number of cores is large.



As with replacements of modified data, before a clean memory block can be
replaced in the List protocol, a replacement request must be sent to the cor-
responding home L2 cache. When the L2 receives it and it is ready to handle
it, it sends a message authorizing the replacement. This message is answered
with another that carries the value of the pointer field kept at the L1 cache
which stores the identity of the following L1 cache in the list of sharers. If the
identity of the replacing node coincides with the sharer stored at the L2 cache,
then the value of the pointer at the L2 cache is changed to the identity of the
node included in the replacement request, and an acknowledgement message is
immediately sent back to the L1 cache that initiated the replacement. Upon
reception of this message, the L1 cache can discard the memory block and the
replacement operation is completed. Otherwise, the L2 cache forwards the re-
placement request to the sharer codified in its pointer field. The message keeps
propagating through the list of sharers until the node that precedes the replacing
node in the list is reached. At this point, the pointer in the preceding node is
updated with the information included in the message (the identity of the node
following the replacing node) and an acknowledgement is sent to the replacing
L1 cache. Finally, the replacing node sends an acknowledgement to the L2 and
the operation completes.

As we will show next, the fact that replacements for clean data in the List
protocol cannot be done silently significantly increases the number of messages
on the interconnection network (bandwidth requirements) and, what is more
important, the occupancy of the directory controllers at the L2 cache. It is
important to note that although write buffers are used at the L1 caches to
prevent delaying unnecessarily the cache miss that caused the replacement, the
fact that the directory controller “blocks” the memory block being replaced
results in longer latencies for subsequent misses to the replaced address.
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Fig. 2. Memory overhead of the evaluated protocols.

3 Directory Memory Overhead Analysis

One of the reasons why directory protocols based on a distributed sharing code
were popular two decades ago was their good scalability in terms of the amount of
memory required to store sharing information. In the end, this results into lower



area requirements and, what is more important nowadays, better scalability in
terms of static power consumption. Whereas the amount of bits required per
directory entry with a bit-vector sharing code (as the one used in the Base
protocol) grows linearly with the number of processor cores (one bit per core),
for a protocol like List the experienced growth is logarithmic. Additionally, the
List protocol needs one extra pointer in every entry of each L1 cache, but this
is not a problem since the number of entries in the L1 caches is much smaller
that in the L2 cache banks.

Figure 2 compares the directory protocols considered in this work in terms of
the memory overhead each one of them introduce. Particularly, we measure the
percentage of memory added by each protocol with respect to the total amount
of bits dedicated to the L1 and L2 caches. As we can see, the scalability of
the Base protocol is restricted to configurations with a small number of cores
(as expected). Replacing the bit-vector used in each of the L2 cache entries of
Base with a limited pointer sharing code with one pointer (1-pointer) ensures
scalability. In this case, the number of bits per entry grows as log2 N , being
N the total number of cores1. Finally, the scalability of the List protocol is
very close to that of 1-pointer. L1 caches are small, and therefore, the memory
overhead that the pointers adds at this cache level does not make any noticeable
difference.

4 Evaluation Environment

We have done the evaluation of the cache coherence protocols mentioned in this
work using the PIN [8] and GEMS 2.1 [10] simulators, which have been connected
in a similar way as proposed in [11]. PIN obtains every data access performed by
the applications while GEMS models the memory hierarchy and calculates the
memory access latency for each processor request. We model the interconnection
network with the Garnet [1] simulator. The simulated architecture corresponds
to a single chip multiprocessor (tiled -CMP) with either 16 or 64 cores. The most
relevant simulation parameters are shown in Table 1.

For this work, we have implemented in GEMS a traditional directory-based
cache coherence protocol (called Base) using full-map sharing vectors, another
protocol (called 1-pointer) that uses a single pointer to the owner as sharing
information similarly to AMD’s MagnyCours [4], and a protocol (which we have
called List) that uses a distributed sharing code implemented by means of linked
lists, described in Section 2. In all the protocols, the L2 cache is strictly inclusive
with respect to the L1. Hence, the sharing code can be stored along with the L2
cache tags.

We have used all the applications from the SPLASH-2 benchmark suite with
the recommended sizes [13]. We have accounted for the variability of parallel
applications as discussed in [2]. To do so, we have performed a number of sim-
ulations for each application and configuration inserting random variations in

1 We also consider the overflow bit required in each entry to know when two or more
sharers are present, and therefore, coherence messages have to be broadcasted



Table 1. System parameters.

Memory parameters
Block size 64 bytes
L1 cache (data & instr.) 32 KiB, 4 ways
L1 access latency 1 cycle
L2 cache (shared) 512 KiB/tile, 16 ways
L2 access latency 12 cycle
Cache organization Inclusive
Directory information Included in L2
Memory access time 160 cycles

Network parameters
Topology 2-D mesh (4×4 or 8×8)
Routing method X-Y determinist
Message size 5 flits (data), 1 flit (control)
Link time 1 cycle
Bandwidth 1 flit per cycle

each main memory access. All results in this work correspond to the parallel
part of the applications.

5 Evaluation Results

In this section we explain the results of the experiments. We analyze the miss
latency and how it is distributed, the network traffic and the execution time of
the applications with each protocol, both for 16- and 64-core configurations.

5.1 L1 miss latency

Cache miss latency is a key aspect of the performance of a multiprocessor, and the
sharing code used by the coherence protocol can affect it significantly. Figure 3
shows the normalized latency of L1 cache misses for configurations with 16 and
64 cores. This latency has been divided in four parts: the time to arrive to L2
(Reach L2 ), the time spent waiting until the L2 can attend the miss (At L2),
the time spent waiting to receive the data from main memory (Main memory)
and the time after the L2 sends the data or forwards the request until the
requester receives the memory block (To L1 ). The Main memory time will be 0
for most misses because the data can be found on chip most times, but it is still
a significant part of the average miss latency.

We can see that, for 16 cores (Figure 3(a)), miss latency is not much affected
by the sharing code employed. There is only a small increase in the To L1 time
for 1-pointer and a slightly higher increase for List. In both cases, this is due
to an increase in the latency of write misses. This increase happens for different
reasons in each case. In 1-pointer it is due to the higher number of messages
required to invalidate the sharers (a broadcast each time), while in List it is due
to serial nature of the invalidation process, as explained in Section 2.

When we look at the results for 64 cores (Figure 3(b)), we see a higher
increase in the To L1 latency due to the higher number of cores that need to
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Fig. 3. L1 cache miss latencies.

receive invalidation messages. However, the most worrying aspect of the results
is the sharp increase in many benchmarks of the time spent waiting for the
L2 cache to attend the miss (At L2 ). We see that, even when using the Base
protocol, some applications start to suffer the effects of L2 contention when
going from 16 to 64 processors, but the List protocol exacerbates this effect.
This happens because the time needed to update the sharing list grows quicker
than for the protocols with centralized sharing information due to its sequential
nature in the case of List. Moreover, to avoid inconsistencies in the list, the
update process happens in mutual exclusion (i.e., only one update action can be
done at the same time to the same list), which forces the L2 cache to remain
blocked and unable to answer to other requests to the same memory block. For
this reason, contention will increase with the number of cores that access the
line. The sharing list needs to be updated also in case of a replacement of a
shared line, as explained in Section 2, which further increases L2 contention.

5.2 Network traffic

Figure 4 shows the normalized traffic that travels through the network measured
in flits for configurations of 16 and 64 cores. This traffic has been divided in the
following categories: data messages due to cache misses (Data), data messages
due to replacements (WBData), control messages due to cache misses (Control),
control messages due to replacements of private data (WBControl) and control
messages due to replacements of shared data (WBSharedControl).
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Fig. 4. Interconnection network traffic.

As can be seen in the results for the 16-core configuration (Figure 4(a)),
the sharing code used by 1-pointer increases the traffic due to control messages
because this protocol needs to perform a broadcast of the invalidation message
whenever there is more than one sharer. On the other hand, List has the same
amount of traffic due to control messages for misses than Base (although the
messages are processed sequentially instead of in parallel), but it increases signif-
icantly the traffic due to replacements, especially in the case of the replacements
of shared data which can be done silently in the case of the other two protocols.
The replacement process, which updates the sharing list sequentially, contributes
to the increase of the L2 contention.

For the 64-core case (Figure 4(b)), the traffic of 1-pointer overcomes, on
average, that of List because the cost of the broadcast communication required
by the invalidations grows quickly with the number of cores. This demonstrates
that although 1-pointer is as scalable as List in terms of storage overhead, it is
much less scalable in terms of traffic, and consequently in the energy consumption
of the interconnection network. This makes the 1-pointer protocol unsuitable for
a larger number of cores.

Finally, we also see that the traffic due to replacements of shared data in-
creases a great deal for 64 cores in the case of the List protocol, especially for
some benchmarks. This further shows that replacements handling is one key
weak point of the sharing code used by this protocol.



5.3 Execution time

Finally, we show how the different sharing codes affect the execution time of the
applications in Figure 5, as always both for 16- and 64-core configurations.
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Fig. 5. Execution time.

The 16-core configuration (Figure 5(a)) is almost unaffected by the sharing
code in terms of execution time. However, in the case of 64 cores (Figura 5(b))
some applications suffer a significant increase in the execution time especially
for the List protocol. This increase can be observed most clearly in barnes,
fft, lu, ocean, oceannc and volrend. If we look back to the miss latency results
(Figure 3(b)), we can see that these are precisely the applications whose waiting
time at L2 cache increases the most.

6 Conclusions

In this work we have evaluated the behavior of a cache coherence protocol with
distributed sharing information based on simply linked lists in the context of
a multicore architecture. We have seen that protocols of this kind scale well
from the point of view of the amount of memory required for storing sharing
information. However, in terms of execution time, although it works as well as
the alternatives based on centralized sharing information for a small number of
cores, it does not scale well with the number of cores. We have shown that this is,
for the most part, due to a higher contention at the directory controllers (at the



L2 cache banks in our case) which stay blocked for much longer and delaying
other misses to the same memory block. We have identified the handling of
replacements as the main contributor to this problem. Replacements work worse
than in the other protocols because the L2 cache controller stays blocked longer
and because shared replacements cannot be done silently.

Despite the results obtained until now, we think that this kind of protocols
based on distributed sharing information present interesting possibilities which
are worth exploring in the context of manycore architectures with a large number
of cores. In this way, as future work we plan to reduce the L2 cache busy time
by means of improved replacement strategies.
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