
Multicore Platforms for Scientific Computing:
Cell BE and NVIDIA Tesla

J. Fernández, M.E. Acacio, G. Bernab́e, J.L. Abellán, J. Franco
Dept. de Ingenierı́a y Tecnoloǵıa de Computadores, Universidad de Murcia

Facultad de Inforḿatica, Campus de Espinardo s/n, 30100 Murcia (Spain)

Abstract - There are two multicore platforms that are
currently concentrating an enormous attention due to their
tremendous potential in terms of sustained performance: the
Cell Broadband Engine (Cell BE from now on) and the
NVIDIA Tesla computing solutions. The former is a re-
cent heterogeneous chip-multiprocessor (CMP) architecture
jointly developed by IBM, Sony and Toshiba to offer very
high performance, especially on game and multimedia ap-
plications. In fact, it is the heart of the PlayStation 3. The
latter are general-purpose GPUs (GPGPU) used as data-
parallel computing devices based on the Computed Unified
Device Architecture (CUDA) common to the latest NVIDIA
GPUs. The common denominator is a multicore platform
which provides an enormous potential performance benefit
driven by a non-traditional programming model. In this pa-
per we try to provide some insight into the peculiarities of
both, as regards their cost, performance, programmability
and limitations, in order to target scientific computing.

Keywords: parallel programming, multicore, Cell BE,
NVIDIA Tesla, CUDA

1 Introduction

Nowadays, multicore architectures are omnipresent and can
be found in all market segments. In particular, they con-
stitute the CPU of many embedded systems (for example,
video game consoles, network processors or GPUs), per-
sonal computers (for example, the latest developments from
Intel and AMD), servers (the IBM Power6 or Sun Ultra-
SPARC T2 among others) and even supercomputers (for
example, the CPU chips used as building blocks in the
IBM Blue-Gene/L and Blue-Gene/P systems). This market
trend towards CMP (or chip-multiprocessor) architectures
has given rise to platforms with a great potential for scien-
tific computing: the Cell BE [28] and the GPGPUs [16, 22]
whose best representative is the NVIDIA Tesla GPGPU se-
ries [20].

From the architectural point of view, the Cell BE can be
classified as a heterogeneous CMP. In particular, the first
generation of the chip integrates up to nine cores of two
distinct types [13]. One of the cores, known as thePower
Processor Elementor PPE, is a 64-bit multithreaded Power-

Architecture-compliant processor with two levels of on-chip
cache that includes the vector multimedia extension (VMX)
instructions. The main role of the PPE is to coordinate and
supervise the tasks performed by the rest of cores. The re-
maining cores (a maximum of eight) are calledSynergistic
Processing Elementsand provide the main computing power
of the Cell BE. Each SPE includes a local memory for keep-
ing instructions and data that is not coherent with the PPE
main memory. In this way, SPEs can simultaneously exe-
cute up to eight independent threads that need to be explic-
itly synchronized through a number of hardware-supported
mechanisms. In addition, data transfers to and from the SPE
local memories must be explicitly managed by programmers
using a DMA engine.

CUDA [17] is a new hardware and software architecture
for issuing and managing computations on the GPU, without
the need of mapping them to a graphics APIs [25], common
to the latest NVIDIA developments. Each CUDA-enabled
device behaves as a massively-threaded computing device
with a significant amount of on-board memory. Thus, it is
composed of a variable number ofthread processorsand a
thread execution managerthat handles threading automati-
cally. Both the amount of on-board memory and the num-
ber of thread processors depend on the specific GPU model.
Data set is divided into smaller chunks stored in the on-board
memory in order to feed the thread processors. Thereafter
threads are intended to run in lockstep in a SIMD fashion
acting as a data-parallel computing device. Unlike Cell BE
developers, CUDA programmers don’t have to write explic-
itly threaded code. Instead, the design of a correct data lay-
out becomes the crucial task to obtain good performance and
requires writing some explicit code.

The rest of the paper is organized as follows. In Section 2
we provide a short revision of the architecture of the Cell BE,
a description of its main communication and synchroniza-
tion primitives, and a review of the software infrastructure
available to programmers. Next, in Section 3 we provide
similar information for CUDA and the the NVIDIA Tesla
C870 architecture. Then, a comprehensive comparison of
both platforms is performed in Section 4. Finally, Section 5
gives the main conclusions of the paper.



2 Cell BE

2.1 Architecture

The Cell Broadband Engine (Cell BE) [13] is an hetero-
geneous multicore chip composed of one general-purpose
processor, calledPowerPC Processor Element(PPE), eight
specialized co-processors, calledSynergistic Processing Ele-
ments(SPEs), a high-speed memory interface controller, and
an I/O interface, all integrated in a single chip. All these ele-
ments communicate through an internal high-speedElement
Interconnect Bus(EIB) (see Figures 1(a) and 1(b)) [3].

The latest version of the Cell BE processor, running at
3.2 GHz, has a theoretical peak performance of 204.8 Gflops
(single precision) and 14.63 Gflops (double precision). The
EIB supports a peak bandwidth of 204.8 GB/s for intra-chip
data transfers among the PPE, the SPEs, and the memory
and the I/O interface controllers. The memory interface con-
troller (MIC) provides a peak bandwidth of 25.6 GB/s to
main memory. The I/O controller provides peak bandwidths
of 25 GB/s inbound and 35 GB/s outbound.

The PPE is the main processor of the Cell BE, and is re-
sponsible for running the operating system and coordinating
the SPEs. It is a traditional 64-bit PowerPC (PPC) proces-
sor core with a VMX unit (Vector/SIMD Multimedia Exten-
sion), a 32 KB Ll instruction cache, a 32 KB L1 data cache,
and a 512 KB L2 cache. The PPE is a dual issue, in-order
execution, 2-way SMT processor. The PPE comprehends
two different units, namelyPowerPC Processor Unit(PPU)
andPowerPC Processor Storage Subsystem(PPSS) (see Fig-
ure 1(c)).

On the other hand, each SPE is a 128-bit RISC proces-
sor specifically designed for high-performance on streaming
and data-intensive applications [6]. Each SPE consists of a
Synergistic Processing Unit(SPU) and aMemory Flow Con-
troller (MFC) (see Figure 1(d)). SPUs are a in-order proces-
sors with two pipelines and 128 128-bit registers. All SPU
instructions are inherently SIMD operations that the proper
pipeline can run at four different granularities: 16-way 8-
bit integers, 8-way 16-bit integers, 4-way 32-bit integers
or single-precision floating-point numbers, or 2-way 64-bit
double-precision floating-point numbers. As opposed to the
PPE, SPEs do not have a private cache memory. In contrast,
SPUs include a 256 KBLocal Store(LS) memory to hold
both instructions and data of SPU programs, that is, SPUs
cannot access main memory directly. The MFC contains a
DMA Controller and a set of memory-mapped registers or
MMIO Registers. Each SPU can write its MMIO registers
though severalChannel Commands. The DMA controller
supports DMA transfers among the LSs and main memory.
These operations can be issued by the owner SPE, which ac-
cesses the MFC through the channel commands, or the other
SPEs (or even the PPE), which access the MFC through the
MMIO registers.

2.2 Programming

The Cell BE has been specifically designed to exploit mul-
tiple levels of parallelism at the same time: (a) each SPE
executes a different thread, (b) an SPE can overlap com-
putation and communication by using non-blocking DMA
operations, (c) SIMD instructions perform the very same
operation on multiple data simultaneously, and (d) SPEs
have two pipelines that can execute two instructions con-
currently. Nevertheless, the main advantage also becomes
the major drawback: Cell BE programming is as flexible
as complex. Flexibility stems from the possibility to use a
number of programming models depending on the applica-
tion domain [10]. Complexity is due to the fact that threads
must communicate and synchronize across program execu-
tion. To do that, the PPE and the SPEs can use a variety
of mechanisms provided by the Cell BE architecture:DMA
transfers, mailboxes, signalsandatomic operations[1, 2].

SPEs use DMA transfers to read from (GET) or write to
(PUT) main memory. DMA transfer size must be 1, 2, 4, 8
or a multiple of 16 Bytes up to a maximum of 16 KB. DMA
transfers can be either blocking or non-blocking. The lat-
ter allow to overlap computation and communication: there
might be up to 128 simultaneous transfers between the eight
SPE LSs and main memory. In addition, an SPE can issue a
single command to perform a list of up to 2048 DMA trans-
fers, each one up to 16 KB in size. In all cases, peak perfor-
mance can be achieved when both the source and destination
addresses are 128-Byte aligned and the size of the transfer is
an even multiple of 128 Bytes [14].

Mailboxes are FIFO queues that support exchange of 32-
bit messages among the SPEs and the PPE. Each SPE in-
cludes two outbound mailboxes, calledSPU Write Outbound
Mailbox and SPU Write Outbound Interrupt Mailbox, to
send messages from the SPE; and a 4-entry inbound mail-
box, calledSPU Read Inbound Mailbox, to receive mes-
sages. Every mailbox is assigned a channel command and a
MMIO register. The former allows the owner SPE to access
the outbound mailboxes. The latter enables remote SPEs and
the PPE to access the inbound mailbox.

In contrast, signals were designed with the only purpose
of sending notifications to the SPEs. Each SPE has two 32-
bit signal registers to collect incoming notifications. A signal
register is assigned a MMIO register to enable remote SPEs
and the PPE to send individual signals (overwrite mode) or
combined signals (OR mode) to the owner SPE.

Read-modify-write atomic operations enable simple
transactions on single words residing in main memory. For
example, theatomicadd returnatomic operation adds a 32-
bit integer to a word in main memory and returns its value
before the addition.

Cell BE programming requires separate programs, writ-
ten in C/C++, for the PPE and the SPEs, respectively. The
PPE program can include C intrinsics (e.g.,vec add), to
use its VMX unit; and library function calls [12], to manage
threads and perform communication and synchronization



(a) Block Diagram. (b) Layout.

(c) PowerPC Processor Element. (d) Synergistic Processing Unit.

Figure 1. Cell BE Architecture.

operations (e.g.,spe context run, spe mfcio put
andspe in mbox write). The SPE program follows an
SPMD model (Single Program Multiple Data). It includes
C intrinsics [9], to execute SIMD instructions, and com-
munication and synchronization operations (e.g.,spu add,
mfc get andspu read in mbox); and function calls to
the SDK library [11], to carry out complex tasks of different
nature (transpose matrix, fft 2d, etc.).

3 CUDA

3.1 Architecture

All the latest NVIDIA developments such as GeForce 8 se-
ries, Quadro FX 5600/4600 and Tesla solutions are compli-
ant with theCompute Unified Device Architecture(CUDA).
Nevertheless, the NVIDIA Tesla GPGPUs, namely C870,
D870 and S870, are the only ones that have been specifi-
cally designed for general-purpose computing given the fact
that they have no graphics output. In particular, the NVIDIA
Tesla C870 is a homogeneous CMP, with 128 cores and
1.5 GB of on-board memory, attached to the main CPU
through a PCIe x16 interface. Under this configuration,
the NVIDIA Tesla features a theoretical peak performance
of 518 Gflops (single precision), a peak on-board memory
bandwidth of 76.8 GB/s and a peak main memory bandwidth

of 4 GB/s. In turn, the NVIDIA Tesla D870 and S870 com-
puting solutions comprise two and four C870 units in a desk-
top and a 1U rack-mount chassis, respectively. Therefore,
they come with 256 and 512 cores, and 3 GB and 6 GB of
on-board memory, to provide a theoretical peak performance
of 1036.8 Gflops and 2073.6 Gflops, respectively.

Each CUDA-compliant device is a set of multiprocessor
cores (see Figure 2(a)), capable of executing a very high
number of threads concurrently, that operates as a copro-
cessor to the main CPU or host. In turn, each multiproces-
sor has a SIMD architecture, that is, each processor of the
multiprocessor executes a different thread but all the threads
run the same instruction, operating on different data based
on itsthreadId, at any given clock cycle. The NVIDIA
Tesla C870 has sixteen multiprocessors with eight proces-
sors each.

Both the host and the device maintain their own DRAM,
referred to ashost memoryand device memory(on-board
memory). Device memory can be of three different types
(see Figure 2(b)):global memory, constant memoryandtex-
ture memory. They all can be read from or written to by
the host and are persistent through the life of the application.
Nevertheless, global, constant and texture memory spaces
are optimized for different memory usages. The NVIDIA
Tesla C870 has 1.5 GB of global memory and 64 KB of con-
stant memory.



Multiprocessors have on-chip memory that can be of the
four following types: registers, shared memory, constant
cacheandtexture cache(see Figure 2(a)). Each processor in
a multiprocessor has one set of local 32-bit read-writeregis-
tersper processor. A parallel data cache ofshared memory
is shared by all the processors. A read-onlyconstant cache
is shared by all the processors and speeds up reads from the
constant memory. A read-onlytexture cacheis shared by all
the processors and speeds up reads from the texture mem-
ory. The local and global memory spaces are implemented
as read-write regions of device memory and are not cached.
The NVIDIA Tesla C870 has 8192 registers and 16 KB of
shared memory per multiprocessor.

A portion of a parallel application that is executed many
times, but independently on different data, can be isolated
into a function that is executed on the device by many threads
running on different processors of a multiprocessor. Such a
function, called akernel, is compiled to the instruction set of
the device and downloaded into it.

A kernel is organized as a set of thread blocks as
shown in Figure 2(c). Athread block is a batch of
threads that can cooperate together by efficiently sharing
data through the shared memory and synchronizing their ex-
ecution to coordinate memory accesses using the primitive
syncthreads(). Each thread block executes on one

multiprocessor. Each thread has its ownthread ID, which
is the number of the thread within a one-, two- or three-
dimensional array of arbitrary size. The use of multidimen-
sional identifiers helps to simplify memory addressing when
processing multidimensional data.

The number of blocks in a thread block is limited (512
threads per block in the NVIDIA Tesla C870). Therefore,
blocks of equal dimension and size that execute the same
kernel can be batched together into agrid of thread blocks.
This comes at the expense of reduced thread cooperation, be-
cause threads in different thread blocks from the same grid
cannot communicate and synchronize with each other. In
contrast, this mode allows thread blocks of the same ker-
nel grid to run on any multiprocessor, even from different
devices, at any time. Again, each block is identified by its
block ID, which is the number of the block within a one- or
two-dimensional array of arbitrary size for the same reasons
as above. It is worth noting that kernel threads are extremely
lightweight, i.e. creation overhead is negligible and context
switching is essentially free.

In this scenario, a thread can access device memory
through the following memory spaces: read-write per-thread
registers, read-write per-thread local memory, read-write
per-block shared memory, read-write per-grid global mem-
ory, read-only per-grid constant memory and read-only per-
grid texture memory. Note that the global, constant, and tex-
ture memory spaces are persistent across kernel launches by
the same application.

3.2 Programming

CUDA tries to simplify the programming model by hiding
thread handling from programmers, i.e. there is no need to
write explicit threaded code in the conventional sense. In-
stead, CUDA includes C/C++ software-development tools
that allow programmers to mix host code with device
code [7]. To do so, CUDA programming requires a single
program written in C/C++ with some extensions to the C
language [17]:

• Function type qualifiers for functions that execute on
the device ( global and device ).

• Variable type qualifiers for variables that reside
on device memory (device , shared and
constant ).

• Four built-in variables that specify the grid and
block dimensions, the block index within the grid
and thread index within the block (gridDim,
blockDim, blockIdx andthreadIdx), accessi-
ble in global and device functions.

• An execution configuration constructto specify the di-
mension of the grid and blocks when launching kernels,
declared with the global directive, from host code
(for example, function<<<gridDim, blockDim,

shm size>>>(parameter list)).

Besides, CUDA comes with a runtime library, split into a
host component, a device component and a common com-
ponent, that supports built-in vector data types and tex-
ture types to access texture memory, and provides a num-
ber of mathematical functions, type conversion and casting
functions, thread synchronization functions, and device and
memory management functions. Finally the CUDA environ-
ment also includes two higher-level mathematical libraries
of common usage, namely CUBLAS [18] and CUFFT [19].

Kernel launches using the above mentioned execution
configuration construct are asynchronous, that is, controlre-
turns to host immediately. Then, the main CPU is free to do
whatever is required untilcudaThreadSynchronize()
is invoked so that the host blocks until all previous CUDA
calls complete. It is worth noting that memory allocation
and movement of data between host memory and device
memory is left to programmers. They must allocate the
required buffers in either host or device memory, and also
copy data back and forth between host memory and device
memory, using the functions provided by the runtime library
(cudaMalloc(), cudaFree() andcudaMemcpy()).

4 Comparison

In this section we compare a single Cell BE with the
NVIDIA Tesla C870 considering different theoretical and
practical aspects and based on our own experience with these
platforms:



(a) CUDA Hardware Model. (b) CUDA Memory Model.

(c) CUDA Programming Model. (d) NVIDIA Tesla C870.

Figure 2. CUDA Architecture.

• Cost. CUDA-enabled devices range from less than one
hundred dollars for the lowest GeForce 8 series models
up to $1300 dollars for the NVIDIA Tesla C870. The
PlayStation 3 includes a fully-programmable Cell BE
by installing a Linux distribution such as YDL 6.0 [27]
and can be found at around $500 (60 GB version).
However, the PlayStation 3 is not suitable for scientific
computing in many cases due to its memory shortage
(less than 200 MB left for applications) as well as the
unavailability of two out of eight SPEs. IBM dual Cell-
based blades are priced at around $10.000. The cost
measured in $/Gflop in function of these numbers is ten
times higher for the Cell BE solution when compared
to the NVIDIA Tesla C870.

• Main memory bandwidth . Programming the Cell BE
involves explicitly moving data back and forth between
main memory and SPEs’ LSs. On the other hand, pro-
gramming the NVIDIA Tesla C870 also involves mov-
ing data back and forth between main memory and de-
vice memory. Therefore main memory bandwidth is a
key parameter to get good performance. In this sense,
SPEs can get very close to the theoretical peak memory
bandwidth of 25.6 GB/s [1]. Meanwhile, most CUDA-
enabled devices have a PCIe x16 interface which means
a theoretical peak device-to-host bandwidth of 4 GB/s.
Nevertheless, this limit is not reached by the NVIDIA
Tesla C870 that obtains 1.5 GB/s for regular memory
and 3.1 GB/s for page-locked memory.



• Theoretical peak performance. A single Cell BE
has a theoretical peak performance of 204.8 Gflops
for single precision and 14.63 Gflops for double pre-
cision. In the meantime, the NVIDIA Tesla C870 has
a peak performance of 518 Gflops for single preci-
sion and has no support for double precision. These
numbers show the notable potential of these platforms
when compared with state-of-the-art conventional mi-
croprocessors [21]. In spite of that, the actual per-
formance achieved by applications on these platforms
greatly depends on the characteristics of the target prob-
lem and the ability of programmers to optimize their
codes [23, 24, 26].

• IEEE-compliant floating-point support . Neither the
Cell BE nor CUDA-enabled devices have fully IEEE-
compliant floating-point support [10, 21]. Conse-
quently, results generated by applications using these
platforms may slightly differ from their serial coun-
terparts under certain circumstances. Finally, both
platforms are expected to provide double-precision
floating-point support in their next generations.

• Target applications. The Cell BE is able to exploit
not only data-level parallelism but also task-level paral-
lelism and provides support for both single- and double-
precision floating-point operations. Moreover, it en-
ables a number of different programming models such
as the function-offload model, the pipeline model or
the shared-memory multiprocessor mode among oth-
ers [10]. In contrast, CUDA-enabled devices, including
the NVIDIA Tesla C870, aim at data-intensive appli-
cations with a very high arithmetic intensity that only
need single-precision floating-point math. In this sense,
the Cell BE provides a more versatile solution at the ex-
pense of a more modest performance.

• Programming learning curve. Even though the learn-
ing curve of Cell BE programming is much harder
than that of the CUDA environment, both platforms
require a significant training effort. Cell BE develop-
ers have to deal with thread management, data move-
ment through DMA transfer operations, thread coordi-
nation using mailboxes, signals and atomic operations,
and SPE code SIMDization. All these tasks require a
good understanding of the Cell BE microarchitecture
along with the use of non-standard C intrinsics to per-
form such operations. In contrast, CUDA hides most
microarchitectural details of NVIDIA Tesla C870 from
programmers, thread management and scheduling are
handled by the thread execution manager, code doesn’t
need to be SIMDized, and data movement is consider-
ably simpler. However, it should be noted that the C ex-
tensions and the runtime library functions impose many
restrictions [17] that make programming more difficult
than it could appear at first glance.

• Code optimization. For now, developing efficient code
for the Cell BE requires a number of manual optimiza-
tions mostly on the SPE code [5]. Such optimizations
include double-buffering DMA data transfers, reorder-
ing instruction scheduling to maximize dual-issue cy-
cles, branch hinting to reduce performance impact of
branches, generation of SIMDized code to fully ex-
ploit the SPE architecture, and a number of memory-
alignment issues. Life is not much easier for CUDA
programmers. In order to maximize performance, they
must expose as much parallelism as possible (struc-
turing the algorithm to maximize independent paral-
lelism, creating as many threads as possible, and taking
advantage of asynchronous kernel launches and asyn-
chronous data transfers by means of CUDA streams);
optimize memory usage for maximum bandwidth (min-
imizing data transfers across the PCIe link, and opti-
mizing memory access patterns to get coalesced global
memory accesses and shared memory accesses with no
or few bank conflicts); maximize occupancy to hide
latency; and optimize instruction usage for maximum
throughput (minimizing use of low-throughput instruc-
tions and divergent warps). For more details see [21].

• Debuggability. The Cell BE SDK includes the
spu-timing tool and the Mambo simulator [4] that
allow to perform static and dynamic timing analysis of
SPE code, and also a performance debugging tool and
a visual performance analyzer. The CUDA compiler
helps debugging by enabling a device emulation mode
that allows to use native debug support. Also, CUDA
incorporates a visual profiler that relies on hardware
performance counters to help identifying potential per-
formance problems. Our experience indicates that de-
bugging code is still an arduous task in both platforms.

• Portability . Source code specifically written and opti-
mized for the Cell BE is highly architecture-dependent.
However, if future generations of the Cell BE are
fully-compliant with the Cell BE Architecture speci-
fication [8], programmers should be able to port code
to the new Cell BE versions with no much effort.
CUDA source code is intended to be operational with
no changes in all CUDA-enabled devices [17]. But to
some extent CUDA source code is bound to the spe-
cific device microarchitecture it was primarily devel-
oped for. In this sense, when programmers determine
the best layout of grids and blocks, they must take into
consideration factors as the number of thread proces-
sors or the device memory configuration.

• Integration . Fine-grained parallelism exploited by
both platforms nicely complements the comparatively
coarse-grained parallelism available in other parallel
programming APIs such as MPI. In this way, these plat-
forms can easily integrate into higher-level hierarchical
parallel systems [15].



5 Conclusions

The Cell Broadband Engine and the NVIDIA Tesla C870 are
currently concentrating an enormous attention due to their
tremendous potential in terms of sustained performance.
However, they pose a number of architectural and program-
ming peculiarities that are worth analyzing and comparing.
In this paper we have provided not only a complete descrip-
tion of both platforms but also a comprehensive comparison
based on our own experience with these platforms. We have
explored different aspects such as their cost, main memory
bandwidth, performance, floating-point support, target ap-
plications, programmability, debuggability, portability and
integration. This analysis exposes the pros and cons of both
platforms and can help application programmers to pick the
most appropriate platform for parallelizing scientific codes.

Acknowledgments

This work has been jointly supported by the Spanish
MEC and European Commission FEDER funds under
grants “Consolider Ingenio-2010 CSD2006-00046” and
“TIN2006-15516-C04-03”.

References

[1] J. L. Abellán, J. Ferńandez, and M. E. Acacio. CellStats: a
Tool to Evaluate the Basics Synchronization and Communi-
cation Operations of the Cell BE. In16th Euromicro Inter-
national Conference on Parallel, Distributed and network-
based Processing, Toulouse, France, February 2008.

[2] J. L. Abellán, J. Ferńandez, and M. E. Acacio. Character-
izing the Basic Synchronization and Communication Opera-
tions in Dual Cell-Based Blades. InInternational Conference
on Computational Science, Krákow, Poland, Junio 2008.

[3] T. W. Ainsworth and T. M. Pinkston. Characterizing the Cell
EIB On-chip Network.IEEE Micro, 27(5):6–14, September
2007.

[4] P. Bohrer, J. Peterson, M. Elnozahy, R. Rajamony, A. Gheith,
R. Rockhold, C. Lefurgy, H. Shafi, T. Nakra, R. Simpson,
E. Speight, K. Sudeep, E. V. Hensbergen, and L. Zhang.
Mambo: a Full System Simulator for the PowerPC Architec-
ture. ACM SIGMETRICS Performance Evaluation Review,
31(4):8–12, March 2005.

[5] A. Eichenberger, J. K. O’Brien, K. M. O’Brien, P. Wu,
T. Chen, P. H. Oden, D. A. Prener, J. C. Shepherd, B. S. an d
Z. Sura, A. Wang, T. Zhang, P. Zhao, M. K. Gschwind, R. Ar-
chambault, Y. Gao, and R. Koo. Using advanced compiler
technology to exploit the performance of the Cell Broadband
Engine architecture.IBM Systems Journal, 45(1):59–84, Jan-
uary 2006.

[6] M. Gschwind, H. P. Hofstee, B. Flachs, M. Hopkins,
Y. Watanabe, and T. Yamazaki. Synergistic Processing in
Cell’s Multicore Architecture. IEEE Micro, 26(2):10–24,
March/April 2006.

[7] T. R. Halffill. Parallel Processing with CUDA.MicroProces-
sor Report Online, January 2008.

[8] IBM Systems and Technology Group.Cell Broadband En-
gine Architecture V1.01, October 2006.

[9] IBM Systems and Technology Group.C/C++ Language
Extensions for Cell BroadBand Engine Architecture V2.4,
March 2007.

[10] IBM Systems and Technology Group.Cell Broadband En-
gine Programming Tutorial Version 2.1, March 2007.

[11] IBM Systems and Technology Group.Cell Broadband En-
gine SDK Libraries Version 2.1, March 2007.

[12] IBM Systems and Technology Group.SPE Runtime Man-
agement Library Version 2.1, March 2007.

[13] J. Kahle, M. Day, H. Hofstee, C. Johns, T. Maeurer, and
D. Shippy. Introduction to the Cell Multiprocessor.IBM
Journal of Research and Development, 49(4/5):589–604,
July/September 2005.

[14] M. Kistler, M. Perrone, and F. Petrini. Cell Processor Inter-
connection Network: Built for Speed.IEEE Micro, 25(3):2–
15, May/June 2006.

[15] Los Alamos National Laboratory.Los Alamos RoadRunner,
2008. http://www.lanl.gov/roadrunner/.

[16] D. Manocha. General-Purpose Computation Using Graphic
Processors.IEEE Computer, 38(8):85–88, August 2005.

[17] NVIDIA Corporation. NVIDIA Compute Unified Device Ar-
chitecture (CUDA) Programming Guide Version 1.1, Novem-
ber 2007.

[18] NVIDIA Corporation.NVIDIA CUDA CUBLAS Library Ver-
sion 1.0, June 2007.

[19] NVIDIA Corporation. NVIDIA CUDA CUFFT Library Ver-
sion 1.1, October 2007.

[20] NVIDIA Corporation. NVIDIA Tesla Computing Solutions
for HPC, 2008. http://www.nvidia.com/page/hpc.html.

[21] NVIDIA Tutorial at PDP’08.CUDA: A New Architecture for
Computing on the GPU, February 2008.

[22] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris,
J. Krüger, A. E. Lefohn, and T. J. Purcell. A Survey of
General-Purpose Computation on Graphics Hardware.Com-
puter Graphics Forum, 26(1):80–113, 2007.

[23] F. Petrini, G. Fossum, J. Fernández, A. L. Varbanescu,
M. Kistler, and M. Perrone. Multicore Surprises: Lessons
Learned from Optimizing Sweep3D on the Cell Broadband
Engine. InProceedings of International Conference on Par-
allel and Distributed Systems, Long Beach, CA, April 2007.

[24] F. Petrini, D. Scarpazza, O. Villa, and J. Fernández. Chal-
lenges in Mapping Graph Exploration Algorithms on Ad-
vanced Multi-core Processors. InProceedings of Interna-
tional Conference on Parallel and Distributed Systems, Long
Beach, CA, April 2007.

[25] M. Pharr, editor.GPU Gems 2. Programming Techniques for
High-Performance Graphics and General-Purpose Compu-
tation. Randima Fernando, Series Editor. Addison-Wesley,
2005.

[26] S. Ryoo, C. I. Rodrigues, S. S. Stone, S. S. Baghsorkhi, S.-
Z. Ueng, and W. mei W. Hwu. Program Optimization Study
on a 128-Core GPU. InProceedings of First Workshop on
General Purpose Processing on Graphics Processing Units,
Boston, MA, October 2007.

[27] Terra Soft Solutions. Yellow Dog Linux v6.0, 2008.
http://www.terrasoftsolutions.com/products/ydl/.

[28] S. Williams, J. Shalf, L. Oliker, S. Kamil, P. Husbands, and
K. Yelick. The Potential of the Cell Processor for Scientific
Computing. InProceedings of the 3rd ACM Conference on
Computing Frontiers, Ischia, Italy, May 2006.


