

ACM Transactions on Architecture and Code Optimization, Vol. xx, No. x, Article xx, Publication date: Month YYYY

The Effects of Granularity and Adaptivity on Private/Shared
Classification for Coherence

MAHDAD DAVARI, Uppsala University

ALBERTO ROS, Universidad de Murcia
ERIK HAGERSTEN, Uppsala University
STEFANOS KAXIRAS, Uppsala University

Classification of data into private and shared has proven to be a catalyst for techniques to reduce
coherence cost, since private data can be taken out of coherence, and resources can be concentrated on
providing coherence for shared data. In this paper we ask the question: how granularity—page-level vs.
cache-line level—and adaptivity—going from shared to private—affect the outcome of classification and
what is its final impact on coherence? To answer this, we create a classification technique, called
Generational Classification, and a coherence protocol called Generational Coherence, which treats data as
private or shared based on cache-line generations. We compare two coherence protocols based on self-
invalidation/self-downgrade with respect to data classification. Our findings are enlightening: (i) Some
programs benefit from finer granularity, some benefit further from adaptivity, but some do not benefit
from either. (ii) Reducing the amount of shared data has no perceptible impact on coherence misses caused
by self-invalidation of shared data, hence no impact on performance. (iii) In contrast, classifying more data
as private has implications for protocols that employ write-through as a means of self-downgrade,
resulting in network traffic reduction—up to 30%—by reducing the write-through traffic.

Categories and Subject Descriptors: C.1.2. [Processor Architectures]: Multiple Data Stream
Architectures (Multiprocessors)

General Terms: Design, Performance

Additional Key Words and Phrases: Multicore, memory hierarchy, cache coherence

ACM Reference Format:

Mahdad Davari, Alberto Ros, Erik Hagersten, and Stefanos Kaxiras, 2015. The effects of granularity and
adaptivity on private/shared classification for coherence.

 INTRODUCTION 1.
The goal of simplifying coherence in multicore architectures is twofold: (i) to reduce
the costs associated with coherence (area, energy, performance) and (ii) to increase
scalability. It further enables diverse accelerator architectures and general purpose
CPUs to seamlessly interconnect under coherent shared virtual memory. To this end,
several recent proposals aim to reduce directory or snooping cost [Alisafaee 2012;
Kim et al. 2010; Ferdman et al. 2011; Cuesta et al. 2011], while others simplify
coherence by removing the directory bottleneck in its entirety [Choi et al. 2011; Ros
and Kaxiras 2012; Pugsley et al. 2010; Hossain et al. 2011]. A common useful tool
used by all such approaches is the classification of data into private and shared [Choi
et al. 2011; Ros and Kaxiras 2012], resulting in directory size reduction [Pugsley et al.

 Author’s addresses: M. Davari, E. Hagersten and S. Kaxiras, Information Technology Department,
Uppsala University; A. Ros, Computer Engineering Department, University of Murcia.
Permission to make digital or hardcopies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation.
Copyrights for components of this work owned by others than ACM must be honored. Abstracting with
credits permitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any
component of this work in other works requires prior specific permission and/or a fee. Permissions may be
requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA,
fax +1 (212) 869-0481, or permissions@acm.org.
© 2015 ACM xxxx-xxxx/2015/xx-ARTxx $xx.00
DOI:http://dx.doi.org/xx.xxxx/xxxxxxx.xxxxxxx

X

x:2 M. Davari et al.

ACM Transactions on Architecture and Code Optimization, Vol. xx, No. x, Article x, Publication date: Month YYYY

2010; Hossain et al. 2011; Alisafaee 2012], or optimizing the coherence protocol itself
by replacing explicit coherence invalidations with silent self-invalidation of shared
data upon synchronization [Ros and Kaxiras 2012].

In increasing order of hardware cost, data classification can be performed in three
ways: (i) by the compiler [Li et al. 2010; Li et al. 2012], (ii) by the operating system
[Hardavellas et al. 2009; Kim et al. 2010; Cuesta et al. 2011], or (iii) by hardware
mechanisms [Pugsley et al. 2010; Hossain et al. 2011]. Although incurring minimum
hardware cost, compiler-driven classification is not transparent to software. It is
well-suited for hardware/software co-design, but requires re-coding and re-
compilation for legacy software and significant effort to determine at compile time if
a variable is going to be shared or not. The OS approach does not impose extra
requirements for dedicated hardware, since data classification at page granularity is
stored along with the page table entries (PTEs) [Hardavellas et al. 2009]. This
makes it a good choice for complexity-effective optimizations. However, it suffers
from granularity and adaptation problems, leading to misclassifications that increase
with time, thus degrading the quality of classification. OS-based approaches are not
limited to data classification for coherence. For instance, Fensch [Fensch et al. 2008]
proposes a coherence scheme for tiled chip multiprocessor (CMPs) in which coherence
task is divided between the OS and hardware. In their scheme, incoherence is
avoided by not allowing data to be replicated across the tiles. This is achieved by
having the OS to map pages to separate private level-one caches (hereafter L1) and
having the hardware to allow a limited and controlled data migration via remote
cache accesses. Although not affecting the application software, such approaches
heavily depend on the OS for data mapping and movement in the system. Finally,
hardware mechanisms work totally transparent to software, at page or cache line
granularity, but can have prohibitive storage requirements [Pugsley et al. 2010;
Hossain et al. 2011] or dual-granularity complexities [Alisafaee 2012; Zebchuk et al.
2013].

In this paper we examine the impact of classification when it is applied to
coherence. We examine the case where private/shared classification is employed to
simplify coherence by excluding private data from any coherence mechanism and
employing simple mechanisms such as write-through and self-invalidation for the
shared data. Such an approach has been proven to be effective using page-level, non-
adaptive classification [Hardavellas et al. 2009; Ros and Kaxiras 2012]. Our aim is to
assess the effect of finer granularity and adaptivity in the quality of the classification
and ultimately in the performance of coherence. To this end, our first contribution is
a robust approach for adaptive data classification at cache-line granularity that aims
to address the weaknesses of the popular page-based OS approach, and be more
accurate and efficient than prior hardware proposals [Alisafaee 2012; Zebchuk et al.
2013]. We call our classification Generational since we use a precise definition, based
on the generational behavior of cache lines [Wood et al. 1991] (section 3). Prior works
[Alisafaee 2012; Zebchuk et al. 2013] employ complex dual-grain adaptive
mechanisms to detect private and shared regions, with the goal of reducing the
directory size in mind. In contrast, our goal is to provide a robust classification to
support coherence protocols that critically depend on the separation of data into
private and shared. While prior methods require a full-blown directory to implement
data classification, we perform the classification entirely in last-level cache (hereafter
LLC), requiring a minimum amount of storage to hold the classification information.
Such storage is easily integrated into LLC tags as attribute bits. We further develop
a coherence protocol, called Generational Coherence, which combines generational

The Effects of Granularity and Adaptivity on Private/Shared Classification for Coherence x:3

ACM Transactions on Architecture and Code Optimization, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

data classification with self-invalidation and self-downgrade [Ros and Kaxiras 2012;
Choi et al. 2011] (Section 4). In the rest of the document we use GC to refer to both
Generational Classification and Generational Coherence, as they are tightly coupled.

Our second contribution is to compare GC with a page-based, non-adaptive
protocol (Section 6). We examine three metrics: the quality of classification, the effect
on self-invalidation, and the effect on write-through traffic. Our findings reveal that:
(i) GC significantly increases the amount of private data, but there is also a class of
programs where page-based, non-adaptive, classification already works well. (ii)
Even when GC manages to classify significantly more data as private, the end effect
on misses caused by self-invalidation is negligible. (iii) The effect on write-through
traffic, however, is significant, leading to benefits in overall network traffic and
consequently lower energy consumption. Further, we found that attempts to
modulate the generational behavior using cache decay as a simple dead-block
predictor are ineffective, given the time scale on which the classification operates.

 BACKGROUND AND RELATED WORK 2.
 VIPS-M 2.1

A number of proposals recently advocate simple coherence for data-race-free
semantics [Choi et al. 2011; Ros and Kaxiras 2012; Kaxiras and Ros 2012; Kaxiras
and Ros 2013]. Due to its simplicity and being transparent to software, we have
modeled our proposed generational coherence after VIPS-M coherence protocol [Ros
and Kaxiras 2012; Kaxiras and Ros 2012; Kaxiras and Ros 2013]. VIPS-M is a
directory-less protocol that relies on the properties of relaxed memory consistency
and data-race-free semantics to allow incoherence in between synchronization points,
but sequential consistency for data-race-free programs [Adve and Hill 1990; Sorin et
al. 2011]. By relying on the data-race freedom property of programs, coherence
among private L1s is maintained by three mechanisms: (i) a data classification
mechanism that classifies data as private or shared, (ii) self-invalidation, and (iii)
self-downgrade.

2.1.1. Private/Shared Data Classification. VIPS-M employs a technique that classifies
data at a page granularity using the OS and the TLBs [Cuesta et al. 2011;
Hardavellas et al. 2009; Kim et al. 2010]. A page accessed by a single core starts as
private in the page table. Upon an access to the same page by a second core, the page
becomes shared. A page becomes shared even when cores access entirely different
cache lines in the page. When a page transitions from private to shared, the core that
had previously tagged the page as private must be notified, so it can change its local
classification of the page to shared. This is necessary since the write policy that is
employed for the cache lines of a page is dictated by the local classification. A page
transition from private to shared can happen at most once per page and a shared
page never reverts back to private. VIPS-M also uses the same OS classification
technique to distinguish between Read-Only pages and pages that are Read/Write.
Cache lines belonging to Read-Only pages are not self-invalidated at
synchronizations.

2.1.2. Self-Invalidation. Each L1 cache self-invalidates its shared data at
synchronization points—lock acquisition or barrier crossing. As a result, all the
explicit coherence invalidation traffic towards the L1s is eliminated.

2.1.3. Self-Downgrade. Self-downgrade is used by each L1 cache to keep the shared
LLC up-to-date with the latest copy of the modified shared data in L1 caches. Prior

x:4 M. Davari et al.

ACM Transactions on Architecture and Code Optimization, Vol. xx, No. x, Article x, Publication date: Month YYYY

work [Somogyi 2014; Somogyi et al. 2014] leverage self-downgrade technique to
mitigate the coherence latency. Such techniques perform self-downgrade by
implementing accurate but complex dead-block predictors. VIPS-M, on the other
hand, introduces an efficient form of self-downgrade, whereupon written data are
deliberately written through to LLC before any further access to them by other cores.
This obviously eliminates forwarding and cache-to-cache transfers. The key
observation that makes a write-through policy practical is that most write misses in
a write-through protocol actually come from private blocks. Based on this observation,
VIPS-M uses a dynamic write policy in the L1s: write-through for data that are
shared, and write-back for private data that do not need coherence. As a further
optimization, a write-through buffer is used to coalesce writes to the same cache lines.
This buffer is emptied at the same synchronization points that cause self-invalidation.
Write-throughs transfer only what is modified in a cache line—i.e. a diff. This allows
multiple simultaneous writers to co-exist, with the guarantee of data-race-free
property at word—or byte—level [Ros and Kaxiras 2012]. Self-invalidation and self-
downgrade eliminate the need for a directory, since neither the writers—because of
self-downgrade—nor the readers—because of self-invalidation—need to be tracked
anymore.

 Hardware private/shared classification approaches 2.2
Many systems rely on a hardware private/shared classification for a variety of
reasons. Chief among these reasons is the directory size reduction [Alisafaee 2012;
Zebchuk et al. 2013; Fang et al. 2013]. The approach is to implement a multi-grain
directory that tracks coherence information on more than one block size. Alisafaee
[Alisafaee 2012] and Zebchuk [Zebchuk et al. 2013] propose similar approaches that
differ on implementations. The idea is to store private regions in the directory and
out of those regions extract cache lines that are shared. Similarly, Fang [Fang et al.
2013] describes an approach where region entries can be private but block entries
extracted from these regions can either be private—with a different private owner
than the region— or shared—accessed by multiple cores.

Regarding adaptivity of classification, Pugsley [Pugsley et al. 2010] introduces an
adaptive version of their SWEL protocol, called Reconstituted SWEL (RSWEL) that
includes a 2-bit saturating decay counter to re-classify shared pages to private.
However, the adaptation is quite complex, requires elaborate tuning of the time
period that ticks the decay counters for good results, and lastly it is only initiated
periodically in bulk. Furthermore, Zhao [Zhao et al. 2013] addresses adaptivity in
cache coherence by proposing the Protozoa coherence protocol. However, Protozoa
addresses adaptivity when applied to the granularity of coherence and data
movement. Instead of having fixed cache-line granularity for both data
storage/movement and coherence actions, Protozoa adopts different granularities in
order to mitigate the overhead of data movement due to coherence invalidations. Our
approach, on the other hand, addresses adaptivity when applied to the classification
of data into private and shared.

Finally, POPS [Hossain et al. 2011] presents a protocol optimized for private or
shared data to meet the trade-off between a private and a shared LLC, which treats
migratory data as private.

 GENERATIONAL CLASSIFICATION 3.
We describe the generational classification at cache line granularity, however the
method can be generalized to any granularity. We assume a system comprising of

The Effects of Granularity and Adaptivity on Private/Shared Classification for Coherence x:5

ACM Transactions on Architecture and Code Optimization, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

private L1 caches and a shared LLC. All L1s send their data requests to the LLC.
Since LLC observes all the requests in the system, our classification mechanism is
therefore located in the LLC. Classification is sent to L1s along with data responses
from the LLC.

A generation for a cache line starts when the cache line is brought into an L1
cache as a result of an L1 miss. A cache line can therefore have many concurrent
generations in different cores, up to a generation per core. A core may repeatedly
access a cache line in its L1 cache before the cache line enters a dead time awaiting
eviction. A generation terminates when the cache line is evicted from the cache as a
result of its non-use. We use replacements as an approximation for the termination of
generations, noting that when a line is replaced it might still be in active use—in its
live time—but is evicted as result of a conflict in a cache with limited associativity.
However, termination of a generation can take alternative interpretations.
Termination can be explicitly signaled, for example, by a program instruction, or by a
dead-block detection/prediction mechanism such as cache decay [Kaxiras et al. 2001;
Lai et al. 2001] or more sophisticated dead-block predictors [Lai et al. 2001]. This
gives us a means of controlling the generation length by modulating its dead time.
We use this feature in the evaluation section to demonstrate this ability by using
cache decay as a crude but simple predictor. We can also rely on other events, such as
coherence invalidations, to determine the termination of a cache line generation.
However, this gives a weaker definition for the concept of generation, as the cache
line being invalidated might in fact be in active use, which is going to be requested
again by the same core in a short time. Migratory data is a typical example for this
case. As a result, we do not end the generations upon coherence invalidations. This is
further discussed at the end of section 4.1.

Fig. 1. Overlapping and non-overlapping cache-line generations

A cache line is classified as private if there exists only one generation of that cache
line among all the L1 caches, i.e. the generation of the cache line does not overlap in
time with any other distinct generation of the same cache line in a different L1 cache.
If two or more generations overlap, the cache line is classified as shared. Figure 1
shows some classic examples. In Figure 1-a, producer-consumer sharing results in
two closely entangled generations in cores 0 and 1. In Figure 1-b, migratory sharing-
—for example data accessed in a critical section— results in rapid successive
generations on different cores that tend to overlap in their dead times. In Figure 1-c,

C0# C1#LLC#

liv
e#

liv
e#

de
ad

#

de
ad

#

caching# eviction#

C0# C1#LLC#

liv
e#

liv
e#

de
ad

#

de
ad

#

C0# C1#LLC#

liv
e#

liv
e#

de
ad

#

de
ad

#

(a) shared: prod-cons (b) shared: migratory (c) private

x:6 M. Davari et al.

ACM Transactions on Architecture and Code Optimization, Vol. xx, No. x, Article x, Publication date: Month YYYY

two generations of the same cache line exist on different cores but are sufficiently
separated in time so as to consider the line essentially private. This is a common
occurrence in pipelined parallelism where one core operates on some data for some
time and then passes them to another core. In our approach, the differentiation of the
last two cases focuses on the time separation of the generations. We do not explicitly
identify migratory sharing, which can be done orthogonally to our approach
[Stenström et al. 1993; Cox and Fowler 1993; Kaxiras and Goodman 1999]; we leave
this for future work.

To track a generation of a cache line, the beginning and the end of the generation
should be made visible to the classification mechanism. The beginning of a
generation occurs as the result of an L1 miss, and is marked by a request to the LLC
for the cache line (GET). Detecting the end of a generation, based on our chosen
model described earlier, is heavily based on the underlying coherence protocol.
Traditional directory-based coherence protocols, such as MSI (and all its derivatives),
require notifications for all cache line replacements in the form of a PUT message
when doing write-back or an explicit eviction notification (EEN) for clean lines [Sorin
et al. 2011]. For such coherence protocols, each PUT and EEN message received at
LLC could be used to mark the end of one generation for that cache line.

Data classification information is stored in the LLC tags using a Private/Shared
bit and a dual purpose PrivateOwner/SharerCount field that holds the Private
Owner ID in case of private classification, or the number of sharers for a cache line if
the cache line is classified as shared. PrivateOwner/SharerCount field is of length
⎡log2 n⎤, where n denotes the number of cores in the system. The following convention
holds for the generational classification, where the first entry represents the
Private/Shared status and the second entry represents PrivateOwner/SharerCount:

<Shared, 0>: NULL entry (not present in any L1 cache)
<Private, X>: Private, X is owner, X in {0 .. N-1} for N cores
<Shared, n>: Shared, n sharers, where 1 ≤ n ≤ N

The classification entries are initialized to <Shared, 0>. Upon observing the first L1
request for a cache line in the LLC, Private/Shared bit is set to Private, and the
second field is set to the ID of the requesting core. If GETX denotes a GET request by
core X, then the classification is formulated as:

GETX : <Shared, 0> → <Private, X>

For a further access to a cache line classified as private, classification will change to
shared. The second field of attribute bits will now contain the number of sharers for
that cache line:

GETY : <Private, X> → <Shared, 2>

Upon receiving a replacement notification in the form of write-back for a cache line
classified as private, classification will change to NULL for that cache line:

WBX : <Private, X> → <Shared, 0>

The Effects of Granularity and Adaptivity on Private/Shared Classification for Coherence x:7

ACM Transactions on Architecture and Code Optimization, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

Upon receiving GET requests in the LLC for a cache line, which is already classified
as shared, classification remains as shared, however, the SharerCount field will be
updated to reflect the degree of sharing for that cache line:

GETX : <Shared, n> → <Shared, n+1>

For any write-back or coherence INV-ACK message received at the LLC for a cache
line classified as shared, degree of sharing is updated as follows:

INV-ACK | WB : <Shared, n> → <Shared, n-1>

A shared cache line reverts back to private state if all the overlapping generations of
that cache line end. In our implementation, such a reverse classification adaptation
can happen after the LLC has classified a cache line as <Shared, 0>. Upon creation of
the next generation, the new generation will be born as private. Classification state
of <Shared, 1> in essence denotes a private state. However, we cannot adapt the
classification back to private at this point, since the owner is unknown. Therefore the
classification mechanism we introduced so far will only allow classification
adaptation from shared to private at a point that all the generations of a cache line
have ended.

So far we introduced the concept of data classification based on generations of
cache lines. We showed that such data classification works with the traditional
directory-based coherence protocols, and it provides reverse data classification
adaptation from shared to private. In the next section, we introduce our new
coherence protocol, called Generational Coherence.

 GENERATIONAL COHERENCE 4.
Our new coherence protocol, which we call Generational Coherence, belongs to the
class of coherence protocols that rely on software’s data-race-free semantics and are
based on self-invalidation [Lebeck and Wood 1995; Choi et al. 2011; Kaxiras and Ros
2012; Ros and Kaxiras 2012; Kaxiras and Ros 2013]. We motivate our choice from
several different aspects: coherence protocols based on self-invalidation are simple to
design, modify, and debug, therefore it is easier to study the impact of different
optimizations for such protocols. Those protocols also reduce network traffic by
eliminating the invalidation traffic, and improve the overall performance. Similar to
VIPS-M, GC uses a dynamic write policy: write-back for modified private cache lines
and delayed write-through for modified shared ones. Clean private cache lines are
replaced silently from L1 caches. In our protocol, each core silently self-invalidates all
its shared data. The generational data classification discussed in the previous section
should therefore be adjusted to accommodate such write policy and also the side
effects of silent self-invalidations.

Self-invalidations are silent, invisible to LLC, and do not affect the termination of
generations. We choose not to require explicit self-invalidation notifications to the
LLC, since such requirement would be contrary to what coherence protocols based on
self-invalidation are trying to achieve. A core locally self-invalidates its cache line by
setting the invalid bit for the cache line. Subsequent cache lookups can detect if a
cache line is self-invalidated when the tag is found in the cache and the
corresponding invalid bit is set. This allows a core to detect if a cache miss is due to
self-invalidation —coherence miss— or belongs to any of the 3C cache-miss types
[Hill and Smith 1989]. To allow our generational classification to tolerate the

x:8 M. Davari et al.

ACM Transactions on Architecture and Code Optimization, Vol. xx, No. x, Article x, Publication date: Month YYYY

aforementioned silent self-invalidation, GET requests following the cache misses that
are due to self-invalidation —coherence miss— should be distinguished from GET
requests following the cache misses which belong to other cache-miss types: any
subsequent cache miss which is not caused by an earlier self-invalidation issues a
normal GET request to the LLC to obtain the cache line and signal to the
classification mechanism the start of a generation. Cache misses that are caused by
earlier self-invalidations, however, are treated differently since they happen in the
middle of an existing generation which is already accounted for in the classification.
Self-invalidated cache lines are therefore required to be re-fetched from the LLC
using a special GET message, hereafter called REFRESH.

Upon receiving a REFRESH message, the LLC does not create a new generation
for that cache line, and the number of sharers is not incremented. Classification in
that case is formulated as:

REFRESH : <Shared, n> → <Shared, n>

Using REFRESH messages allows yet another optimization: the time frame for
shared-to-private adaptation can be shrunk by one step. We mentioned earlier that
shared-to-private adaptation is only possible when all the generations of a cache line
have ended, and a new generation is about to be created from the NULL state, i.e.
the reverse classification adaptation takes place in state <Shared, 0>, and not
<Shared, 1>. This is due to the fact that the owner of a cache line is unknown as soon
as a cache line is classified as shared. With REFRESH requests, however, it is
possible to adapt the classification back to private from state <Shared, 1>
immediately. Since <Shared, 1> state denotes that there exists only one
sharer/generation of the cache line among all the private caches, a REFRESH
request reveals the identity of the core that holds the only generation of that cache
line. At this point, the classification mechanism can safely perform the classification
adaptation, and the cache line will be classified as private.

Such optimization is also possible when a write-through is observed at LLC for a
cache line in state <Shared, 1>. Similar to a REFRESH, a write-through in state
<Shared, 1> reveals the only owner of that cache line, and adaptation is triggered:

REFRESHX | WTX : <Shared, 1> → <Private, X>

In order to be able to signal the termination of generations, we require that cache
lines classified as shared explicitly notify LLC of their eviction. This also applies to
the self-invalidated cache lines. Clean-shared cache lines and self-invalidated cache
lines notify their eviction via EEN, while modified shared cache lines are written
back to LLC:

EEN | WB : (Shared, n) → (Shared, n-1)

Private blocks that contain modified data will be written back into LLC, and
therefore their generation will end. For the clean private cache lines, however, we do
not require EEN. Since there are private blocks that remain private to a single core
for the whole program execution, it is therefore more efficient not to track the end of
the generations of clean private blocks via EENs. Clean private blocks are therefore
replaced silently. Our generational coherence mechanism detects such replaced cache

The Effects of Granularity and Adaptivity on Private/Shared Classification for Coherence x:9

ACM Transactions on Architecture and Code Optimization, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

lines after receiving new requests for those cache lines using a mechanism called
Recovery.

 Recovery 4.1
For an access to a cache line already classified as private, the PrivateOwner field of
the cache line is compared to the ID of the core that initiated the request. If the
PrivateOwner field matches the ID of the requesting core, the cache line remains
private with the same private-owner.

GETX : (Private, X) → (Private, X)

This is the case where a private-clean cache line is silently evicted due to
capacity/conflict misses, and requested again by the previous private owner.

If the two IDs are different, the former private owner must be notified by a
request from LLC, before LLC can respond to the new request. This recovery
notification happens only once per private-to-shared transition, and is in form of a
unicast, since only the private owner needs to be notified. Two scenarios are possible:
if the former private owner has the line in its cache, it changes the classification of
the line in its cache from private to shared. As a result of changing classification, the
former owner either performs a write-back of dirty data, or sends an
acknowledgement in case of a clean private block. The cache line classification then
changes to Shared in the LLC, and the PrivateOwner/SharerCount field is set to 2,
denoting the number of sharers:

GETY : (Private, X) → (Shared, 2)

However, if the former private owner has silently evicted the line from its cache—i.e.
the cache line generation has ended—, the former private owner replies with a
negative acknowledgement (NACK) to the LLC request. In this case, the cache line
classification remains private in the LLC, and the PrivateOwner/SharerCount field
is set to the ID of the new owner:

GETY : (Private, X) → (Private, Y)

Before LLC can respond with data to the new request Y in the aforementioned
scenario, LLC needs to access the memory if data is also evicted from the LLC.

Backward adaptation, if not performed with care, can result in performance
degradation due to excess recovery overhead caused by repetitive and useless
private-to-shared and shared-to-private transitions. This is the typical case when
migratory data is prematurely classified as private [Pugsley et al. 2010]. This
happens if self-invalidations are used to signify the end of generations. To fend
against this, we consider that generations only end when cache-lines are evicted, not
when they are invalidated. We ensure that their classification remains shared
through synchronization points, causing no additional recoveries. If migratory data is
misclassified as private, the recovery process adds latency to the migration, whereas
shared modified migratory blocks are written-through to the LLC prior to
synchronization, an action whose latency is overlapped and hidden by other delayed
write-throughs.

x:10 M. Davari et al.

ACM Transactions on Architecture and Code Optimization, Vol. xx, No. x, Article x, Publication date: Month YYYY

 Read-Only Recovery 4.2
As a further optimization to mitigate the penalties associated with self-invalidation,
we enrich the data classification by considering read-only (RO) classification. Similar
to private data, the shared data classified as RO is also spared from self-invalidation,
which yields higher hit rate. A cache line is classified as read-only as long as no write
is observed in the LLC for that cache line. Upon observing the first write in the LLC,
which is either in the form of a write-through or a GETX —request with write
permission— the cores that have the cache line are notified by the LLC to update the
classification for that cache line in their L1 caches from read-only to read-write. Such
operation, which we refer to as RO-Recovery, is not considered to be costly, since it
happens only once per read-only to read-write transition. Furthermore, RO-Recovery
is not on the critical path. Upon receiving a RO-Recovery notification, cores do not
need to be stalled in order to perform the recovery immediately. It is sufficient that
the cores perform RO-Recovery before their next synchronization.

 Loss of classification information 4.3
The Private/Shared classification and private owner field exist only for the LLC lines.
The status bit and PrivateOwner field are not saved externally, and are lost upon
eviction of the cache line from the LLC. When a cache line is initially brought into
LLC, the state of the Private/Shared bit can vary, depending upon whether the cache
hierarchy is inclusive or non-inclusive.

 For an inclusive hierarchy, when a cache line is evicted from LLC its L1 copies
must also be evicted. There are three cases depending on the classification state of
the LLC line. In the first case, the line is in state NULL and there are no sharers.
This is a common case since the eviction from LLC indicates that line has not seen
much activity for a long period. In the second case, the line is private and a recovery
notification to the known private owner is sent to evict it. In the last case, the line is
shared and only the number of sharers is known. This is more expensive since it
requires a broadcast. To minimize its effects, preference may be given to the other
cases over this in the replacement algorithm. The LLC eviction is not on the critical
path of the miss that causes the eviction. LLC eviction is handled by a MSHR. When
a new cache line is brought into the LLC, the requesting L1 cache becomes the line's
private owner and the cache ID is added to the private owner field.

Alternatively, for a non-inclusive hierarchy, when a line is brought into LLC as a
result of an L1 miss, the classification is unknown and must be reconstructed by
querying the L1s. A broadcast—snoop—to all the L1s establishes which (if any) L1
has the line. If an L1 has the line, it replies with its ID, otherwise with a NACK. If
more than one L1 has the line, then the line is shared and SharerCount is calculated
based on the received ACK messages. If only one L1 has the line, its ID becomes the
PrivateOwner value. If no L1 has the line—i.e. an LLC cold miss—, the ID of the
requesting L1 cache is used as private owner. Once the Private/Shared status is
established, the classification is performed anew for the requesting L1. Broadcasts in
the L1s concern only LLC misses, which are significantly fewer than L1 misses.
Furthermore, reconstructing the classification is also not in the critical path of the
LLC miss since it is overlapped with memory access.

The Effects of Granularity and Adaptivity on Private/Shared Classification for Coherence x:11

ACM Transactions on Architecture and Code Optimization, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

Table I. Comparison of Protocol States

 Protocol complexity and protocol races 4.4
Adding LLC classification to a directory-less protocol such as VIPS-M may seem to
increase complexity by re-introducing directory functionality. Without a doubt, GC is
more complex than VIPS-M but the complexity gap to a directory protocol such as
MESI is still substantial. This is clearly evident in the number of protocol states for
GC and MESI, shown in table I. Classification can merely be thought of as a passive
storage that simply observes the requests that reach the LLC, and via a simple FSM
updates a state variable. Classification does not entail request forwarding or explicit
coherence invalidations, which are responsible for the complexity in directory
protocols. The only request sent on the part of classification is the recovery
notification—and similarly, the recovery notifications when we need to reconstruct
the classification information from scratch. However, this does not add any
complexity to VIPS-M that was not already there. Recovery is an essential operation
in the original protocol whether it is done at page level or line level: any transition
from private to shared must notify the private owner so the page or cache line
becomes shared in the L1.

 EVALUATION METHODOLOGY 5.
We evaluate GC against a directory protocol (MESI states) and also a self-
invalidation request-response protocol which performs private/shared data
classification at page granularity (VIPS-M), in order to study the impact of
generational data classification on (i) the amount of shared/private data classification,
(ii) network traffic, and (iii) execution time. We implement two versions of GC: a
version without any dead-block prediction mechanism, and another that employs
cache decay as a simple predictor [Kaxiras et al. 2001]. We use the Simics full-system
simulator [Magnusson et al. 2002], and model VIPS-M and GC protocols using the
cycle-accurate GEMS simulator [Martin et al. 2005]. We also employ the GARNET
network simulator [Agarwal et al. 2009] to model the interconnection network. Our
target system is a 16-tile chip multiprocessor. Table II gives details about the main
parameters of our base system. Furthermore, we use Pin [Luk et al. 2005] in order to
study and analyze the shared data access patterns.

We employ a wide variety of parallel applications. Barnes (16K particles),
Cholesky (tk16), FFT (64K complex doubles), FMM (16K particles), LU-CB (512x512
matrix), LU-NCB (512x512 matrix), Ocean (514x514 ocean, contiguous partitions),
Radiosity (room, -ae 5000.0 -en 0.050 -bf 0.10), Raytrace (teapot, optimized version
that removes unnecessary locks), Volrend (head), Water-Nsq (512 molecules) and
Water-Sp (512 molecules) belong to the SPLASH-2 benchmark suite [Woo et al. 1995].
Blackscholes (simsmall), Canneal (simsmall), and Swaptions (simsmall) are from the
PARSEC benchmark suite [Bienia et al. 2008]. We simulate the entire applications,
but collect statistics only from start to completion of their parallel part.

 GC MESI
Stable Transient Stable Transient

L1 4 4 6 8
LLC 2 2 4 5

x:12 M. Davari et al.

ACM Transactions on Architecture and Code Optimization, Vol. xx, No. x, Article x, Publication date: Month YYYY

Table II. Base System Parameters

Memory Parameters
Processor frequency 3.0 GHz
Block size 64 bytes
MSHR size 16 entries
Split L1 I & D caches 32 KB, 4-way
L1 cache hit time 1 (tag) and 2 (tag + data) cycles
Shared unified LLC cache 8 MB, 512 KB/tile, 16-way
LLC bank cache hit time 6 (tag) and 12 (tag + data) cycles
L1-LLC inclusion policy Inclusive
MESI Directory Full-map in LLC tags
Memory access time 160 cycles
Page size 4 KB (64 blocks)

Network Parameters
Topology 2-dimensional mesh (4x4)
Routing technique Deterministic X-Y
Flit size 16 bytes
Data message size 72 bytes (5 flits)
Control message size 8 bytes (1 flit)
Routing time 2 cycles
Switch time 2 cycles
Link time 2 cycles

 RESULTS 6.
 Classification Quality 6.1

6.1.1. Granularity and Adaptivity Do Not Matter. Figure 2 shows the benchmarks that do

well with page-level classification. Granularity or adaptivity has no significant effects
on the outcome of classification, as the number of accesses to the data classified as
shared remains almost the same for both granularities. This is the case where most
of the cache lines in a page classified as shared are truly shared. Blackscholes, which
is not included in the figure due to space limitations, also shows a trend very similar
to Water-SP.

6.1.2. Granularity Matters. Figure 3 shows the benchmarks that benefit from fine-
grained classification. Such benchmarks have shared pages with the majority of
cache lines in those pages being private. Fine-grained classification prevents such
private cache lines from being misclassified as shared.

6.1.3. Granularity and Adaptivity Matter. Benchmarks in Figure 4 benefit from both fine-

grained classification and adaptation. Adaptation serves to prevent temporarily
private data from being misclassified as shared [Alisafaee12].

 Effects on Performance 6.2

In this section we compare page-based non-adaptive coherence (VIPS-M) and block-
based, adaptive coherence (GC). GC aims to further enhance VIPS-M by having less
shared data. We also compare miss rate, network traffic, and execution time against
a MESI protocol to provide a general comparison against invalidation-based
coherence protocols.

The Effects of Granularity and Adaptivity on Private/Shared Classification for Coherence x:13

ACM Transactions on Architecture and Code Optimization, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

Fig. 2. Benchmarks that are insensitive to granularity/adaptivity (run-time average)

Fig. 3. Benchmarks sensitive to granularity only (run-time average)

 0

 10

 20

 30

 40

 50

 60

 70

0 20 40 60 80 100

S
h
a
re

d
 D

a
ta

 A
cc

e
ss

e
s

(%
)

Execution Time (%)

 25

 30

 35

 40

 45

 50

 55

 60

 65

 70

0 20 40 60 80 100

S
h
a
re

d
 D

a
ta

 A
cc

e
ss

e
s

(%
)

Execution Time (%)

Page
Line

Line-Adaptive

 0

 5

 10

 15

 20

 25

 30

 35

0 20 40 60 80 100

S
h
a
re

d
 D

a
ta

 A
cc

e
ss

e
s

(%
)

Execution Time (%)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

0 20 40 60 80 100

S
h
a
re

d
 D

a
ta

 A
cc

e
ss

e
s

(%
)

Execution Time (%)

(a) SPLASH-2/Radiosity (b) SPLASH-2/Volrend

(c) SPLASH-2/Water-nsq (d) SPLASH-2/Water-sp

(a) SPLASH-2/FFT (b) SPLASH-2/LU-CB

(c) PARSEC/Swaptions (d) SPLASH-2/Ocean-CP

 0

 5

 10

 15

 20

 25

 30

 35

 40

0 20 40 60 80 100

S
h
a
re

d
 D

a
ta

 A
cc

e
ss

e
s

(%
)

Execution Time (%)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

0 20 40 60 80 100

S
h
a
re

d
 D

a
ta

 A
cc

e
ss

e
s

(%
)

Execution Time (%)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

0 20 40 60 80 100

S
h
a
re

d
 D

a
ta

 A
cc

e
ss

e
s

(%
)

Execution Time (%)

Page
Line

Line-Adaptive

 0

 5

 10

 15

 20

 25

 30

 35

 40

0 20 40 60 80 100

S
h
a
re

d
 D

a
ta

 A
cc

e
ss

e
s

(%
)

Execution Time (%)

x:14 M. Davari et al.

ACM Transactions on Architecture and Code Optimization, Vol. xx, No. x, Article x, Publication date: Month YYYY

Fig. 4. Benchmarks sensitive to both granularity and adaptivity (run-time average)

Figure 5 shows the amount of data classified as private and shared in the L1 caches
of a 16-core multicore processor. Canneal appears as mostly private in the graph due
to having locks mainly outside region of interest and having significantly low amount
of shared data. The graph also includes the portion of shared data classified as read-
only (RO). VIPS-M obtains RO information from page table entries provided by OS,
while GC keeps track of RO blocks dynamically as discussed in section 4.2.

As depicted in Figure 5, GC classifies on average about three times fewer shared-
written data and about three times more private data compared to VIPS-M. This
illustrates the significant impact of fine-grained adaptive data classification on the
amount of data classified as private.

We also employ cache decay [Kaxiras et al. 2001] to modulate the dead time of the
cache-line generations. We consider only a simple dead-block predictor using a two-
bit saturating counter per cache line in L1 caches, since sophisticated predictors
would incur complexity and cost disproportionate to the rest of our mechanisms. We
apply decay selectively to private data, since the generations of shared data seem to
operate on markedly different time scales. Contrary to the work in [Kaxiras et al.
2001], we do not turn off cache lines that are believed to have entered their dead
time. Our intent is simply to understand the effect of cutting short a generation once
we have established that it has entered its dead time. Thus, in our approach, decay is
simply a marker in the timeline of a generation, after which the cache line can
remain private if requested by another core. A recovery request that finds a line after
its decay, forces its eviction; the line can be passed on to the requesting core as
private. In contrast, if the original private owner accesses the cache line after it has

 0

 10

 20

 30

 40

 50

 60

0 20 40 60 80 100

S
h
a
re

d
 D

a
ta

 A
cc

e
ss

e
s

(%
)

Execution Time (%)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

0 20 40 60 80 100

S
h
a
re

d
 D

a
ta

 A
cc

e
ss

e
s

(%
)

Execution Time (%)

(a) PARSEC/Canneal (b) SPLASH-2/LU-NCB

(c) SPLASH-2/Raytrace (d) SPLASH-2/FMM

 0

 10

 20

 30

 40

 50

 60

 70

0 20 40 60 80 100

S
h
a
re

d
 D

a
ta

 A
cc

e
ss

e
s

(%
)

Execution Time (%)

Page
Line

Line-Adaptive

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

0 20 40 60 80 100

S
h
a
re

d
 D

a
ta

 A
cc

e
ss

e
s

(%
)

Execution Time (%)

The Effects of Granularity and Adaptivity on Private/Shared Classification for Coherence x:15

ACM Transactions on Architecture and Code Optimization, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

decayed (without an intervening recovery), the line is revived and reinstated as live,
without causing a decay miss.

Fig. 5. Classification quality VIPS-M vs. generational data classification

Given this flexibility we can set fairly small decay intervals without fear of
generating significant decay misses. We use decay intervals of ranging from 500
cycles to 40K cycles. Our results show that attempting to shorten the dead time has
positive but small effects. With a very small decay interval—e.g. aggressive dead-
block prediction—we run the danger of trying to classify as private, data that are
inherently shared. This leads to increased recoveries (re-classifying as shared what
we artificially classified as private), thus eliminating any potential benefit. This
leaves medium to large decay intervals as the best performing (e.g., 10K to 20K
cycles), but at that point dead-block prediction does not differ much from actual
eviction as far as the classification is concerned. For this reason, attempting to
control the length of generations is likely not to be a fruitful direction. We include the
results using decay for completeness.

As Figure 5 shows, VIPS-M has a larger portion of its caches as invalid. This is
due to the fact that VIPS-M has more shared data, which are self-invalidated upon
synchronizations. GC, on the other hand, classifies more data as private, which are
not affected by synchronizations.

Figure 6 shows that GC slightly reduces the miss rate compared to VIPS-M.
Although one would expect substantial decrease in miss rate due to the sharp
increase in the amount of private data, the reduction is marginal. We explain this in
the next section, where we show the rate of re-accessing self-invalidated data. There
are cases where using cache decay slightly degrades the miss rate. This is due to
mispredicting entry into the dead time and, because of an intervening recovery, the
generation is ended too early.

GC incurs some overhead. Such overhead is due to recovery and EEN messages
needed to track beginning and end of generations. Despite such overhead, reduction
in overall network traffic and energy consumption is still possible. GC reduces the
network traffic up to 30% in Watersp, and about 20% in some benchmarks shown in
Figure 7. One might wonder where the reduction in the network traffic comes from,
as Figure 6 does not show significant drop in the miss rate. We discuss this in the
next section where we show the impact of granularity and adaptation on the amount
of write-through traffic. Finally, Figure 8 shows that despite incurring the

barnes
cholesky fft fmm lu lunc

ocean
radiosity

raytraceOpt2
volrend

waternsq
watersp

blackscholes
canneal

swaptions
Average

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1

C
ac

he
 C

on
te

nt
 C

la
ss

ifi
ca

tio
n

on
 S

yn
cs Invalid

Private
Shared-Read-Only
Shared-Written1. VIPS-M 2. GC 3. GC-Decay

x:16 M. Davari et al.

ACM Transactions on Architecture and Code Optimization, Vol. xx, No. x, Article x, Publication date: Month YYYY

granularity and adaptation overhead, GC does not degrade the execution time
compared to VIPS-M, while reducing the overall network traffic and consequently the
energy consumption.

Fig. 6. L1 cache miss rate

Fig. 7. Network traffic

 Explaining the Results 6.3
6.3.1. The impact of granularity and adaptation on miss rate. One would expect a lower

miss rate for coherence protocols based on self-invalidation when the amount of
private data significantly overweighs the amount of shared data. However, as shown
in Figure 6, GC only slightly decreases the miss rate. This can be explained by
referring to Figure 9. Almost all of the benchmarks have similar low rate of re-
accessing the self-invalidated data, regardless of granularity and adaptation. The
benchmarks that are not shown in Figure 9 have re-access rate close to zero. Since
the self-invalidated data is not re-accessed, it does not matter if the data are
classified as private. A slightly more decreased miss rate for some of the benchmarks
such as Radiosity, FMM, Water-SP, and Cholesky can be explained by referring to
synchronizations. Such benchmarks have a large number of locks and spend
significant portion of their execution time (30% in Radiosity) in synchronization.

barnes
cholesky fft fmm lu lunc

ocean
radiosity

raytraceOpt2
volrend

waternsq
watersp

blackscholes
canneal

swaptions
Average

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8

N
or

m
al

iz
ed

 L
1

M
is

s
R

at
e

MESI
VIPS-M

GC
GC-Decay

barnes
cholesky fft fmm lu lunc

ocean
radiosity

raytraceOpt2
volrend

waternsq
watersp

blackscholes
canneal

swaptions
Average

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

N
et

w
or

k
Tr

af
fic

 C
la

ss
ifi

ca
tio

n

Control
Data

GC-Control
Write-back

Write-through1. MESI
2. VIPS-M

3. GC
4. GC-Decay

The Effects of Granularity and Adaptivity on Private/Shared Classification for Coherence x:17

ACM Transactions on Architecture and Code Optimization, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

Frequent synchronizations result in frequent self-invalidation of all shared data.
Thus, even small changes in the re-access rate are significantly amplified. As Figure
6 shows, GC decreases the miss rate for Radiosity about 10%.

Fig. 8. Execution time

Figure 6 shows that GC results in a slightly higher miss rate for benchmarks

such as Canneal and Swaptions. This is mainly due to the self-invalidated cache lines
being deallocated from the cache in VIPS-M. However, in GC the generations of cache
lines do not end by self-invalidations, causing more private blocks to be victimized by
the replacement algorithm. The penalty is negligible, and can be fixed by giving
priority to self-invalidated blocks in the replacement algorithm.

6.3.2. The impact of granularity and adaptation on network traffic. The reduction in network

traffic without significant decrease in miss rate can be explained by referring to
Figure 10, which shows the reduction in the amount of write-through traffic. Write-
throughs have a major contribution to network traffic in protocols that employ write-
through policy for shared data. Therefore, finer granularity and adaptation will
result in network traffic reduction by reducing the amount of shared data.
Benchmarks such as FFT, FMM, Water-SP, and Swaptions—Swaptions in not
included in Figure 10 due to space limitations—significantly benefit from finer
granularity and adaptation, as the amount of write-through traffic is significantly
reduced for these benchmarks. There are also benchmarks, such as LU-NCB, Ocean-
CP and Blackscholes, where network traffic is not decreased despite reduction in the
amount of write-through—Blackscholes, which is not included in the figure due to
space limitations, shows a trend very similar to Water-SP. Such behavior can be
explained by referring to Figure 7. For those benchmarks, the amount of write-back
has significantly increased, which cancels out the benefit of having less write-
through traffic. This is the typical case for larger data sets, enforcing frequent
replacements in L1 caches. Canneal has very low amount of shared data that makes
it insensitive to write-throughs, behaving almost the same with both GC and VIPS-
M. It has slightly higher network traffic with GC due to slightly higher miss rate.

There are also benchmarks in Figure 7 such as Barnes, Raytrace, Volrend, and
Water-nsq, where the increase in network traffic incurred by finer granularity and
adaptation is more pronounced. These are the benchmarks that have almost the
same amount of write-through and write-back traffic regardless of granularity and

barnes
cholesky fft fmm lu lunc

ocean
radiosity

raytraceOpt2
volrend

waternsq
watersp

blackscholes
canneal

swaptions
Average

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

MESI
VIPS-M

GC
GC-Decay

x:18 M. Davari et al.

ACM Transactions on Architecture and Code Optimization, Vol. xx, No. x, Article x, Publication date: Month YYYY

adaptation. However, the overhead of maintaining a fine-grained classification
increases the total network traffic for those benchmarks. Although GC has lower
write-through rate than VIPS-M for those benchmarks, the amount of shared data is
considerably low, making the difference in write-through traffic negligible.

Up to this point we referred to write-through rate to explain the reduction in
network traffic despite having similar miss rate with GC and VIPS-M. Although
benchmarks that have lower miss rate with GC incur less data movement traffic due
to cache misses, it is easy to observe that the impact of write-through is still
dominant (Figure 6 and Figure 7). Radiosity, for example, which has the highest
reduction in the miss rate with GC, shows no significant improvement in the network
traffic despite having less data movement due to fewer cache misses. This can be
explained by referring to Figure 7 and Figure 10, which reveals that Radiosity has
almost the same amount of write-through traffic regardless of granularity and
adaptation: finer granularity or adaptation are unable to significantly reduce the
amount of shared data for this benchmark (Figure 5). In general, benchmarks are
more sensitive to write-through traffic rather than data traffic caused by cache
misses. The same holds for Cholesky. FMM and Water-SP also have lower miss rates
with GC, however their reduction in network traffic does not come from the reduced
data movement due to lower miss rate, but from significant reduction in the amount
of write-through.

6.3.3. Putting it all together. Our results show that:

- For many benchmarks adaptive block-level classification significantly reduces
the amount of shared data, yet does not affect the overall miss rate (Figure 6).

- The data re-classified as private using adaptive block-level classification, which
would have otherwise been classified as shared at page granularity, in many
cases, cause a noticeable reduction of write-throughs and network traffic (Figure
7) and consequently result in lower energy consumption.

How can these two seemingly contradictory observations be reconciled? The answer
lies in the dynamics of the generational behavior upon which our classification is
based. First, most of the data re-classified as private are dead before synchronization
and are not re-accessed immediately after. In other words, the live time of a single
generation of such data does not typically span across synchronization points. This is
evidenced by the generally small re-access rate of self-invalidated data (Figure 9),
which means that the behavior of the miss rate is dominated by capacity misses. Any
change in self-invalidation misses is hardly noticeable ---except when magnified by
very frequent synchronization as in the case of Radiosity. However, while most of the
data, re-classified by generational coherence as private, are dead at synchronization
points, this does not mean that they are not re-accessed again at a much later time,
starting a new generation. The compound effect of all such private generations is to
reduce write-through traffic. When this effect is not balanced out by write-back
traffic or control overhead, the overall network traffic is reduced, which in turn
results in lower energy consumption.

The Effects of Granularity and Adaptivity on Private/Shared Classification for Coherence x:19

ACM Transactions on Architecture and Code Optimization, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

Fig. 9. Self-Invalidated data re-access rate (run-time average)

 0

 0.5

 1

 1.5

 2

0 20 40 60 80 100S
e
lf-

In
va

lid
a
te

d
 D

a
ta

 R
e
-A

cc
e
ss

e
s

(%
)

Execution Time (%)

Page
Line

Line-Adaptive

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

0 20 40 60 80 100S
e
lf-

In
va

lid
a
te

d
 D

a
ta

 R
e
-A

cc
e
ss

e
s

(%
)

Execution Time (%)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

0 20 40 60 80 100S
e
lf-

In
va

lid
a
te

d
 D

a
ta

 R
e
-A

cc
e
ss

e
s

(%
)

Execution Time (%)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

0 20 40 60 80 100S
e
lf-

In
va

lid
a
te

d
 D

a
ta

 R
e
-A

cc
e
ss

e
s

(%
)

Execution Time (%)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

0 20 40 60 80 100S
e
lf-

In
va

lid
a
te

d
 D

a
ta

 R
e
-A

cc
e
ss

e
s

(%
)

Execution Time (%)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

0 20 40 60 80 100S
e
lf-

In
va

lid
a
te

d
 D

a
ta

 R
e
-A

cc
e
ss

e
s

(%
)

Execution Time (%)

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

0 20 40 60 80 100S
e
lf-

In
va

lid
a
te

d
 D

a
ta

 R
e
-A

cc
e
ss

e
s

(%
)

Execution Time (%)

 0

 0.02

 0.04

 0.06

 0.08

 0.1

0 20 40 60 80 100S
e
lf-

In
va

lid
a
te

d
 D

a
ta

 R
e
-A

cc
e
ss

e
s

(%
)

Execution Time (%)

(a) SPLASH-2/Barnes (b) SPLASH-2/Cholesky

(c) SPLASH-2/FMM (d) SPLASH-2/Ocean-CP

(e) SPLASH-2/Radiosity (f) SPLASH-2/Volrend

(g) SPLASH-2/Water-NSQ (h) SPLASH-2/Water-SP

x:20 M. Davari et al.

ACM Transactions on Architecture and Code Optimization, Vol. xx, No. x, Article x, Publication date: Month YYYY

Fig. 10. Granularity/adaptivity impact on write-through traffic (run-time average)

 0

 2

 4

 6

 8

 10

0 20 40 60 80 100

W
ri
te

-t
h
ro

u
g
h
 (

%
)

Execution Time (%)

Page
Line

Line-Adaptive

 0

 0.5

 1

 1.5

 2

 2.5

0 20 40 60 80 100

W
ri
te

-t
h
ro

u
g
h
 (

%
)

Execution Time (%)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

0 20 40 60 80 100

W
ri
te

-t
h
ro

u
g
h
 (

%
)

Execution Time (%)

 0

 5

 10

 15

 20

 25

0 20 40 60 80 100

W
ri
te

-t
h
ro

u
g
h
 (

%
)

Execution Time (%)

 0

 0.2

 0.4

 0.6

 0.8

 1

0 20 40 60 80 100

W
ri
te

-t
h
ro

u
g
h
 (

%
)

Execution Time (%)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

0 20 40 60 80 100

W
ri
te

-t
h
ro

u
g
h
 (

%
)

Execution Time (%)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

0 20 40 60 80 100

W
ri
te

-t
h
ro

u
g
h
 (

%
)

Execution Time (%)

 0

 1

 2

 3

 4

 5

0 20 40 60 80 100

W
ri
te

-t
h
ro

u
g
h
 (

%
)

Execution Time (%)

(a) SPLASH-2/LU-CB (b) SPLASH-2/Water-SP

(c) SPLASH-2/Ocean-CP (d) SPLASH-2/FMM

(e) SPLASH-2/Raytrace (f) SPLASH-2/LU-NCB

(g) SPLASH-2/FFT (h) SPLASH-2/Radiosity

The Effects of Granularity and Adaptivity on Private/Shared Classification for Coherence x:21

ACM Transactions on Architecture and Code Optimization, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

 CONCLUSIONS 7.
Private/shared data classification has become an essential part of many approaches
to optimize cache coherence. Such data classification can be performed at page or
cache-line granularity, with or without adaptation from shared to private. Regardless
of the used granularity, non-adaptive data classification suffers from a shared
classification bias, in which eventually all the data in the system are classified as
shared, degrading the intended coherence optimizations.

In this paper, which to the best of our knowledge is the first study of this kind, we
studied the impact of finer granularity and adaptation on the quality of
private/shared data classification and also on the performance of coherence protocols
based on self-invalidation and write-through for shared data. To this end, we
proposed a new data classification scheme and coherence protocol, which we call
generational classification and generational coherence (GC), respectively. Our results
show that benchmarks are less sensitive to fine-grained data classification in terms
of miss rate, as the significantly large amount of data re-classified as private are not
reused after synchronization, and the self-invalidated data re-access rate remains the
same regardless of granularity and adaptation. The significantly more data classified
as private by GC can result in lower network traffic by excluding them from write-
through, thus yielding an overall benefit despite the control-traffic overhead, which
in turn results in more energy-efficient systems.

x:22 M. Davari et al.

ACM Transactions on Architecture and Code Optimization, Vol. xx, No. x, Article x, Publication date: Month YYYY

REFERENCES
Sarita V. Adve and Mark D. Hill. 1990. Weak ordering – a new definition. In Proceedings of the 17th

International Symposium on Computer Architecture (ISCA), Jun. 1990, 2–14.
Niket Agarwal, Tushar Krishna, Li-S. Peh, and Niraj K. Jha. 2009. GARNET: A detailed on-chip network

model inside a full-system simulator. In Proceedings of the IEEE Int’l Symposium on Performance
Analysis of Systems and Software (ISPASS), Apr. 2009, 33–42.

Mohammad Alisafaee. Spatiotemporal coherence tracking. 2012. In Proceedings of the 45th IEEE/ACM
International Symposium on Microarchitecture (MICRO), Dec. 2012, 341–350.

Christian Bienia, Sanjeev Kumar, Jaswinder P. Singh, and Kai Li. 2008. The PARSEC benchmark suite:
Characterization and architectural implications. In Proceedings of the 17th International Conference on
Parallel Architectures and Compilation Techniques (PACT), Oct. 2008, 72–81.

Byn Choi, Rakesh Komuravelli, Hyojin Sung, Robert Smolinski, Nima Honarmand, Sarita V. Adve,
Vikram S. Adve, Nicholas P. Carter, and Ching-T. Chou. 2011. DeNovo: Rethinking the memory
hierarchy for disciplined parallelism. 2011. In Proceedings of the 20th International Conference on
Parallel Architectures and Compilation Techniques (PACT), Oct. 2011, 155–166.

Alan L. Cox and Robert J. Fowler. 1993. Adaptive cache coherency for detecting migratory shared data. In
Proceedings of the 20st International Symposium on Computer Architecture (ISCA), May 1993, 98–108.

Blas A. Cuesta, Alberto Ros, María E. Gómez, Antonio Robles, and José F. Duato. 2011. Increasing the
effectiveness of directory caches by deactivating coherence for private memory blocks. In Proceedings of
the 38th International Symposium on Computer Architecture (ISCA), Jun. 2011, 93–103.

Lei Fang, Peng Liu, Qi Hu, Michael C. Huang, and Guofan Jiang. 2013. Building expressive, area-efficient
coherence directories. In Proceedings of the 22nd International Conference on Parallel Architectures
and Compilation Techniques (PACT), Sep. 2013, 299–308.

Christian Fensch and Marcelo Cintra. 2008. An OS-based alternative to full hardware coherence on tiled
CMPs. In Proceedings of the 14th International Symposium on High-Performance Computer
Architecture (HPCA), Feb. 2008, 355–366.

Michael Ferdman, Pejman Lotfi-Kamran, Ken Balet, and Babak Falsafi. 2011. Cuckoo directory: A
scalable directory for many-core systems. In Proceedings of the 17th International Symposium on High-
Performance Computer Architecture (HPCA), Feb. 2011, 169–180.

Nikos Hardavellas, Michael Ferdman, Babak Falsafi, and Anastasia Ailamaki. 2009. Reactive NUCA:
Near-optimal block placement and replication in distributed caches. In Proceedings of the 36th
International Symposium on Computer Architecture (ISCA), Jun. 2009, 184–195.

M. D. Hill and A. J. Smith. 1989. Evaluating associativity in CPU caches. IEEE Transactions on
Computers (TC), vol. 38, no. 12, (Dec. 1989) 1612–1630.

Hemayet Hossain, Sandhya Dwarkadas, and Michael C. Huang. 2011. POPS: Coherence protocol
optimization for both private and shared data. In Proceedings of the 20th International Conference on
Parallel Architectures and Compilation Techniques (PACT), Oct. 2011, 45–55.

Stefanos Kaxiras and James R. Goodman. 1999. Improving CC-NUMA performance using instruction-
based prediction. In Proceedings of the 5th International Symposium on High-Performance Computer
Architecture (HPCA), Jan. 1999, 161–170.

Stefanos Kaxiras, Zhigang Hu, and Margaret Martonosi. 2001. Cache decay: Exploiting generational
behavior to reduce cache leakage power. In Proceedings of the 28th International Symposium on
Computer Architecture (ISCA), Jun. 2001, 240–251.

Stefanos Kaxiras and Alberto Ros. 2012. Efficient, snoopless, soc coherence. In Proceedings of the 25th
IEEE International System-on-Chip Conference (IEEE SOCC), Sep. 2012, 230–235.

Stefanos Kaxiras and Alberto Ros. 2013. A new perspective for efficient virtual-cache coherence. In
Proceedings of the 40th International Symposium on Computer Architecture (ISCA), Jun. 2013, 535–
547.

Daehoon Kim, Jeongseob Ahn, Jaehong Kim, and Jaehyuk Huh. 2010. Subspace snooping: Filtering snoops
with operating system support. In Proceedings of the 19th International Conference on Parallel
Architectures and Compilation Techniques (PACT), Sep. 2010, 111–122.

An C. Lai, Cem Fide, and Babak Falsafi. 2001. Dead-block prediction & dead-block correlating prefetchers.
In Proceedings of the 28th International Symposium on Computer Architecture (ISCA), Jun. 2001, 144–
154.

Alvin R. Lebeck and David A. Wood. 1995. Dynamic self-invalidation: Reducing coherence overhead in
shared-memory multiprocessors. In Proceedings of the 22nd International Symposium on Computer
Architecture (ISCA), Jun. 1995, 48–59.

Yong Li, Ahmed Abousamra, Rami Melhem, and Alex K. Jones. 2010. Compiler-assisted data distribution
for chip multiprocessors. In Proceedings of the 19th International Conference on Parallel Architectures
and Compilation Techniques (PACT), Sep. 2010, 501–512.

Yong Li, Rami Melhem, and Alex K. Jones. 2012. Practically private: Enabling high performance CMPs
through compiler-assisted data classification. In Proceedings of the 21st International Conference on
Parallel Architectures and Compilation Techniques (PACT), Sep. 2012, 231–240.

The Effects of Granularity and Adaptivity on Private/Shared Classification for Coherence x:23

ACM Transactions on Architecture and Code Optimization, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

Chi-K. Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff Lowney, Steven Wallace, Vijay
J. Reddi, and Kim Hazelwood. 2005. Pin: Building customized program analysis tools with dynamic
instrumentation. In Proceedings of the ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI), Jun. 2005, 190–200.

Peter S. Magnusson, Magnus Christensson, Jesper Eskilson, Daniel Forsgren, Gustav Hållberg, Johan
Högberg, Fredrik Larsson, Andreas Moestedt, and Bengt Werner. 2002. Simics: A full system
simulation platform. IEEE Computer, (Feb. 2002), vol. 35, no. 2, 50–58.

Milo M. Martin, Daniel J. Sorin, Bradford M. Beckmann, Michael R. Marty, Min Xu, Alaa R. Alameldeen,
Kevin E. Moore, Mark D. Hill, and David A. Wood. 2005. Multifacet’s general execution-driven
multiprocessor simulator (GEMS) toolset. In Computer Architecture News, (Sep. 2005), vol. 33, no. 4,
92–99.

Seth H. Pugsley, Josef B. Spjut, David W. Nellans, and Rajeev Balasubramonian. 2010. SWEL: Hardware
cache coherence protocols to map shared data onto shared caches. In Proceedings of the 19th
International Conference on Parallel Architectures and Compilation Techniques (PACT), Sep. 2010,
465–476.

Alberto Ros and Stefanos Kaxiras. 2012. Complexity-effective multicore coherence. In Proceedings of the
21st International Conference on Parallel Architectures and Compilation Techniques (PACT), Sep.
2012, 241–252.

Daniel J. Sorin, Mark D. Hill, and David A. Wood. 2011. A Primer on Memory Consistency and Cache
Coherence. In Synthesis Lectures on Computer Architecture, Mark D. Hill, Ed. Morgan & Claypool
Publishers, 2011.

Per Stenström, Mats Brorsson, and Lars Sandberg. 1993. An adaptive cache coherence protocol optimized
for migratory sharing. In Proceedings of the 20st International Symposium on Computer Architecture
(ISCA), May 1993, 109–118.

Stephen Somogyi. 2004. Memory coherence activity prediction in commercial workloads. Master of Science
Degree Theses. Department of Electrical and Computer Engineering. Carnegie Mellon University.
Pittsburgh, Pennsylvania.

Stephen Somogyi, Thomas F. Wenisch, Nikolaos Hardavellas, Jangwoo Kim, Anastassia Ailamaki, and
Babak Falsafi. 2004. Memory coherence activity prediction in commercial workloads. In Proceedings of
the Third Workshop on Memory Performance Issues (WMPI-2004).

Steven C. Woo, Moriyoshi Ohara, Evan Torrie, Jaswinder P. Singh, and Anoop Gupta. 1995. The SPLASH-
2 programs: Characterization and methodological considerations. In Proceedings of the 22nd
International Symposium on Computer Architecture (ISCA), Jun. 1995, 24–36.

David A. Wood, Mark D. Hill, and Richard E. Kessler. 1991. A model for estimating trace-sample miss
ratios. In Proceedings of the 19th ACM Special Interest Group on Measurement and Modeling of
Computer Systems (SIGMETRICS), Apr. 1991, 79–89.

Jason Zebchuk, Babak Falsafi, and Andreas Moshovos. 2013. Multi-grain coherence directories. In
Proceedings of the 46th IEEE/ACM International Symposium on Microarchitecture (MICRO), Dec.
2013, 359–370.

Hongzhou Zhao, Arrvindh Shriraman, Snehasish Kumar, and Sandhya Dwarkadas. 2013. Protozoa:
adaptive granularity cache coherence. In Proceedings of the 40st International Symposium on
Computer Architecture (ISCA), June 2013, 547–558.

