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Classification of data into private and shared has proven to be a catalyst for techniques to reduce 
coherence cost, since private data can be taken out of coherence, and resources can be concentrated on 
providing coherence for shared data. In this paper we ask the question: how granularity—page-level vs. 
cache-line level—and adaptivity—going from shared to private—affect the outcome of classification and 
what is its final impact on coherence? To answer this, we create a classification technique, called 
Generational Classification, and a coherence protocol called Generational Coherence, which treats data as 
private or shared based on cache-line generations. We compare two coherence protocols based on self-
invalidation/self-downgrade with respect to data classification. Our findings are enlightening: (i) Some 
programs benefit from finer granularity, some benefit further from adaptivity, but some do not benefit 
from either. (ii) Reducing the amount of shared data has no perceptible impact on coherence misses caused 
by self-invalidation of shared data, hence no impact on performance. (iii) In contrast, classifying more data 
as private has implications for protocols that employ write-through as a means of self-downgrade, 
resulting in network traffic reduction—up to 30%—by reducing the write-through traffic.  

Categories and Subject Descriptors: C.1.2. [Processor Architectures]: Multiple Data Stream 
Architectures (Multiprocessors) 

General Terms: Design, Performance  

Additional Key Words and Phrases: Multicore, memory hierarchy, cache coherence 

ACM Reference Format: 

Mahdad Davari, Alberto Ros, Erik Hagersten, and Stefanos Kaxiras, 2015. The effects of granularity and 
adaptivity on private/shared classification for coherence.   

 INTRODUCTION 1.
The goal of simplifying coherence in multicore architectures is twofold: (i) to reduce 
the costs associated with coherence (area, energy, performance) and (ii) to increase 
scalability. It further enables diverse accelerator architectures and general purpose 
CPUs to seamlessly interconnect under coherent shared virtual memory. To this end, 
several recent proposals aim to reduce directory or snooping cost [Alisafaee 2012; 
Kim et al. 2010; Ferdman et al. 2011; Cuesta et al. 2011], while others simplify 
coherence by removing the directory bottleneck in its entirety [Choi et al. 2011; Ros 
and Kaxiras 2012; Pugsley et al. 2010; Hossain et al. 2011]. A common useful tool 
used by all such approaches is the classification of data into private and shared [Choi 
et al. 2011; Ros and Kaxiras 2012], resulting in directory size reduction [Pugsley et al. 
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2010; Hossain et al. 2011; Alisafaee 2012], or optimizing the coherence protocol itself 
by replacing explicit coherence invalidations with silent self-invalidation of shared 
data upon synchronization [Ros and Kaxiras 2012]. 

In increasing order of hardware cost, data classification can be performed in three 
ways: (i) by the compiler [Li et al. 2010; Li et al. 2012], (ii) by the operating system 
[Hardavellas et al. 2009; Kim et al. 2010; Cuesta et al. 2011], or (iii) by hardware 
mechanisms [Pugsley et al. 2010; Hossain et al. 2011]. Although incurring minimum 
hardware cost, compiler-driven classification is not transparent to software. It is 
well-suited for hardware/software co-design, but requires re-coding and re-
compilation for legacy software and significant effort to determine at compile time if 
a variable is going to be shared or not. The OS approach does not impose extra 
requirements for dedicated hardware, since data classification at page granularity is 
stored along with the page table entries (PTEs) [Hardavellas et al. 2009].  This 
makes it a good choice for complexity-effective optimizations. However, it suffers 
from granularity and adaptation problems, leading to misclassifications that increase 
with time, thus degrading the quality of classification. OS-based approaches are not 
limited to data classification for coherence. For instance, Fensch [Fensch et al. 2008] 
proposes a coherence scheme for tiled chip multiprocessor (CMPs) in which coherence 
task is divided between the OS and hardware. In their scheme, incoherence is 
avoided by not allowing data to be replicated across the tiles. This is achieved by 
having the OS to map pages to separate private level-one caches (hereafter L1) and 
having the hardware to allow a limited and controlled data migration via remote 
cache accesses. Although not affecting the application software, such approaches 
heavily depend on the OS for data mapping and movement in the system. Finally, 
hardware mechanisms work totally transparent to software, at page or cache line 
granularity, but can have prohibitive storage requirements [Pugsley et al. 2010; 
Hossain et al. 2011] or dual-granularity complexities [Alisafaee 2012; Zebchuk et al. 
2013].  

In this paper we examine the impact of classification when it is applied to 
coherence. We examine the case where private/shared classification is employed to 
simplify coherence by excluding private data from any coherence mechanism and 
employing simple mechanisms such as write-through and self-invalidation for the 
shared data. Such an approach has been proven to be effective using page-level, non-
adaptive classification [Hardavellas et al. 2009; Ros and Kaxiras 2012]. Our aim is to 
assess the effect of finer granularity and adaptivity in the quality of the classification 
and ultimately in the performance of coherence. To this end, our first contribution is 
a robust approach for adaptive data classification at cache-line granularity that aims 
to address the weaknesses of the popular page-based OS approach, and be more 
accurate and efficient than prior hardware proposals [Alisafaee 2012; Zebchuk et al. 
2013]. We call our classification Generational since we use a precise definition, based 
on the generational behavior of cache lines [Wood et al. 1991] (section 3). Prior works 
[Alisafaee 2012; Zebchuk et al. 2013] employ complex dual-grain adaptive 
mechanisms to detect private and shared regions, with the goal of reducing the 
directory size in mind. In contrast, our goal is to provide a robust classification to 
support coherence protocols that critically depend on the separation of data into 
private and shared. While prior methods require a full-blown directory to implement 
data classification, we perform the classification entirely in last-level cache (hereafter 
LLC), requiring a minimum amount of storage to hold the classification information. 
Such storage is easily integrated into LLC tags as attribute bits. We further develop 
a coherence protocol, called Generational Coherence, which combines generational 
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data classification with self-invalidation and self-downgrade [Ros and Kaxiras 2012; 
Choi et al. 2011] (Section 4). In the rest of the document we use GC to refer to both 
Generational Classification and Generational Coherence, as they are tightly coupled. 

Our second contribution is to compare GC with a page-based, non-adaptive 
protocol (Section 6). We examine three metrics: the quality of classification, the effect 
on self-invalidation, and the effect on write-through traffic. Our findings reveal that: 
(i) GC significantly increases the amount of private data, but there is also a class of 
programs where page-based, non-adaptive, classification already works well. (ii) 
Even when GC manages to classify significantly more data as private, the end effect 
on misses caused by self-invalidation is negligible. (iii) The effect on write-through 
traffic, however, is significant, leading to benefits in overall network traffic and 
consequently lower energy consumption. Further, we found that attempts to 
modulate the generational behavior using cache decay as a simple dead-block 
predictor are ineffective, given the time scale on which the classification operates. 

 BACKGROUND AND RELATED WORK 2.
 VIPS-M 2.1

A number of proposals recently advocate simple coherence for data-race-free 
semantics [Choi et al. 2011; Ros and Kaxiras 2012; Kaxiras and Ros 2012; Kaxiras 
and Ros 2013]. Due to its simplicity and being transparent to software, we have 
modeled our proposed generational coherence after VIPS-M coherence protocol [Ros 
and Kaxiras 2012; Kaxiras and Ros 2012; Kaxiras and Ros 2013]. VIPS-M is a 
directory-less protocol that relies on the properties of relaxed memory consistency 
and data-race-free semantics to allow incoherence in between synchronization points, 
but sequential consistency for data-race-free programs [Adve and Hill 1990; Sorin et 
al. 2011]. By relying on the data-race freedom property of programs, coherence 
among private L1s is maintained by three mechanisms: (i) a data classification 
mechanism that classifies data as private or shared, (ii) self-invalidation, and (iii) 
self-downgrade. 
 

2.1.1. Private/Shared Data Classification. VIPS-M employs a technique that classifies 
data at a page granularity using the OS and the TLBs [Cuesta et al. 2011; 
Hardavellas et al. 2009; Kim et al. 2010]. A page accessed by a single core starts as 
private in the page table. Upon an access to the same page by a second core, the page 
becomes shared. A page becomes shared even when cores access entirely different 
cache lines in the page. When a page transitions from private to shared, the core that 
had previously tagged the page as private must be notified, so it can change its local 
classification of the page to shared. This is necessary since the write policy that is 
employed for the cache lines of a page is dictated by the local classification. A page 
transition from private to shared can happen at most once per page and a shared 
page never reverts back to private. VIPS-M also uses the same OS classification 
technique to distinguish between Read-Only pages and pages that are Read/Write. 
Cache lines belonging to Read-Only pages are not self-invalidated at 
synchronizations. 

2.1.2. Self-Invalidation. Each L1 cache self-invalidates its shared data at 
synchronization points—lock acquisition or barrier crossing. As a result, all the 
explicit coherence invalidation traffic towards the L1s is eliminated.  

2.1.3. Self-Downgrade. Self-downgrade is used by each L1 cache to keep the shared 
LLC up-to-date with the latest copy of the modified shared data in L1 caches. Prior 
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work [Somogyi 2014; Somogyi et al. 2014] leverage self-downgrade technique to 
mitigate the coherence latency. Such techniques perform self-downgrade by 
implementing accurate but complex dead-block predictors. VIPS-M, on the other 
hand, introduces an efficient form of self-downgrade, whereupon written data are 
deliberately written through to LLC before any further access to them by other cores. 
This obviously eliminates forwarding and cache-to-cache transfers. The key 
observation that makes a write-through policy practical is that most write misses in 
a write-through protocol actually come from private blocks. Based on this observation, 
VIPS-M uses a dynamic write policy in the L1s: write-through for data that are 
shared, and write-back for private data that do not need coherence. As a further 
optimization, a write-through buffer is used to coalesce writes to the same cache lines. 
This buffer is emptied at the same synchronization points that cause self-invalidation. 
Write-throughs transfer only what is modified in a cache line—i.e. a diff. This allows 
multiple simultaneous writers to co-exist, with the guarantee of data-race-free 
property at word—or byte—level [Ros and Kaxiras 2012]. Self-invalidation and self-
downgrade eliminate the need for a directory, since neither the writers—because of 
self-downgrade—nor the readers—because of self-invalidation—need to be tracked 
anymore. 

 Hardware private/shared classification approaches 2.2
Many systems rely on a hardware private/shared classification for a variety of 
reasons. Chief among these reasons is the directory size reduction [Alisafaee 2012; 
Zebchuk et al. 2013; Fang et al. 2013]. The approach is to implement a multi-grain 
directory that tracks coherence information on more than one block size. Alisafaee 
[Alisafaee 2012] and Zebchuk [Zebchuk et al. 2013] propose similar approaches that 
differ on implementations. The idea is to store private regions in the directory and 
out of those regions extract cache lines that are shared. Similarly, Fang [Fang et al. 
2013] describes an approach where region entries can be private but block entries 
extracted from these regions can either be private—with a different private owner 
than the region— or shared—accessed by multiple cores. 

Regarding adaptivity of classification, Pugsley [Pugsley et al. 2010] introduces an 
adaptive version of their SWEL protocol, called Reconstituted SWEL (RSWEL) that 
includes a 2-bit saturating decay counter to re-classify shared pages to private. 
However, the adaptation is quite complex, requires elaborate tuning of the time 
period that ticks the decay counters for good results, and lastly it is only initiated 
periodically in bulk. Furthermore, Zhao [Zhao et al. 2013] addresses adaptivity in 
cache coherence by proposing the Protozoa coherence protocol. However, Protozoa 
addresses adaptivity when applied to the granularity of coherence and data 
movement. Instead of having fixed cache-line granularity for both data 
storage/movement and coherence actions, Protozoa adopts different granularities in 
order to mitigate the overhead of data movement due to coherence invalidations. Our 
approach, on the other hand, addresses adaptivity when applied to the classification 
of data into private and shared. 

Finally, POPS [Hossain et al. 2011] presents a protocol optimized for private or 
shared data to meet the trade-off between a private and a shared LLC, which treats 
migratory data as private. 

 GENERATIONAL CLASSIFICATION 3.
We describe the generational classification at cache line granularity, however the 
method can be generalized to any granularity. We assume a system comprising of 
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private L1 caches and a shared LLC. All L1s send their data requests to the LLC. 
Since LLC observes all the requests in the system, our classification mechanism is 
therefore located in the LLC. Classification is sent to L1s along with data responses 
from the LLC. 

A generation for a cache line starts when the cache line is brought into an L1 
cache as a result of an L1 miss. A cache line can therefore have many concurrent 
generations in different cores, up to a generation per core. A core may repeatedly 
access a cache line in its L1 cache before the cache line enters a dead time awaiting 
eviction. A generation terminates when the cache line is evicted from the cache as a 
result of its non-use. We use replacements as an approximation for the termination of 
generations, noting that when a line is replaced it might still be in active use—in its 
live time—but is evicted as result of a conflict in a cache with limited associativity. 
However, termination of a generation can take alternative interpretations. 
Termination can be explicitly signaled, for example, by a program instruction, or by a 
dead-block detection/prediction mechanism such as cache decay [Kaxiras et al. 2001; 
Lai et al. 2001] or more sophisticated dead-block predictors [Lai et al. 2001]. This 
gives us a means of controlling the generation length by modulating its dead time. 
We use this feature in the evaluation section to demonstrate this ability by using 
cache decay as a crude but simple predictor. We can also rely on other events, such as 
coherence invalidations, to determine the termination of a cache line generation. 
However, this gives a weaker definition for the concept of generation, as the cache 
line being invalidated might in fact be in active use, which is going to be requested 
again by the same core in a short time. Migratory data is a typical example for this 
case. As a result, we do not end the generations upon coherence invalidations. This is 
further discussed at the end of section 4.1.  
 
 
                                              

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 1. Overlapping and non-overlapping cache-line generations 
 
A cache line is classified as private if there exists only one generation of that cache 
line among all the L1 caches, i.e. the generation of the cache line does not overlap in 
time with any other distinct generation of the same cache line in a different L1 cache.  
If two or more generations overlap, the cache line is classified as shared. Figure 1 
shows some classic examples. In Figure 1-a, producer-consumer sharing results in 
two closely entangled generations in cores 0 and 1. In Figure 1-b, migratory sharing-
—for example data accessed in a critical section— results in rapid successive 
generations on different cores that tend to overlap in their dead times. In Figure 1-c, 
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two generations of the same cache line exist on different cores but are sufficiently 
separated in time so as to consider the line essentially private. This is a common 
occurrence in pipelined parallelism where one core operates on some data for some 
time and then passes them to another core. In our approach, the differentiation of the 
last two cases focuses on the time separation of the generations. We do not explicitly 
identify migratory sharing, which can be done orthogonally to our approach 
[Stenström et al. 1993; Cox and Fowler 1993; Kaxiras and Goodman 1999]; we leave 
this for future work.  

To track a generation of a cache line, the beginning and the end of the generation 
should be made visible to the classification mechanism. The beginning of a 
generation occurs as the result of an L1 miss, and is marked by a request to the LLC 
for the cache line (GET). Detecting the end of a generation, based on our chosen 
model described earlier, is heavily based on the underlying coherence protocol. 
Traditional directory-based coherence protocols, such as MSI (and all its derivatives), 
require notifications for all cache line replacements in the form of a PUT message 
when doing write-back or an explicit eviction notification (EEN) for clean lines [Sorin 
et al. 2011]. For such coherence protocols, each PUT and EEN message received at 
LLC could be used to mark the end of one generation for that cache line.  

Data classification information is stored in the LLC tags using a Private/Shared 
bit and a dual purpose PrivateOwner/SharerCount field that holds the Private 
Owner ID in case of private classification, or the number of sharers for a cache line if 
the cache line is classified as shared. PrivateOwner/SharerCount field is of length 
⎡log2 n⎤, where n denotes the number of cores in the system. The following convention 
holds for the generational classification, where the first entry represents the 
Private/Shared status and the second entry represents PrivateOwner/SharerCount: 
 

<Shared, 0>: NULL entry (not present in any L1 cache) 
<Private, X>: Private, X is owner, X in {0 .. N-1} for N cores 
<Shared, n>: Shared, n sharers, where 1 ≤ n ≤ N 

 
The classification entries are initialized to <Shared, 0>. Upon observing the first L1 
request for a cache line in the LLC, Private/Shared bit is set to Private, and the 
second field is set to the ID of the requesting core. If GETX denotes a GET request by 
core X, then the classification is formulated as: 
 

GETX : <Shared, 0> → <Private, X> 
 
For a further access to a cache line classified as private, classification will change to 
shared. The second field of attribute bits will now contain the number of sharers for 
that cache line: 
 

GETY : <Private, X> → <Shared, 2> 
 
Upon receiving a replacement notification in the form of write-back for a cache line 
classified as private, classification will change to NULL for that cache line: 
 

WBX : <Private, X> → <Shared, 0> 
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Upon receiving GET requests in the LLC for a cache line, which is already classified 
as shared, classification remains as shared, however, the SharerCount field will be 
updated to reflect the degree of sharing for that cache line: 
 

GETX : <Shared, n> → <Shared, n+1> 
 
For any write-back or coherence INV-ACK message received at the LLC for a cache 
line classified as shared, degree of sharing is updated as follows: 
 

INV-ACK | WB : <Shared, n> → <Shared, n-1> 
 
A shared cache line reverts back to private state if all the overlapping generations of 
that cache line end. In our implementation, such a reverse classification adaptation 
can happen after the LLC has classified a cache line as <Shared, 0>. Upon creation of 
the next generation, the new generation will be born as private. Classification state 
of <Shared, 1> in essence denotes a private state. However, we cannot adapt the 
classification back to private at this point, since the owner is unknown. Therefore the 
classification mechanism we introduced so far will only allow classification 
adaptation from shared to private at a point that all the generations of a cache line 
have ended. 

So far we introduced the concept of data classification based on generations of 
cache lines. We showed that such data classification works with the traditional 
directory-based coherence protocols, and it provides reverse data classification 
adaptation from shared to private. In the next section, we introduce our new 
coherence protocol, called Generational Coherence. 

 GENERATIONAL COHERENCE 4.
Our new coherence protocol, which we call Generational Coherence, belongs to the 
class of coherence protocols that rely on software’s data-race-free semantics and are 
based on self-invalidation [Lebeck and Wood 1995; Choi et al. 2011; Kaxiras and Ros 
2012; Ros and Kaxiras 2012; Kaxiras and Ros 2013]. We motivate our choice from 
several different aspects: coherence protocols based on self-invalidation are simple to 
design, modify, and debug, therefore it is easier to study the impact of different 
optimizations for such protocols. Those protocols also reduce network traffic by 
eliminating the invalidation traffic, and improve the overall performance. Similar to 
VIPS-M, GC uses a dynamic write policy: write-back for modified private cache lines 
and delayed write-through for modified shared ones. Clean private cache lines are 
replaced silently from L1 caches. In our protocol, each core silently self-invalidates all 
its shared data. The generational data classification discussed in the previous section 
should therefore be adjusted to accommodate such write policy and also the side 
effects of silent self-invalidations. 

Self-invalidations are silent, invisible to LLC, and do not affect the termination of 
generations. We choose not to require explicit self-invalidation notifications to the 
LLC, since such requirement would be contrary to what coherence protocols based on 
self-invalidation are trying to achieve. A core locally self-invalidates its cache line by 
setting the invalid bit for the cache line. Subsequent cache lookups can detect if a 
cache line is self-invalidated when the tag is found in the cache and the 
corresponding invalid bit is set. This allows a core to detect if a cache miss is due to 
self-invalidation —coherence miss— or belongs to any of the 3C cache-miss types 
[Hill and Smith 1989]. To allow our generational classification to tolerate the 
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aforementioned silent self-invalidation, GET requests following the cache misses that 
are due to self-invalidation —coherence miss— should be distinguished from GET 
requests following the cache misses which belong to other cache-miss types: any 
subsequent cache miss which is not caused by an earlier self-invalidation issues a 
normal GET request to the LLC to obtain the cache line and signal to the 
classification mechanism the start of a generation. Cache misses that are caused by 
earlier self-invalidations, however, are treated differently since they happen in the 
middle of an existing generation which is already accounted for in the classification. 
Self-invalidated cache lines are therefore required to be re-fetched from the LLC 
using a special GET message, hereafter called REFRESH.  

Upon receiving a REFRESH message, the LLC does not create a new generation 
for that cache line, and the number of sharers is not incremented. Classification in 
that case is formulated as: 
 

REFRESH : <Shared, n> → <Shared, n> 
 
Using REFRESH messages allows yet another optimization: the time frame for 
shared-to-private adaptation can be shrunk by one step. We mentioned earlier that 
shared-to-private adaptation is only possible when all the generations of a cache line 
have ended, and a new generation is about to be created from the NULL state, i.e. 
the reverse classification adaptation takes place in state <Shared, 0>, and not 
<Shared, 1>. This is due to the fact that the owner of a cache line is unknown as soon 
as a cache line is classified as shared. With REFRESH requests, however, it is 
possible to adapt the classification back to private from state <Shared, 1> 
immediately. Since <Shared, 1> state denotes that there exists only one 
sharer/generation of the cache line among all the private caches, a REFRESH 
request reveals the identity of the core that holds the only generation of that cache 
line. At this point, the classification mechanism can safely perform the classification 
adaptation, and the cache line will be classified as private. 

Such optimization is also possible when a write-through is observed at LLC for a 
cache line in state <Shared, 1>. Similar to a REFRESH, a write-through in state 
<Shared, 1> reveals the only owner of that cache line, and adaptation is triggered: 
 

REFRESHX | WTX : <Shared, 1> → <Private, X> 
 

In order to be able to signal the termination of generations, we require that cache 
lines classified as shared explicitly notify LLC of their eviction. This also applies to 
the self-invalidated cache lines. Clean-shared cache lines and self-invalidated cache 
lines notify their eviction via EEN, while modified shared cache lines are written 
back to LLC: 
 

EEN | WB : (Shared, n) → (Shared, n-1) 
 
Private blocks that contain modified data will be written back into LLC, and 
therefore their generation will end. For the clean private cache lines, however, we do 
not require EEN. Since there are private blocks that remain private to a single core 
for the whole program execution, it is therefore more efficient not to track the end of 
the generations of clean private blocks via EENs. Clean private blocks are therefore 
replaced silently. Our generational coherence mechanism detects such replaced cache 
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lines after receiving new requests for those cache lines using a mechanism called 
Recovery. 

 Recovery 4.1
For an access to a cache line already classified as private, the PrivateOwner field of 
the cache line is compared to the ID of the core that initiated the request. If the 
PrivateOwner field matches the ID of the requesting core, the cache line remains 
private with the same private-owner.  
 

GETX : (Private, X) → (Private, X) 
 
This is the case where a private-clean cache line is silently evicted due to 
capacity/conflict misses, and requested again by the previous private owner.   

If the two IDs are different, the former private owner must be notified by a 
request from LLC, before LLC can respond to the new request. This recovery 
notification happens only once per private-to-shared transition, and is in form of a 
unicast, since only the private owner needs to be notified. Two scenarios are possible: 
if the former private owner has the line in its cache, it changes the classification of 
the line in its cache from private to shared. As a result of changing classification, the 
former owner either performs a write-back of dirty data, or sends an 
acknowledgement in case of a clean private block. The cache line classification then 
changes to Shared in the LLC, and the PrivateOwner/SharerCount field is set to 2, 
denoting the number of sharers:  
 

GETY : (Private, X) → (Shared, 2) 
 
However, if the former private owner has silently evicted the line from its cache—i.e. 
the cache line generation has ended—, the former private owner replies with a 
negative acknowledgement (NACK) to the LLC request.  In this case, the cache line 
classification remains private in the LLC, and the PrivateOwner/SharerCount field 
is set to the ID of the new owner:  
 

GETY : (Private, X) → (Private, Y) 
 
Before LLC can respond with data to the new request Y in the aforementioned 
scenario, LLC needs to access the memory if data is also evicted from the LLC. 
 
Backward adaptation, if not performed with care, can result in performance 
degradation due to excess recovery overhead caused by repetitive and useless 
private-to-shared and shared-to-private transitions. This is the typical case when 
migratory data is prematurely classified as private [Pugsley et al. 2010]. This 
happens if self-invalidations are used to signify the end of generations. To fend 
against this, we consider that generations only end when cache-lines are evicted, not 
when they are invalidated. We ensure that their classification remains shared 
through synchronization points, causing no additional recoveries. If migratory data is 
misclassified as private, the recovery process adds latency to the migration, whereas 
shared modified migratory blocks are written-through to the LLC prior to 
synchronization, an action whose latency is overlapped and hidden by other delayed 
write-throughs. 
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 Read-Only Recovery 4.2
As a further optimization to mitigate the penalties associated with self-invalidation, 
we enrich the data classification by considering read-only (RO) classification. Similar 
to private data, the shared data classified as RO is also spared from self-invalidation, 
which yields higher hit rate. A cache line is classified as read-only as long as no write 
is observed in the LLC for that cache line. Upon observing the first write in the LLC, 
which is either in the form of a write-through or a GETX —request with write 
permission— the cores that have the cache line are notified by the LLC to update the 
classification for that cache line in their L1 caches from read-only to read-write. Such 
operation, which we refer to as RO-Recovery, is not considered to be costly, since it 
happens only once per read-only to read-write transition. Furthermore, RO-Recovery 
is not on the critical path. Upon receiving a RO-Recovery notification, cores do not 
need to be stalled in order to perform the recovery immediately. It is sufficient that 
the cores perform RO-Recovery before their next synchronization. 

 Loss of classification information 4.3
The Private/Shared classification and private owner field exist only for the LLC lines. 
The status bit and PrivateOwner field are not saved externally, and are lost upon 
eviction of the cache line from the LLC. When a cache line is initially brought into 
LLC, the state of the Private/Shared bit can vary, depending upon whether the cache 
hierarchy is inclusive or non-inclusive.   

 For an inclusive hierarchy, when a cache line is evicted from LLC its L1 copies 
must also be evicted.  There are three cases depending on the classification state of 
the LLC line. In the first case, the line is in state NULL and there are no sharers. 
This is a common case since the eviction from LLC indicates that line has not seen 
much activity for a long period. In the second case, the line is private and a recovery 
notification to the known private owner is sent to evict it. In the last case, the line is 
shared and only the number of sharers is known. This is more expensive since it 
requires a broadcast. To minimize its effects, preference may be given to the other 
cases over this in the replacement algorithm. The LLC eviction is not on the critical 
path of the miss that causes the eviction. LLC eviction is handled by a MSHR. When 
a new cache line is brought into the LLC, the requesting L1 cache becomes the line's 
private owner and the cache ID is added to the private owner field.  

Alternatively, for a non-inclusive hierarchy, when a line is brought into LLC as a 
result of an L1 miss, the classification is unknown and must be reconstructed by 
querying the L1s.  A broadcast—snoop—to all the L1s establishes which (if any) L1 
has the line. If an L1 has the line, it replies with its ID, otherwise with a NACK. If 
more than one L1 has the line, then the line is shared and SharerCount is calculated 
based on the received ACK messages. If only one L1 has the line, its ID becomes the 
PrivateOwner value. If no L1 has the line—i.e. an LLC cold miss—, the ID of the 
requesting L1 cache is used as private owner. Once the Private/Shared status is 
established, the classification is performed anew for the requesting L1. Broadcasts in 
the L1s concern only LLC misses, which are significantly fewer than L1 misses. 
Furthermore, reconstructing the classification is also not in the critical path of the 
LLC miss since it is overlapped with memory access. 
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Table I. Comparison of Protocol States 

 

 
 

  Protocol complexity and protocol races 4.4
Adding LLC classification to a directory-less protocol such as VIPS-M may seem to 
increase complexity by re-introducing directory functionality. Without a doubt, GC is 
more complex than VIPS-M but the complexity gap to a directory protocol such as 
MESI is still substantial. This is clearly evident in the number of protocol states for 
GC and MESI, shown in table I. Classification can merely be thought of as a passive 
storage that simply observes the requests that reach the LLC, and via a simple FSM 
updates a state variable. Classification does not entail request forwarding or explicit 
coherence invalidations, which are responsible for the complexity in directory 
protocols. The only request sent on the part of classification is the recovery 
notification—and similarly, the recovery notifications when we need to reconstruct 
the classification information from scratch. However, this does not add any 
complexity to VIPS-M that was not already there. Recovery is an essential operation 
in the original protocol whether it is done at page level or line level: any transition 
from private to shared must notify the private owner so the page or cache line 
becomes shared in the L1. 

 EVALUATION METHODOLOGY 5.
We evaluate GC against a directory protocol (MESI states) and also a self-
invalidation request-response protocol which performs private/shared data 
classification at page granularity (VIPS-M), in order to study the impact of 
generational data classification on (i) the amount of shared/private data classification, 
(ii) network traffic, and (iii) execution time. We implement two versions of GC: a 
version without any dead-block prediction mechanism, and another that employs 
cache decay as a simple predictor [Kaxiras et al. 2001]. We use the Simics full-system 
simulator [Magnusson et al. 2002], and model VIPS-M and GC protocols using the 
cycle-accurate GEMS simulator [Martin et al. 2005]. We also employ the GARNET 
network simulator [Agarwal et al. 2009] to model the interconnection network. Our 
target system is a 16-tile chip multiprocessor. Table II gives details about the main 
parameters of our base system. Furthermore, we use Pin [Luk et al. 2005] in order to 
study and analyze the shared data access patterns. 

We employ a wide variety of parallel applications. Barnes (16K particles), 
Cholesky (tk16), FFT (64K complex doubles), FMM (16K particles), LU-CB (512x512 
matrix), LU-NCB (512x512 matrix), Ocean (514x514 ocean, contiguous partitions), 
Radiosity (room, -ae 5000.0 -en 0.050 -bf 0.10), Raytrace (teapot, optimized version 
that removes unnecessary locks), Volrend (head), Water-Nsq (512 molecules) and 
Water-Sp (512 molecules) belong to the SPLASH-2 benchmark suite [Woo et al. 1995]. 
Blackscholes (simsmall), Canneal (simsmall), and Swaptions (simsmall) are from the 
PARSEC benchmark suite [Bienia et al. 2008]. We simulate the entire applications, 
but collect statistics only from start to completion of their parallel part. 
 
 
 

 GC MESI 
Stable Transient Stable Transient 

L1 4 4 6 8 
LLC 2 2 4 5 
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Table II. Base System Parameters 

Memory Parameters 
Processor frequency 3.0 GHz 
Block size 64 bytes 
MSHR size 16 entries 
Split L1 I & D caches 32 KB, 4-way 
L1 cache hit time 1 (tag) and 2 (tag + data) cycles 
Shared unified LLC cache 8 MB, 512 KB/tile, 16-way 
LLC bank cache hit time 6 (tag) and 12 (tag + data) cycles 
L1-LLC inclusion policy Inclusive 
MESI Directory Full-map in LLC tags 
Memory access time 160 cycles 
Page size 4 KB (64 blocks) 

Network Parameters 
Topology 2-dimensional mesh (4x4) 
Routing technique Deterministic X-Y 
Flit size 16 bytes 
Data message size 72 bytes (5 flits) 
Control message size 8 bytes (1 flit) 
Routing time 2 cycles 
Switch time 2 cycles 
Link time 2 cycles 

 

 RESULTS 6.
 Classification Quality 6.1

 
6.1.1. Granularity and Adaptivity Do Not Matter.  Figure 2 shows the benchmarks that do 

well with page-level classification. Granularity or adaptivity has no significant effects 
on the outcome of classification, as the number of accesses to the data classified as 
shared remains almost the same for both granularities. This is the case where most 
of the cache lines in a page classified as shared are truly shared. Blackscholes, which 
is not included in the figure due to space limitations, also shows a trend very similar 
to Water-SP. 
 

6.1.2. Granularity Matters. Figure 3 shows the benchmarks that benefit from fine-
grained classification. Such benchmarks have shared pages with the majority of 
cache lines in those pages being private. Fine-grained classification prevents such 
private cache lines from being misclassified as shared. 

 
6.1.3. Granularity and Adaptivity Matter. Benchmarks in Figure 4 benefit from both fine-

grained classification and adaptation. Adaptation serves to prevent temporarily 
private data from being misclassified as shared [Alisafaee12]. 

 
 Effects on Performance 6.2

In this section we compare page-based non-adaptive coherence (VIPS-M) and block-
based, adaptive coherence (GC). GC aims to further enhance VIPS-M by having less 
shared data. We also compare miss rate, network traffic, and execution time against 
a MESI protocol to provide a general comparison against invalidation-based 
coherence protocols. 
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Fig. 2. Benchmarks that are insensitive to granularity/adaptivity (run-time average) 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Benchmarks sensitive to granularity only (run-time average) 

 0

 10

 20

 30

 40

 50

 60

 70

0 20 40 60 80 100

S
h
a
re

d
 D

a
ta

 A
cc

e
ss

e
s 

(%
)

Execution Time (%)

 25

 30

 35

 40

 45

 50

 55

 60

 65

 70

0 20 40 60 80 100

S
h
a
re

d
 D

a
ta

 A
cc

e
ss

e
s 

(%
)

Execution Time (%)

Page
Line

Line-Adaptive

 0

 5

 10

 15

 20

 25

 30

 35

0 20 40 60 80 100

S
h
a
re

d
 D

a
ta

 A
cc

e
ss

e
s 

(%
)

Execution Time (%)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

0 20 40 60 80 100

S
h
a
re

d
 D

a
ta

 A
cc

e
ss

e
s 

(%
)

Execution Time (%)

(a) SPLASH-2/Radiosity (b) SPLASH-2/Volrend 

(c) SPLASH-2/Water-nsq (d) SPLASH-2/Water-sp 

(a) SPLASH-2/FFT (b) SPLASH-2/LU-CB 

(c) PARSEC/Swaptions (d) SPLASH-2/Ocean-CP 

 0

 5

 10

 15

 20

 25

 30

 35

 40

0 20 40 60 80 100

S
h
a
re

d
 D

a
ta

 A
cc

e
ss

e
s 

(%
)

Execution Time (%)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

0 20 40 60 80 100

S
h
a
re

d
 D

a
ta

 A
cc

e
ss

e
s 

(%
)

Execution Time (%)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

0 20 40 60 80 100

S
h
a
re

d
 D

a
ta

 A
cc

e
ss

e
s 

(%
)

Execution Time (%)

Page
Line

Line-Adaptive

 0

 5

 10

 15

 20

 25

 30

 35

 40

0 20 40 60 80 100

S
h
a
re

d
 D

a
ta

 A
cc

e
ss

e
s 

(%
)

Execution Time (%)



x:14                                                                                                                            M. Davari et al. 
 

 
ACM Transactions on Architecture and Code Optimization, Vol. xx, No. x, Article x, Publication date: Month YYYY 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 

 
 

Fig. 4. Benchmarks sensitive to both granularity and adaptivity (run-time average) 
 

Figure 5 shows the amount of data classified as private and shared in the L1 caches 
of a 16-core multicore processor. Canneal appears as mostly private in the graph due 
to having locks mainly outside region of interest and having significantly low amount 
of shared data. The graph also includes the portion of shared data classified as read-
only (RO). VIPS-M obtains RO information from page table entries provided by OS, 
while GC keeps track of RO blocks dynamically as discussed in section 4.2.  

As depicted in Figure 5, GC classifies on average about three times fewer shared-
written data and about three times more private data compared to VIPS-M. This 
illustrates the significant impact of fine-grained adaptive data classification on the 
amount of data classified as private.  

We also employ cache decay [Kaxiras et al. 2001] to modulate the dead time of the 
cache-line generations. We consider only a simple dead-block predictor using a two-
bit saturating counter per cache line in L1 caches, since sophisticated predictors 
would incur complexity and cost disproportionate to the rest of our mechanisms. We 
apply decay selectively to private data, since the generations of shared data seem to 
operate on markedly different time scales. Contrary to the work in [Kaxiras et al. 
2001], we do not turn off cache lines that are believed to have entered their dead 
time. Our intent is simply to understand the effect of cutting short a generation once 
we have established that it has entered its dead time. Thus, in our approach, decay is 
simply a marker in the timeline of a generation, after which the cache line can 
remain private if requested by another core. A recovery request that finds a line after 
its decay, forces its eviction; the line can be passed on to the requesting core as 
private. In contrast, if the original private owner accesses the cache line after it has 
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decayed (without an intervening recovery), the line is revived and reinstated as live, 
without causing a decay miss.  

 
Fig. 5. Classification quality VIPS-M vs. generational data classification 

 
 

Given this flexibility we can set fairly small decay intervals without fear of 
generating significant decay misses. We use decay intervals of ranging from 500 
cycles to 40K cycles. Our results show that attempting to shorten the dead time has 
positive but small effects. With a very small decay interval—e.g. aggressive dead-
block prediction—we run the danger of trying to classify as private, data that are 
inherently shared. This leads to increased recoveries (re-classifying as shared what 
we artificially classified as private), thus eliminating any potential benefit. This 
leaves medium to large decay intervals as the best performing (e.g., 10K to 20K 
cycles), but at that point dead-block prediction does not differ much from actual 
eviction as far as the classification is concerned. For this reason, attempting to 
control the length of generations is likely not to be a fruitful direction. We include the 
results using decay for completeness. 

As Figure 5 shows, VIPS-M has a larger portion of its caches as invalid. This is 
due to the fact that VIPS-M has more shared data, which are self-invalidated upon 
synchronizations. GC, on the other hand, classifies more data as private, which are 
not affected by synchronizations. 

Figure 6 shows that GC slightly reduces the miss rate compared to VIPS-M. 
Although one would expect substantial decrease in miss rate due to the sharp 
increase in the amount of private data, the reduction is marginal. We explain this in 
the next section, where we show the rate of re-accessing self-invalidated data. There 
are cases where using cache decay slightly degrades the miss rate. This is due to 
mispredicting entry into the dead time and, because of an intervening recovery, the 
generation is ended too early. 

GC incurs some overhead. Such overhead is due to recovery and EEN messages 
needed to track beginning and end of generations. Despite such overhead, reduction 
in overall network traffic and energy consumption is still possible. GC reduces the 
network traffic up to 30% in Watersp, and about 20% in some benchmarks shown in 
Figure 7. One might wonder where the reduction in the network traffic comes from, 
as Figure 6 does not show significant drop in the miss rate. We discuss this in the 
next section where we show the impact of granularity and adaptation on the amount 
of write-through traffic. Finally, Figure 8 shows that despite incurring the 
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granularity and adaptation overhead, GC does not degrade the execution time 
compared to VIPS-M, while reducing the overall network traffic and consequently the 
energy consumption.  

 

 
 

Fig. 6. L1 cache miss rate 
 
 

 
Fig. 7. Network traffic 

 
 

 Explaining the Results 6.3
6.3.1. The impact of granularity and adaptation on miss rate. One would expect a lower 

miss rate for coherence protocols based on self-invalidation when the amount of 
private data significantly overweighs the amount of shared data. However, as shown 
in Figure 6, GC only slightly decreases the miss rate. This can be explained by 
referring to Figure 9. Almost all of the benchmarks have similar low rate of re-
accessing the self-invalidated data, regardless of granularity and adaptation. The 
benchmarks that are not shown in Figure 9 have re-access rate close to zero. Since 
the self-invalidated data is not re-accessed, it does not matter if the data are 
classified as private. A slightly more decreased miss rate for some of the benchmarks 
such as Radiosity, FMM, Water-SP, and Cholesky can be explained by referring to 
synchronizations. Such benchmarks have a large number of locks and spend 
significant portion of their execution time (30% in Radiosity) in synchronization. 
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Frequent synchronizations result in frequent self-invalidation of all shared data. 
Thus, even small changes in the re-access rate are significantly amplified. As Figure 
6 shows, GC decreases the miss rate for Radiosity about 10%. 
 

 
Fig. 8. Execution time 

 
Figure 6 shows that GC results in a slightly higher miss rate for benchmarks 

such as Canneal and Swaptions. This is mainly due to the self-invalidated cache lines 
being deallocated from the cache in VIPS-M. However, in GC the generations of cache 
lines do not end by self-invalidations, causing more private blocks to be victimized by 
the replacement algorithm. The penalty is negligible, and can be fixed by giving 
priority to self-invalidated blocks in the replacement algorithm. 

 
6.3.2. The impact of granularity and adaptation on network traffic. The reduction in network 

traffic without significant decrease in miss rate can be explained by referring to 
Figure 10, which shows the reduction in the amount of write-through traffic. Write-
throughs have a major contribution to network traffic in protocols that employ write-
through policy for shared data. Therefore, finer granularity and adaptation will 
result in network traffic reduction by reducing the amount of shared data. 
Benchmarks such as FFT, FMM, Water-SP, and Swaptions—Swaptions in not 
included in Figure 10 due to space limitations—significantly benefit from finer 
granularity and adaptation, as the amount of write-through traffic is significantly 
reduced for these benchmarks. There are also benchmarks, such as LU-NCB, Ocean-
CP and Blackscholes, where network traffic is not decreased despite reduction in the 
amount of write-through—Blackscholes, which is not included in the figure due to 
space limitations, shows a trend very similar to Water-SP. Such behavior can be 
explained by referring to Figure 7. For those benchmarks, the amount of write-back 
has significantly increased, which cancels out the benefit of having less write-
through traffic. This is the typical case for larger data sets, enforcing frequent 
replacements in L1 caches. Canneal has very low amount of shared data that makes 
it insensitive to write-throughs, behaving almost the same with both GC and VIPS-
M. It has slightly higher network traffic with GC due to slightly higher miss rate.  

There are also benchmarks in Figure 7 such as Barnes, Raytrace, Volrend, and 
Water-nsq, where the increase in network traffic incurred by finer granularity and 
adaptation is more pronounced. These are the benchmarks that have almost the 
same amount of write-through and write-back traffic regardless of granularity and 
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adaptation. However, the overhead of maintaining a fine-grained classification 
increases the total network traffic for those benchmarks. Although GC has lower 
write-through rate than VIPS-M for those benchmarks, the amount of shared data is 
considerably low, making the difference in write-through traffic negligible. 

Up to this point we referred to write-through rate to explain the reduction in 
network traffic despite having similar miss rate with GC and VIPS-M. Although 
benchmarks that have lower miss rate with GC incur less data movement traffic due 
to cache misses, it is easy to observe that the impact of write-through is still 
dominant (Figure 6 and Figure 7). Radiosity, for example, which has the highest 
reduction in the miss rate with GC, shows no significant improvement in the network 
traffic despite having less data movement due to fewer cache misses. This can be 
explained by referring to Figure 7 and Figure 10, which reveals that Radiosity has 
almost the same amount of write-through traffic regardless of granularity and 
adaptation: finer granularity or adaptation are unable to significantly reduce the 
amount of shared data for this benchmark (Figure 5). In general, benchmarks are 
more sensitive to write-through traffic rather than data traffic caused by cache 
misses. The same holds for Cholesky. FMM and Water-SP also have lower miss rates 
with GC, however their reduction in network traffic does not come from the reduced 
data movement due to lower miss rate, but from significant reduction in the amount 
of write-through. 

 
6.3.3. Putting it all together. Our results show that: 
 
- For many benchmarks adaptive block-level classification significantly reduces 
the amount of shared data, yet does not affect the overall miss rate (Figure 6). 

 
- The data re-classified as private using adaptive block-level classification, which 
would have otherwise been classified as shared at page granularity, in many 
cases, cause a noticeable reduction of write-throughs and network traffic (Figure 
7) and consequently result in lower energy consumption. 

 
How can these two seemingly contradictory observations be reconciled?  The answer 
lies in the dynamics of the generational behavior upon which our classification is 
based. First, most of the data re-classified as private are dead before synchronization 
and are not re-accessed immediately after. In other words, the live time of a single 
generation of such data does not typically span across synchronization points. This is 
evidenced by the generally small re-access rate of self-invalidated data (Figure 9), 
which means that the behavior of the miss rate is dominated by capacity misses. Any 
change in self-invalidation misses is hardly noticeable ---except when magnified by 
very frequent synchronization as in the case of Radiosity. However, while most of the 
data, re-classified by generational coherence as private, are dead at synchronization 
points, this does not mean that they are not re-accessed again at a much later time, 
starting a new generation. The compound effect of all such private generations is to 
reduce write-through traffic. When this effect is not balanced out by write-back 
traffic or control overhead, the overall network traffic is reduced, which in turn 
results in lower energy consumption. 
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Fig. 9. Self-Invalidated data re-access rate (run-time average) 
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Fig. 10. Granularity/adaptivity impact on write-through traffic (run-time average) 

 0

 2

 4

 6

 8

 10

0 20 40 60 80 100

W
ri
te

-t
h
ro

u
g
h
 (

%
)

Execution Time (%)

Page
Line

Line-Adaptive

 0

 0.5

 1

 1.5

 2

 2.5

0 20 40 60 80 100

W
ri
te

-t
h
ro

u
g
h
 (

%
)

Execution Time (%)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

0 20 40 60 80 100

W
ri
te

-t
h
ro

u
g
h
 (

%
)

Execution Time (%)

 0

 5

 10

 15

 20

 25

0 20 40 60 80 100

W
ri
te

-t
h
ro

u
g
h
 (

%
)

Execution Time (%)

 0

 0.2

 0.4

 0.6

 0.8

 1

0 20 40 60 80 100

W
ri
te

-t
h
ro

u
g
h
 (

%
)

Execution Time (%)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

0 20 40 60 80 100

W
ri
te

-t
h
ro

u
g
h
 (

%
)

Execution Time (%)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

0 20 40 60 80 100

W
ri
te

-t
h
ro

u
g
h
 (

%
)

Execution Time (%)

 0

 1

 2

 3

 4

 5

0 20 40 60 80 100

W
ri
te

-t
h
ro

u
g
h
 (

%
)

Execution Time (%)

(a) SPLASH-2/LU-CB (b) SPLASH-2/Water-SP 

(c) SPLASH-2/Ocean-CP (d) SPLASH-2/FMM 

(e) SPLASH-2/Raytrace (f) SPLASH-2/LU-NCB 

(g) SPLASH-2/FFT (h) SPLASH-2/Radiosity 



The Effects of Granularity and Adaptivity on Private/Shared Classification for Coherence                               x:21  
                                                                                                                                         

 
ACM Transactions on Architecture and Code Optimization, Vol. xx, No. xx, Article xx, Publication date: Month YYYY 

 CONCLUSIONS 7.
Private/shared data classification has become an essential part of many approaches 
to optimize cache coherence. Such data classification can be performed at page or 
cache-line granularity, with or without adaptation from shared to private. Regardless 
of the used granularity, non-adaptive data classification suffers from a shared 
classification bias, in which eventually all the data in the system are classified as 
shared, degrading the intended coherence optimizations.  

In this paper, which to the best of our knowledge is the first study of this kind, we 
studied the impact of finer granularity and adaptation on the quality of 
private/shared data classification and also on the performance of coherence protocols 
based on self-invalidation and write-through for shared data. To this end, we 
proposed a new data classification scheme and coherence protocol, which we call 
generational classification and generational coherence (GC), respectively. Our results 
show that benchmarks are less sensitive to fine-grained data classification in terms 
of miss rate, as the significantly large amount of data re-classified as private are not 
reused after synchronization, and the self-invalidated data re-access rate remains the 
same regardless of granularity and adaptation. The significantly more data classified 
as private by GC can result in lower network traffic by excluding them from write-
through, thus yielding an overall benefit despite the control-traffic overhead, which 
in turn results in more energy-efficient systems. 
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