
Increasing the Effectiveness of Directory
Caches by Avoiding the Tracking
of Noncoherent Memory Blocks

Blas Cuesta, Alberto Ros, Member, IEEE, Marı́a E. Gómez, Member, IEEE Computer Society,

Antonio Robles, Member, IEEE Computer Society, and José Duato

Abstract—A key aspect in the design of efficient multiprocessor systems is the cache coherence protocol. Although directory-based

protocols constitute the most scalable approach, the limited size of the directory caches together with the growing size of systems may

cause frequent evictions and, consequently, the invalidation of cached blocks, which jeopardizes system performance. Directory

caches keep track of every memory block stored in processor caches in order to provide coherent access to the shared memory.

However, a significant fraction of the cached memory blocks do not require coherence maintenance (even in parallel applications)

because they are either accessed by just one processor or they are never modified. In this paper, we propose to deactivate the

coherence protocol for those blocks that do not require coherence. This deactivation means directory caches do not have to keep track

of noncoherent blocks, which reduces directory cache occupancy and increases its effectiveness. Since the detection of noncoherent

blocks is carried out by the operating system, our proposal only requires minor hardware modifications. Simulation results show that,

thanks to our proposal, directory caches can avoid the tracking of about 66 percent (on average) of the blocks accessed by a wide

range of applications, thereby improving the efficiency of directory caches. This contributes either to shortening the runtime of parallel

applications by 15 percent (on average) while keeping directory cache size or to maintaining performance while using directory caches

16 times smaller.

Index Terms—Multiprocessor, cache coherence, directory cache, operating system, coherence deactivation, noncoherent block

Ç

1 INTRODUCTION AND MOTIVATION

NOWADAYS, larger and more powerful shared-memory
multiprocessors [10], [19], [28] are increasingly de-

manded. The efficiency of high-performance shared-mem-
ory multiprocessors depends on the design of the cache
coherence protocol. Directory cache coherence protocols
represent the most scalable alternative. Unlike broadcast-
based protocols, traditional directories keep track of every
memory block in the system, which enables the protocol to
easily locate the cached copies without generating large
amounts of network traffic.

Since keeping track of every memory block in the system

entails huge storage requirements, some recent proposals
[25] and commodity systems, such as the current AMD

Magny-Cours processor [10], only keep track of cached
memory blocks. In this case, the directory information is
only kept in small directory caches [27], [17]. Due to the lack

of a full directory, the eviction of directory entries entails the
invalidation of the cached copies of the corresponding block.

Since the size of directory caches is limited and systems
incorporate an increasing number of processors and cores,

directory caches may suffer frequent evictions and, conse-
quently, they may exhibit high miss rates (up to 70 percent as
reported in some recent studies [25], [14]). As a result, the
miss rate of processor caches may become excessively high,
which can lead to serious performance degradation.

Although the number of directory evictions can be
reduced by using larger directory caches, this is not a
scalable solution since it entails both larger directory access
latencies and higher directory memory overhead. Instead,
we opt to increase the effectiveness of the available space
for directory caches, assuming that it will commonly be a
scarce resource, especially in large systems. We take
advantage of the fact that a significant fraction of the
memory blocks accessed by applications does not need
coherence maintenance, i.e., they are either only accessed by
one processor (private blocks) or not modified by any
processor (read-only blocks). As Fig. 1 shows, these blocks
account for 82 percent (on average) of the memory blocks
accessed during the execution of a wide range of parallel
applications from different benchmark suites. Despite the
fact that these blocks do not need coherence maintenance,
traditional directory caches still keep track of them. As a
consequence, most of the information that they keep is
unnecessary, which reduces the effectiveness of the avail-
able space for directory caches. However, if directory caches
avoid the tracking of both private and shared read-only
blocks, the availability of directory entries for the blocks
that actually need coherence (i.e., shared read-write blocks)
will increase spectacularly and their capacity could be
better exploited. This way, the number of cache misses

IEEE TRANSACTIONS ON COMPUTERS, VOL. 62, NO. X, XXXXXXX 2013 1

. The authors are with the Department of Computer Engineering (DISCA),
School of Computer Science, Universitat Politecnica de Valencia, Camino
de Vera, s/n, Valencia 46021, Spain.
E-mail: {blacuesa, aros, megomez, arobles, jduato}@gap.upv.es.

Manuscript received 12 May 2011; revised 1 Nov. 2011; accepted 25 Nov.
2011; published online 4 Dec. 2011.
Recommended for acceptance by R. Melhem.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-2011-05-0318.
Digital Object Identifier no. 10.1109/TC.2011.241.

0018-9340/13/$31.00 � 2013 IEEE Published by the IEEE Computer Society

caused by the blocks evicted from directory caches can be
reduced while maintaining the size of directory caches,
thereby improving a system performance. Alternatively, it
may be preferable to reduce the size of directory caches
while still maintaining a system performance. This option
could be especially intended for environments with severe
silicon area constraints, such as embedded systems or
systems on chip (SoCs).

To improve the use of directory caches, in [11] we
propose to deactivate coherence just for private blocks.
Although most of the blocks are private (74 percent on
average), some applications such as speechrec, raytrace,
and mpgenc present a significant percentage of shared
read-only blocks (48.7, 39.6, and 22.4 percent, respectively).
Furthermore, scenarios with thread migration could make
private read-only blocks become shared read-only. There-
fore, to improve the potential of that earlier approach and to
address some of its weaknesses, in this paper we extend the
mechanism proposed in [11] to additionally detect and
deactivate coherence for read-only blocks. Thus, the
proposed mechanism prevents directory caches from
tracking both private and read-only blocks. This mechanism
1) relies on the operating system (OS) to dynamically
identify noncoherent memory blocks (i.e., both private and
read-only blocks) at page granularity, 2) deactivates
coherence for the accesses to such blocks, and 3) triggers a
coherence recovery mechanism when a block that has
initially been identified as noncoherent becomes coherent.

This proposal only requires minor modifications in the
OS and memory controllers. Furthermore, it does not
require dedicated hardware structures because it takes
advantage of those already used by the OS and processors:
Translation Lookaside Buffers (TLBs) and page tables (PT).

We evaluate the impact of our proposal by simulating its
implementation in a system similar to the AMD Magny-
Cours processor. Simulation results show that the proposed
mechanism can avoid the tracking of 66 percent (on average)
of the memory blocks accessed by the applications. By not
storing coherence information for those blocks, the number
of evictions and, therefore, the number of invalidations
issued by memory controllers decreases by about 70 percent.
This results in reductions in the miss rate of processor caches
(about 40 percent), which is translated into performance
improvements of 15 percent. Additionally, processors can
maintain performance while using smaller directory caches.
Results show that a system that implements our proposal
achieves similar performance to a system that does not
implement it and employs a directory cache 16 times larger.

When compared to a system that deactivates coherence only
for private blocks [11], our proposal achieves similar
performance when it employs a directory cache half the
size. Finally, dynamic energy consumption can be also
reduced by about 40 percent on average mainly due to the
elimination of accesses to both directory caches (5 percent)
and the memory controller (18 percent), and the reduction in
coherence traffic (18 percent).

The rest of the paper is organized as follows: Section 2
discusses related work. Section 3 presents our proposal. In
Section 4, we discuss the contributions of deactivating
coherence for shared read-only blocks. We describe the
simulation environment in Section 5 and present the
evaluation results in Section 6. Finally, Section 7 draws
some conclusions.

2 RELATED WORK

Our proposal is based on the observation that most of the
blocks referred to by parallel applications do not require
coherence maintenance. We take advantage of this to
propose a mechanism that avoids tracking of these
noncoherent blocks. In this section, we comment on works
that are some way related to our proposal.

Like us, some authors use the OS to detect private and
read-only blocks. Hardavellas et al. [18] use this detection to
propose an efficient data placement policy for distributed
shared caches (NUCA). Although the mechanism for
classifying the pages is similar to ours, they only employ it
for data placement in NUCA caches, while, differently, we
focus on increasing directory effectiveness. Kim et al. [20]
employ OS detection to reduce the fraction of snoops in a
token-based protocol by detecting the sharing degree of
blocks. Unfortunately, the proposed technique requires large
TLBs and important hardware/OS modifications. Further-
more, Kim et al. [20] do not detect shared read-only data
pages. Differently, our mechanism is much simpler and does
not require complex hardware/OS modifications. In addi-
tion, our mechanism takes advantage of the great quantity of
private blocks because, although most of the cache misses are
for shared blocks, most of the referred blocks are private.

Our proposal can be used to reduce directory size, in
particular the number of entries, while maintaining a system
performance. Some proposals achieve similar reductions by
combining several directory entries into a single one as
proposed in [29]. Other approaches use a compressed
representation of the sharing information, allowing more
compact directory entry formats and reducing storage area
requirements, such as the use of a limited number of pointers
[1], segment directories [9], chained pointers [8], and coarse
vectors [17]. Tagless [32] even removes the need for a
conventional directory structure and replaces it with a grid
of Bloom filters that provide imprecise sharing information
and allow the storage requirements of a conventional
directory structure to be to roughly halved. Recently,
Cuckoo directory [16] has improved directory efficiency by
avoiding most set conflicts without significantly overprovi-
sioning directory capacity. It provides roughly the equiva-
lent of a fully associative directory at the cost of a more
complex insertion procedure. However, all these proposals
are orthogonal to ours and can be used simultaneously to
reduce directory size even more.

2 IEEE TRANSACTIONS ON COMPUTERS, VOL. 62, NO. X, XXXXXXX 2013

Fig. 1. Block classification on a per block basis. PR stands for Private
Read-only, PW for Private read-Write, SR for Shared Read-only, and
SW for Shared read-Write. Noncoherent marks the rate of blocks that do
not require coherence.

Some works remove the unnecessary traffic of broadcast-
based protocols by performing coarse-grain tracking of
blocks at the expense of increasing storage requirements.
Moshovos [26] and Cantin et al. [7] proposed RegionScout
filters and Region Coherence Arrays, respectively, which
provide different tradeoffs between accuracy and imple-
mentation costs. In turn, RegionTracker [31] provides a
framework for coarse-grain optimizations that reduces the
storage overhead and eliminates the imprecision of pre-
vious proposals. However, it requires considerable mod-
ifications in the cache design to facilitate region-level
lookups. All these techniques share with ours the idea of
deactivating the coherence mechanism when it is not
indispensable. Nevertheless, there are two major differ-
ences. First, our proposal is aided by the OS, which
significantly reduces the hardware overhead and complex-
ity. Second, we do not aim to reduce broadcast traffic, but to
avoid allocating in a directory cache data blocks that do not
require coherence maintenance.

Similarly to our proposal, other works take advantage of
OS structures. Ekman et al. [12] propose a snoop-energy
reduction technique for CMPs. This technique keeps a
sharing vector within each TLB entry indicating which
processors share a page. This sharing vector is used to
prevent processors not sharing the page from carrying out a
tag-lookup in their caches. Enright-Jerger et al. [13] extend
the region tracking structure proposed by Zebchuk et al.
[31] to keep track of the current set of sharers of a region.
Unfortunately, these techniques increase storage require-
ments and entail large-scale hardware modifications, which
make them difficult to be implemented in real systems.
Furthermore, our technique does not intend to keep track of
the page sharers, but only maintains information about
whether the page is shared or not.

Other works also support cache coherence by means of a
combination of software and hardware. Zeffer et al. [33]
proposes a trap-based architecture (TMA), which detects
fine-grained coherence violations in hardware, triggers a
coherence trap when one occurs, and maintains coherence by
software in coherence trap handlers. Like our mechanism,
the trap-based architecture assumes a bit in the TLB and
relies on the OS to detect when a private page moves to the
shared state. However, in TMA, traps are associated with
coherence violations in load/store operations, contrary to
our mechanism, where they are associated with TLB misses.

Finally, Fensch and Cintra [15] propose a coherence
protocol that does not require hardware support to enforce
cache coherence. Instead, it avoids the possibility of
incoherence by not allowing multiple writable shared copies
of pages. However, that proposal requires release consis-
tency, introduces extra overhead regarding hardwired
systems, and is only suitable for CMPs due to the severe
penalty caused by the remote cache access support.

3 COHERENCE DEACTIVATION

Cache coherence protocols avoid inconsistencies among the
different cached copies of memory blocks. Although they
act indiscriminately on all the referred memory blocks, a
significant number of them cannot suffer from inconsisten-
cies. In particular, both the blocks accessed by just one

processor (i.e., private blocks) and those that are not written
(i.e., read-only blocks) cannot suffer from inconsistencies.
The unnecessary use of the directory cache for maintaining
the tracking of those blocks increases the overload and
makes coherence protocols less effective.

We propose a technique that, with the help of the OS,
dynamically identifies both private and read-only blocks
and deactivates the coherence for them. Since a fine-grain
detection (e.g., block granularity) may require a huge
amount of hardware resources, our proposal is based on a
coarse-grain strategy (page granularity).

The general idea is that, by default, every new page
loaded into main memory is classified as noncoherent
(private or read-only). The cache misses for the blocks
belonging to noncoherent pages are resolved without taking
into account the coherence protocol. As a result, directory
caches do not track the accesses to noncoherent blocks. As
the OS detects subsequent memory accesses, the page may
evolve to coherent, which requires a coherence recovery
process. This process is triggered by the OS and is in charge
of restoring the coherence for every block within the page
involved. After the recovery process, the page is considered
coherent and the memory accesses to its blocks will be
tracked by the directory caches.

Fig. 2 outlines our proposal. First, P0 issues a write
operation on memory block A, which causes a cache miss.
Assuming that A belongs to a noncoherent page, P0 issues a
noncoherent request, which is served by the home node
(i.e., the memory controller or node where a memory block
is mapped to) and no track is kept in the directory cache of
main memory (MC). Later, another node, for instance P1,
issues a load operation on the same memory block A and a
TLB miss occurs. While the OS is handling the TLB miss, it
realizes that the page should be coherent instead of
noncoherent. Consequently, it triggers the coherence re-
covery mechanism. When it finishes, the page becomes
coherent and access to the cache proceeds, resulting in a
miss. Since the block belongs to a coherent page, a coherent
request is issued, which is processed as the assumed cache
coherence protocol establishes.

The following sections explain our proposal in detail,
walking through different key aspects such as page classifi-
cation (Section 3.1), the behavior of noncoherent requests

CUESTA ET AL.: INCREASING THE EFFECTIVENESS OF DIRECTORY CACHES BY AVOIDING THE TRACKING OF NONCOHERENT MEMORY... 3

Fig. 2. Overview of the proposed mechanism. P0 and P1 are processors
and MC is the memory controller. The shaded background indicates that
the OS is in charge at that moment.

(Section 3.2), the updating of the page type (Section 3.3), the
TLB-updating (Section 3.4) mechanism, and the coherence
recovery mechanism (Section 3.5).

3.1 Page Classification

In order to distinguish the memory pages whose blocks
require coherence from those whose blocks do not, we
classify them into four types:

. Private Read-only (PR) page: Only one processor
accesses its blocks. All the accesses are loads.

. Private read-Write (PW) page: Only one processor
accesses its blocks. At least one of the accesses is a
store.

. Shared Read-only (SR) page: At least two processors
access its blocks. All the accesses are loads.

. Shared read-Write (SW) page: At least two processors
access its blocks. At least one of the accesses is a store.

According to this classification, blocks within PR, PW,
and SR pages do not require coherence, whereas blocks in
SW pages may require it. Notice that the type (or state) of a
page is not static but it dynamically evolves as the OS
detects new accesses to its blocks. The state transition of
pages is illustrated in Fig. 3.

3.2 Noncoherent Requests

On memory references, processors first access their TLB to
translate virtual addresses into physical addresses. As
shown in Fig. 4, each TLB entry is made up of two
components: the tag, which basically comprises the virtual
address of the page, and the data, which contain the
corresponding physical address along with several proper-
ties associated with the translation. Since the TLB entry data
field often contains some reserved bits that are not used [5],
we take advantage of three of them to include two new
fields: the state field (2 bits), which indicates the page state

(PR, SR, PW, or SW), and the locked field (1 bit), which is
used to avoid undesirable race conditions (as explained
later in Section 3.5).

The page state is taken into account when a memory
reference to one of its blocks causes a cache miss. Hence, if
the cache miss is for a block within a PR, PW, or SR page, a
noncoherent request is issued. Otherwise a coherent request is
sent out. Noncoherent requests override the coherence
protocol and are always served by main memory. In
addition, directory caches do not track them. This behavior
has two primary advantages. First, neither a lookup nor an
insertion in the directory cache is required, which helps to
reduce the latency of cache misses, the contention at
memory controllers and power consumption. Second,
directory caches are less occupied and therefore they make
better use of their capacity to track blocks that really need
coherence. Notice that to instruct memory controllers to
understand noncoherent requests, only minor modifications
in their microcode will be required.

3.3 Updating the Page State

Similarly to TLBs, page tables also need to keep the state of
pages. However, in this case three additional fields are
required, as shown in Fig. 4. The state field indicates the
page type (PR, PW, SR, or SW). The keeper field contains
the identity of the first processor that cached the page table
entry in its TLB. The cached-in-TLB bit (C) indicates
whether the keeper field is valid or not, i.e., whether the
page has been cached in any TLB. Notice that these extra
fields do not require dedicated hardware, only extra OS
storage requirements, which are very small. The size of the
extra fields is 3þ log2ðNÞ bits, where N is the number of
nodes in the system. Thus, assuming a system comprised
of eight processors, like the AMD Magny-Cours, only six
extra bits per entry would be required.

On a page table fault, the OS allocates a new page table
entry holding the virtual to physical address translation. The
C field of this entry is cleared, indicating that it has not been
cached in any TLB yet. When a TLB miss takes place and
once the page table entry has been cached in a TLB, the state,
C, and keeper fields of the entry may need to be updated as
indicated in Table 1. Let us analyze each case separately.

If C is clear, no processor has accessed the page blocks
and, consequently, a load/store to that page will cause a

4 IEEE TRANSACTIONS ON COMPUTERS, VOL. 62, NO. X, XXXXXXX 2013

Fig. 3. State transition diagram in new operations view.

Fig. 4. TLB and page table entry format. Shaded fields are additional
fields required by our proposal. V is the valid bit, L is the locked bit, and
C is the cached-in-TLB bit.

TABLE 1
Updating the Page Table and TLBs and Use of the
TLB-Updating and Coherence Recovery Mechanism

r/k/o-TLB stands for the requester/keeper/others’ TLB, respectively.

TLB miss. During the resolution of the TLB miss, the page
will be set to PR/PW, respectively, in both the page table
and the requester’s TLB. Furthermore, the requester’s
identity will be stored in the keeper field of the page table
and C will be set.

If C is set and the page is labeled as PR, upon a load/
store from a processor other than the keeper, a TLB miss
will take place. During its resolution, the page state will
have to be updated to SR/SW, respectively, in the page
table and in the requester’s and keeper’s TLBs. In case the
page transitions to a coherent state (SW), the coherence
recovery mechanism will be triggered (see Section 3.5). This
mechanism, which is initiated by the new requester during
the TLB miss handling, is in charge of evicting all page
blocks cached by the keeper and updating the correspond-
ing entry of the keeper’s TLB. If the page is going to
transition to SR, although it remains in a noncoherent state,
it is necessary to update the keeper’s TLB. Since the
requester does not have direct access to the keeper’s TLB,
the updating is performed by means of the TLB-updating
mechanism (see Section 3.4).

If a load is issued by the keeper for a block within a PR
page, the page will remain in the same state and no actions
will be performed. In turn, if a store is issued, the page state
will have to be updated in both the page table and the
requester’s TLB. Notice that in this case a TLB miss may not
have occurred because the keeper may already have an
entry in its TLB. Therefore, the updating of the page table
could incur additional and considerable delay. To avoid it,
the updating of the page table is postponed (action marked
in gray) until another node tries to access one of the page
blocks (the page becomes shared). Notice that this temporal
inconsistence between page table and keeper’s TLB has no
effect as long as another node does not try to share the page.

When the page state is SR, upon a load from a new
requester it just caches the corresponding page table entry in
its TLB. However, under stores, the page table and all the
sharers’ TLBs will have to be updated. In addition, since the
page will transition to a coherent state, the coherence of all
the blocks within the page involved needs to be restored. To
this end the coherence recovery mechanism is used. Since
nobody keeps the list of sharers, the recovery mechanism
will have to perform a broadcast to evict all cached copies of
blocks within the corresponding page and update all the
sharers’ TLBs. This process is also carried out when the page
is SR and a former requester wants to store one of its blocks.
However, in this case, since a TLB miss may not occur, a

special exception (marked�) is forced to update all the TLBs
and the page table. This forced exception will incur
additional delay. However, as we will see in the evaluation,
this exception is not very frequent and furthermore its delay
will be largely offset by the advantages of avoiding the
tracking of blocks that do not require coherence.

Finally, when the page is PW, new loads or stores from
the keeper will not cause any change. However, both loads
or stores from new requesters will cause the page to
transition to SW. In this case, during the TLB miss
resolution, the page table and the keeper’s TLB are updated
and the coherence is restored by means of the coherence
recovery mechanism.

Pages marked as SW do not require any transition because,
once they become coherent, they remain in that state.

Fig. 5 outlines the interactions among system compo-
nents to solve memory operations.

3.4 TLB-Updating Mechanism

The TLB-updating mechanism is triggered when a page
transitions from PR to SR. Since the page state changes, this
mechanism is in charge of updating the keeper’s TLB.
However, as the page remains noncoherent, the page blocks
do not need to be evicted to recover coherence. Fig. 6 shows
a detailed example of this mechanism. The mechanism is
executed inside a critical section, which guarantees an
atomic access to the page table. The initiator (the node that
triggers the mechanism) sends an updating request to the
page keeper, which has been obtained from the page table
on processing its TLB miss. Upon receipt, the keeper
updates the corresponding TLB entry (if present) and
informs the initiator by an updating done message. When
the initiator receives it, the mechanism finishes.

3.5 Coherence Recovery Mechanism

When a page initially considered noncoherent becomes
coherent, the coherence recovery mechanism must be
triggered. This mechanism ensures that from that moment
the directory cache will hold proper track of all cached
blocks within the page. Since these blocks have not been
tracked so far, we propose the simple strategy of just evicting
them from caches (flushing-based recovery). After recovery,
since the page will be marked as coherent, the directory
cache will be able to keep correct track of each of the page
blocks. The coherence recovery mechanism, which is
triggered while managing either the corresponding TLB
miss or the exception forced when a former requester tries to
store a block within an SR page (as mentioned in Section 3.3),
is executed inside a critical section and works as follows:

CUESTA ET AL.: INCREASING THE EFFECTIVENESS OF DIRECTORY CACHES BY AVOIDING THE TRACKING OF NONCOHERENT MEMORY... 5

Fig. 5. Block diagram of the general working scheme.

Fig. 6. TLB-updating mechanism. P0 and P1 are processors and MC is
the home node.

First, the initiator issues a recovery request to the page
keeper (with the address of the page to recover), whose
identity was obtained from the corresponding page table
entry.

Second, on arrival of the recovery request, the keeper
locks the corresponding TLB entry (L bit). This prevents the
keeper from issuing new requests for the blocks within the
page. In case the TLB entry is not present, it is not necessary
to lock it since new requests will not be able to be issued
because the initiator is accessing the page table entry inside
a critical section. After this, if the page to recover is SR, the
keeper broadcasts a recovery probe for the page because other
nodes may have cached page blocks. However, if the page
is PW or PR, this broadcast is not necessary because only
the keeper may have cached copies.

Third, the possible receivers of the probe (if any) lock the
page in their TLBs and both they and the keeper perform a
cache lookup and flush every cached block of the page
involved. When finishing they check their Miss Status
Holding Registers (MSHRs), which keep track of out-
standing cache misses. While there is at least one pending
cache miss for some of the page blocks, they wait for its
completion. The blocks for the outstanding misses are not
cached when the recovery mechanism is ongoing. There-
fore, once the pending misses for the page involved are
resolved, the corresponding TLB entry is set to SW. After
this, the nonkeeper nodes inform the keeper by means of a
recovery target done message.

Fourth, when the keeper has collected all the recovery
target done messages (this step is required only if a
recovery probe was broadcast), it unlocks the TLB entry
and sends a recovery done message to the initiator.

Fifth, when the initiator receives the recovery done
message, the recovery mechanism finalizes and the page
can be set to SW in both the initiator’s TLB and the page table.
Notice that during this process, the OS has exclusive access to
the page table entry in question and no other processor can
access it, so race conditions cannot take place.

Figs. 7 and 8 illustrate the main differences between
recoveries for private pages (unicast-based mechanism) and
shared pages (broadcast-based mechanism), respectively.
After completing the execution of the recovery mechanism
for a page, we know for sure that the blocks belonging to it
are not cached. Therefore, the next time a processor

references one of those blocks, a coherent request will be
issued and, since the page is considered coherent, the
directory cache will be able to keep proper track of it.

3.6 Discussion on Coherence Recovery

In this section, we discuss the latency of the coherence
recovery mechanism and its adaptation to systems with
hardware page table walkers.

The recovery process may take a long time because its
critical path may include 1) a search in the keeper’s cache
and a search in the sharer’s caches when the page is SR and
2) several evictions. Despite its high latency, it must be taken
into account that the recovery process is only performed
very few times. In particular, during the lifetime of a page in
main memory, at most one recovery mechanism and one
TLB-updating mechanism could be triggered. However,
during that time the page will probably have a large number
of references according to the locality principle. Therefore, it
is not unreasonable to expect the latency of the accesses to
memory blocks to have much more impact on the overall
performance than the latency of the coherence recovery
mechanism. In Section 6, we show quantitative data of this
and observe that the recovery and TLB-updating mechan-
isms together are triggered less than 5 times per 1,000 cache
misses (on average). Thus, the impact of the recovery
mechanisms on the protocol performance is indeed negli-
gible since it is largely offset by the savings in cache misses
and the reduction in their latency.

Although in this paper we link the description of our
proposal to traditional page tables, its application is also
possible in systems that use hardware page table walkers.
Indeed, the adjustment to that context would be quite
straightforward and simple. The page table will require the
same fields as those assumed throughout this document. The
only difference is that responsibility for detecting coherent
pages will fall on hardware instead of the OS. Therefore,
some additional extra hardware logic will be required to do
it. However, since this class of system is out of the scope of
this work, we do not carry out such an implementation.

4 CONTRIBUTIONS OF SR BLOCKS

The main difference between the proposal made in this
paper and that in [11] is the deactivation of the coherence

6 IEEE TRANSACTIONS ON COMPUTERS, VOL. 62, NO. X, XXXXXXX 2013

Fig. 7. Coherence recovery mechanism for a private page. P0 and P1
are processors and MC is the home node. Fig. 8. Coherence recovery mechanism for a shared page. P0, P1, and

P2 are processors.

protocol for the accesses to SR memory blocks. In this
section, we deal with the pros and cons of this new proposal.

On one hand, the detection and coherence deactivation
of SR pages may present three drawbacks. First, it requires
additional resources and a more sophisticated recovery
mechanism. In particular, TLBs and page tables need one
additional bit to code four states (PR, SR, PW, and SW).
Besides, a TLB-updating mechanism and a coherence
recovery mechanism based on broadcast are required.
They increase the complexity, but they do not have a
significant effect on latency or traffic. Second, it can cause
additional OS exceptions. These exceptions are used to
initiate the coherence recovery mechanism in some cases.
Although they are rarely required, they incur considerable
delay. And third, it may increase the latency of some
misses. Since SR blocks are treated as coherent, cache
misses for them will probably be served by the owner
processor. However, when we consider them as nonco-
herent, they will be served from main memory. As a result,
their latency may increase. Nevertheless, as we see in
Section 6, the advantages of avoiding the tracking of SR
blocks outweighs this possible drawback.

On the other hand, the detection and coherence
deactivation of SR pages provides many additional advan-
tages that clearly offset its drawbacks (as later analyzed in
Section 6). First, the coherence protocol can be deactivated
for a considerably larger number of memory blocks. As a
result the beneficial features of the proposed technique
increase, thereby leading to significant improvements in
performance and greater scalability. Second, the classifica-
tion of memory pages in PR, SR, PW, and SW decreases the
number of blocks misclassified as coherent due to the use of
a coarse-grain detection. As a result the detection mechan-
ism is more accurate and their advantages can be better
exploited. And third, it partially addresses the problem that
the proposal in [11] has with respect to thread migration.
Using that proposal, all blocks privately accessed by a
thread will be identified as shared after it migrates and
coherence cannot be deactivated for them. However, in this
proposal the private read-only blocks (more than 40 percent
on average according to data in Fig. 1) of a thread after
migrating will be able to be detected as shared read-only
blocks and, as a result, they will be able to be considered
noncoherent. Notice, though, that this proposal does not
tackle the problem of thread migration for PW blocks.

The following sections show quantitative data of the

advantages of deactivating coherence for SR blocks.

5 EVALUATION METHODOLOGY

We evaluate our proposal with full-system simulation using
Virtutech Simics [23] running Solaris 10 and extended with
the Wisconsin GEMS toolset [24], which enables detailed
simulation of multiprocessor systems. For modeling the
interconnection network, we have used GARNET [2], a
detailed network simulator included in GEMS. Finally, we
have also used the McPAT tool [22], assuming a 45 nm
process technology, to measure the savings in terms of
energy consumption that our proposal can entail.

For the evaluation of our proposal, we have first
modeled a cache coherent HyperTransport system opti-
mized with directory caches (PFs) similar to those of the
AMD Magny-Cours. As shown in Fig. 9, we simulate eight
dies, which constitutes the maximum number of nodes
supported by the Magny-Cours protocol. Although each
Magny-Cours die actually has six cores, we are only able to
simulate two of them due to time constraints. Moreover,
since this paper does not focus on the intradie broadcast-
based coherence protocol and taking into account that such
a protocol would considerably increase the simulation time,
we do not model it. Dies are made coherent by using a
directory-based cache coherence protocol that implements
MOESI states. Each PF is associated with a memory
controller and holds an entry for every block cached in
the system that maps to its memory bank. The sharing code
field of the PF comprises just one pointer to the owner node
(3 bits). Typically, each PF has 256K entries and each die has
128K entries in its cache hierarchy. Therefore, the coverage
ratio of PFs is 2� (i.e., PFs have twice as many entries as
blocks can be cached). This would be enough for tracking
all the cached blocks if they were distributed uniformly
among all the PFs. However, cached blocks may not be
distributed uniformly. Thus, the worst case scenario
appears when all the cached blocks belong to the same
memory controller (known as hotspotting), in which the
coverage ratio dramatically decreases down to 0:25�.

We consider the described system as the base architecture
and its main parameters are shown in Table 2. Our proposal
is implemented upon this system and it is referred to as
deactivation of private/SR blocks (deact P/SR). The proposal
described in [11] is referred to as deactivation of private
blocks (deact P).

CUESTA ET AL.: INCREASING THE EFFECTIVENESS OF DIRECTORY CACHES BY AVOIDING THE TRACKING OF NONCOHERENT MEMORY... 7

Fig. 9. Overview of the assumed system. Dir refers to the directory
cache, MC to the memory controller, L3/L2/L1 to the cache of level 3/2/
1, and P to processing core.

TABLE 2
System Parameters

We evaluate our proposal with a wide variety of parallel

workloads (21) from three suites (SPLASH-2 [30], ALP-

Benchs [21] and PARSEC [6]), two scientific benchmarks,

and two commercial workloads [3], which are shown in

Table 3. Due to time requirements, we are not able to

simulate these benchmarks with large working sets. Con-

sequently, as done in most works [7], [14], [15], we have

simulated the applications assuming smaller data sets. To

avoid altering the results, we have reduced the size of both

processor caches and directory caches accordingly. In

particular, our caches are four times smaller than the ones

used by the original Magny-Cours processor. Notice that,

since the size of all the simulated caches are proportionally

reduced, the coverage ratio of directory caches is the same

as in the original Magny-Cours (2�).
All the reported experimental results correspond to the

parallel phase of the benchmarks. We account for the

variability in multithreaded workloads [4] by doing multi-

ple simulation runs for each benchmark and injecting small

random perturbations in the timing of the memory system

for each run.

6 PERFORMANCE EVALUATION

In this section, we show how our proposal is able to reduce

the number of blocks tracked by directory caches. This

results in energy saving and less processor cache misses,

which leads to performance improvements. We also study

how, thanks to our proposal, it is possible to maintain

performance while dramatically reducing directory cache

size. Finally, we analyze the contributions that the

coherence deactivation offers when, besides private blocks,

it acts on shared read-only memory blocks.

6.1 Noncoherent Blocks

Fig. 10 illustrates the block classification rate using a coarse
grain detection based on memory pages. This means that
PW pages may contain PR blocks, but they will be
considered as PW; SR pages may contain PR blocks, but
they will be considered as SR; and SW pages may contain
PR/PW/SR blocks, but they will be considered as SW. As
the figure shows, about 84 percent (on average) of the
referred memory blocks are noncoherent (i.e., PR, SR, or
PW) and, consequently, they do not require coherence.
Since our mechanism is based on a coarse-grain classifica-
tion of blocks, it is not able to identify all the noncoherent
blocks. In particular, it detects that 66 percent (on average)
of the referred blocks do not require coherence. The
remaining 34 percent are classified as coherent blocks
and therefore they require coherence. According to these
data, the use of a coarse-grain approach causes 18 percent
of the referred blocks to be misclassified, which provides a
good tradeoff between required resources and accuracy of
the mechanism.

6.2 Processor Cache Misses

Since directory caches do not track cached blocks detected
as noncoherent, they are less congested. Therefore, they
suffer less evictions and, consequently, less blocks are
invalidated from processor caches. As a result, the
processor cache miss rate is reduced by about 38 percent
(on average), as Fig. 11 shows. In this figure, cache misses
are classified into four groups: 3C misses are Cold,
Capacity, and Conflict misses; Coherence misses refer to
those caused by invalidations due to store operations issued
by other processors; Coverage misses are those caused by the
invalidations issued as a consequence of evictions in
directory caches; and Flushing misses are due to invalida-
tions performed by the recovery mechanism. Since our
proposal improves the effectiveness of directory caches, it
mainly acts on the coverage misses, which are significantly
reduced from about 50 percent of the total misses in the
base system to 12 percent (on average). The reduction of

8 IEEE TRANSACTIONS ON COMPUTERS, VOL. 62, NO. X, XXXXXXX 2013

TABLE 3
Benchmarks and Input Sizes

Fig. 10. Block classification on a per memory page basis.

Fig. 11. Normalized cache miss rate.

coverage misses depends to a large extent on the accuracy
of the detection mechanism. Thus, in applications like
barnes, cholesky, and radiosity (among others), few blocks
are misclassified as SW. As a result, most of the non-
coherent blocks are classified as such and directory caches
omit their tracking. This allows directory caches to be less
congested, which leads to high coverage miss reductions.
This is important because, as reported in other studies [25],
[14], the number of coverage misses may be really
important in some scenarios and it is reasonable to think
that it will grow in future multiprocessor systems since they
are becoming increasingly larger.

The blocks initially misclassified as noncoherent are
handled by the recovery mechanism. To recover the
coherence state of those blocks, the mechanism invalidates
them from caches, which may lead to additional misses
referred to as flushing misses. Notice that, although the
recovery mechanism causes 2 percent (on average) of
flushing misses, the reduction in coverage misses is so
significant that it largely offsets that increment.

The reduction in both directory evictions and cache
misses has a meaningful impact on network traffic, as
depicted in Fig. 12. Bars plot the total number of flits
transmitted through the interconnection network when the
coherence is deactivated and normalized to the network
traffic generated by the base protocol. Those data include
the traffic due to the coherence recovery mechanism.
However, this is not shown separately because the traffic
due to the recovery mechanism is really insignificant (lower
than 0.5 percent on average). As shown in the figure, the
coherence deactivation causes a reduction in network traffic
of about 42 percent on average.

Our proposal is able to reduce not only the amount of
cache misses but also their average latency, as Fig. 13
depicts. In this figure the latency of cache misses is split into
four stages: request latency refers to the transmission latency
of requests to the home node; waiting is the time that
requests remain in the home waiting for the beginning of
their service; memory is the latency of the memory controller
(which also includes the latency of the directory cache); and
finally response is the latency from either the sending of the

memory response or the forwarding of the request to
another processor until the completion of the miss. Since
requests for noncoherent blocks do not need a directory
cache lookup, their memory latency is smaller, which lowers
the average latency of cache misses by about 10 percent on
average. Notice that, for some applications like fft, facerec,
mpgenc, speechrec, blackscholes, and jbb, the memory
latency is equal to or higher than that of the base system
and therefore the average miss latency is not reduced. This
happens due to the fact that SR blocks are considered
noncoherent. Since they are considered noncoherent, they
must always be served by main memory, whose latency is
high. On the other hand, in the base system SR blocks are
considered coherent. Therefore, in some cases cache misses
for SR blocks may be served by caches instead of by
memory, which is faster. Despite this, the benefits of
avoiding the tracking of SR blocks outweighs the increase
in their average latency as illustrated in the following
sections.

6.3 Coherence Recovery Mechanism

Fig. 14 shows the average latency of both the TLB-updating
and coherence recovery mechanisms according to the timing
parameters shown in Table 2. The latency of these mechan-
isms is split into several components: request is the latency of
transmitting updating/recovery requests and, if required,
recovery probes; flushing is the latency of issuing the
evictions of all the cached blocks within the page to flush;
waiting is the latency of finishing the evictions (waiting, if
required, for receiving the acknowledgments from home);
response is the latency of informing the initiator of the
finalization of the page flushing; and ack is the latency of
collecting the recovery target done packets, which are only
used in case of broadcast. As can be seen, the latency of the
TLB-updating mechanism (first bar of each group) is
negligible because it only comprises the latencies of updating
requests and updating done messages (responses). The
latency of the unicast recoveries (second bar) is higher than
that of the TLB-updating because they additionally include
the latencies of waiting and flushing, which are quite
important. The latency of the recoveries that require broad-
cast (third bar) is even higher than that of the unicast
recoveries mainly due to the need to broadcast the recovery
probes and collect the recovery target done messages (acks).
The last bar of each group shows the average latency of all
these mechanisms taking into account the number of times
each one is triggered. Thus, since the TLB-updating and the
unicast recovery are much more frequent than the broadcast
recovery, the average latency is slightly lower than that of the
unicast recovery mechanism.

CUESTA ET AL.: INCREASING THE EFFECTIVENESS OF DIRECTORY CACHES BY AVOIDING THE TRACKING OF NONCOHERENT MEMORY... 9

Fig. 12. Normalized network traffic.

Fig. 13. Normalized cache miss latency.

Fig. 14. Average latency of the TLB-updating and recovery mechanisms.

Despite the fact that the latency of the coherence
recovery mechanism can be considerable (mainly in the
case of broadcast), this mechanism is not frequently used.
To illustrate this statement we estimate the number of times
that the TLB-updating and the coherence recovery mechan-
isms are triggered with respect to the total number of
misses. As shown in Fig. 15, on average the mechanisms are
only triggered fewer than 5 times per 1,000 cache misses (up
to 26 for the jbb application). As a result, their impact on
system performance is almost unnoticeable (less than
1 percent on average) compared to the impact that cache
misses have on it.

6.4 Execution Time

Mainly due to the reduction in the number of cache misses
(and, in some cases, the additional reduction in the miss
latency), the runtime of applications can be significantly
lower, as depicted in Fig. 16. According to this figure, our
proposal improves application runtime by 15 percent on
average. For applications where both cache miss rate and
latency are significantly reduced (barnes, cholesky, and
waternsq among others), the system performance improves
considerably. However, for applications where the reduc-
tion in cache misses is not so significant, the improvements
in performance are more moderate.

6.5 Impact of Coherence Deactivation for SR Blocks

In this section, we evaluate the implications that the
deactivation of private/SR blocks (deact P/SR) have in
comparison to the deactivation of just private blocks (deact P).

Fig. 17 illustrates the potential provided by deact P/SR
with respect to that of deact P. The total value of bars
indicates the rate of actual noncoherent blocks. Each bar is
divided into detected noncoherent blocks and undetected
noncoherent blocks (i.e., blocks misclassified as SW). As can
be seen, in applications like raytrace, mpgenc or speechrec,
deact P/SR substantially increases the number of blocks that
can actually be detected as noncoherent from 53, 48, and 39
percent to 91, 70, and 85 percent, respectively. Hence, the
detection of SR blocks allows the mechanism to increase the
number of noncoherent blocks and, therefore, to reduce the
number of tracked blocks. On average deact P/SR detects

about 9 percent more noncoherent blocks than deact P.
Furthermore, the percentage of blocks that are misclassified
as SW (undetected NC) is slightly reduced from 33 percent in
deact P to 27 percent in deact P/SR, which indicates that deact
P/SR improves the accuracy of the detection mechanism.

Since deact P is effective enough in removing almost all
the coverage misses of most of the scenarios evaluated (see
Fig. 11), the application of deact P/SR on those scenarios
only leads to small improvements. However, as the size of
directory caches is smaller, the effectiveness of deact P
decreases and the benefits of deact P/SR are more visible.
Hence, the systems where storage requirements are critical
may need to use smaller directory caches and, conse-
quently, in those systems the deactivation of SR blocks may
be vital. To illustrate this, in this section we compare deact P
against deact P/SR in systems using directory caches with
sizes ranging from 256K to 32K. For the sake of clarity, the
following graphs only show the average latency of the
applications grouped in application suites and the average
value for all the simulated applications.

Fig. 18 shows the cache miss rate of deact P and deact P/SR.
As shown, as the directory cache size gets smaller, the
number of coverage misses increases because directory
caches are not able to simultaneously track all the cached
coherent blocks. However, notice that when using deact P,
the cache miss rate grows much more quickly than when
deact P/SR is used. This happens because, since the potential
of deact P/SR is higher and it can act on more blocks,
directory caches do not need to track so many blocks. As a
result the reduction in the directory cache size affects less
coherent blocks, which leads to slower growth in the cache
miss rate.

Fig. 19 shows the cache miss latency normalized to that
of the base system.1 For systems with 256K directory caches,
the miss latency of deact P is slightly smaller than that of
deact P/SR mainly because deact P considers SR blocks as
coherent and therefore misses for SR blocks may be served
by caches instead of memory. As the directory cache size

10 IEEE TRANSACTIONS ON COMPUTERS, VOL. 62, NO. X, XXXXXXX 2013

Fig. 15. Number of recoveries and TLB-updating per 1,000 misses.

Fig. 16. Normalized runtime of applications.

Fig. 18. Cache miss rate of deact P and deact P/SR in systems with
256K, 128K, 64K, 32K, and 16K directory caches.

Fig. 17. Potential and precision of deact P and deact P/SR.

1. Notice that the base system assumes 256K directory caches.

decreases, the number of coverage misses increases due to

the increase in evictions of cached blocks (mainly SR and
SW blocks). Thus in deact P, the SR and SW blocks that are
evicted from caches will have to be served by memory again

(when they are requested) and, since they are considered
coherent, their memory latency includes access to directory

caches, which makes the average latency of those cache
misses increase. However, when using deact P/SR, SR blocks

are not evicted from caches due to lack of space in the
directory. Furthermore, to resolve the misses for those

blocks, an access to the directory cache is not required,
which makes the average miss latency increase more
slowly. Hence, although in systems with 256K directory

caches the average miss latency of deact P is smaller than
that of deact P/SR, in systems with 128K directory caches

their latencies become equal. In addition, as the directory
cache size continues to diminish, the average miss latency

of deact P/SR becomes smaller than that of deact P.
Fig. 20 illustrates how the execution time of applications

varies according to directory cache size. As observed, deact
P/SR gets better results when the size of directory caches is
really small compared to the working set of applications.
Thus, in systems with 256K directory caches, deact P/SR
only gets a slight improvement over deact P because in that
specific scenario deact P is already able to avoid most of the
coverage misses.2 As directory caches are reduced, the
differences between deact P/SR and deact P are more
significant. In particular, deact P/SR achieves to reduce up
to 16 times the directory cache size while maintaining
application runtime below that of the base system. How-
ever, in the case of deact P, the directory cache can only be
reduced eight times and, even then, the runtime slightly
increases with respect to that of the base system. For a
system with 16K directory caches, deact P/SR reduces the
runtime by about 30 percent (on average) with respect to
deact P. Hence, as directory caches are smaller, deact P/SR
offers better performance than deact P, which indicates it
provides higher scalability. Notice that directory caches
consume precious on-chip area.

In order to emphasize the relevance of this result, let us
point out the fact that recent proposals to reduce the
directory size by using different approaches, such as
Tagless [32], are only able to reduce the area requirements
by 48 percent with respect to a conventional sparse
directory while maintaining performance, whereas our
proposal is able to reduce it by 87 percent (when using
DeactP) or even by 94 percent (when using Deact P/SR).

6.6 Scalability

Deact P/SR scales with the core count, which is illustrated by
Fig. 21. Due to the slowness of the simulation tools used, it
is unfeasible to simulate benchmarks such as ALPBench or
PARSEC. Therefore, to make an analysis with a higher core
count possible, data in Fig. 21 are obtained by averaging the
data for the SPLASH 2 benchmarks and the scientific
applications. Fig. 21a illustrates that the accuracy of our
proposal in detecting noncoherent blocks does not depend
on core count, as the rate of detected noncoherent blocks is
kept more or less constant. As a result, the influence on
runtime also remains constant, as shown in Fig. 21b.

6.7 Impact of Memory Page Size

The block classification mechanism employed by our
proposal is based on memory pages and therefore its
accuracy depends on the page size. Fig. 22a shows the
accuracy of the classification mechanism (in deact PR/SR) for
different page sizes (from 4KB to 32KB). As expected, the
larger page size is, the less accurate this mechanism is. On
average, when pages are 4K, our mechanism detects that
about 65 percent of the accessed blocks do not require
coherence. However, when pages are 32K, it detects that
about 50 percent of the accessed blocks do not require it.
Despite this loss of accuracy, our mechanism is still able to
detect a large number of the blocks that do not require
coherence. As a result, most of the coverage misses are
avoided, as Fig. 22b illustrates. Consequently the final
impact of page size in overall performance is quite low,
with performance being more or less constant, as can be
seen in Fig. 22c.

6.8 Energy Consumption

Thanks to the reduction in cache misses and network traffic,
our proposal is also able to reduce system energy consump-
tion. Fig. 23 shows the dynamic energy consumption of
directory caches, memory controllers, and the interconnec-
tion network. Since noncoherent requests do not need to

CUESTA ET AL.: INCREASING THE EFFECTIVENESS OF DIRECTORY CACHES BY AVOIDING THE TRACKING OF NONCOHERENT MEMORY... 11

Fig. 19. Cache miss latency of deact P and deact P/SR in systems with
256K, 128K, 64K, 32K, and 16K directory caches. Fig. 20. Normalized runtime of applications for deact P and deact P/SR

in systems with 256K, 128K, 64K, 32K and 16K directory caches.

Fig. 21. Scalability analysis of deact P/SR for SPLASH 2 and scientific
applications varying core count. (a) Block classification and (b) normal-
ized runtime.

2. Although not shown in the figure, deact P/SR outperforms deact P by a
4.5 percent on average for FFT, Ocean, SpeechRec and Apache.

access directory caches, their consumption is smaller.
Furthermore, this reduction becomes more significant as
the directory cache size decreases because, despite the fact
that smaller directory caches suffer more accesses (due to a
larger number of entry evictions), their access latency is
lower, which offsets this increase in accesses.

Although our proposal decreases the number of
memory accesses (due to the cache miss reduction, as
shown in Fig. 11), the recovery mechanism may increase it
(due to the eviction of cached blocks). However, on
average the reduction referred to offsets this increase. As
a result the energy consumption of memory controllers is
reduced by 45 percent on average. Notice that for the FFT
application the number of flushed blocks is noticeable and
therefore the energy consumption of memory controllers
increases slightly. However, as directory caches become
smaller, the number of cache misses increases and,
consequently, more accesses to memory controllers will
be required, thereby increasing consumption.

Finally, our proposal also entails savings in the energy
consumption of the interconnection network due to the
reduction in network traffic, as shown in Fig. 12. Taking
into account the overall consumption of directory caches,
memory controllers and the interconnection network, we
can see that energy consumption is reduced by about
40 percent on average. As directory caches become smaller,
energy consumption increases mainly due to the increase in
accesses to memory controllers. Despite this, the dynamic
energy consumption of a system using our proposal
remains lower (5 percent on average) than that of the base
system using directory caches 16 times larger.

Regarding static energy consumption (not shown in
Fig. 23), this is closely linked to the execution time of
applications. In particular, the reduction in static energy
consumption of memory controllers and the network is
directly proportional to the reduction in runtime. With
respect to directory caches, their static energy reduction
depends on both the application runtime and their size.
Thus, when using directory caches 2, 4, 8, and 16 times
smaller than that of the base system, static power consump-
tion is reduced by 48, 74, 86, and 92 percent, respectively.

7 CONCLUSIONS

In this paper, we propose a simple strategy which is able to

remarkably increase the effectiveness of directory caches. It

is based on the idea of avoiding the tracking of blocks that do

not require coherence maintenance (i.e., private and read-

only memory blocks). The OS is responsible for dynamically

classifying the accessed blocks according to a coarse-grain

strategy. Our proposal increases the number of available

entries in directory caches. As a result the number of blocks

invalidated due to the lack of entries in directory caches can

be drastically reduced. This advantage can be used not only

for increasing system performance (15 percent), but also for

obtaining good performance with less storage requirements

(directory caches 16 times smaller). The latter achievement is

very useful for coping with the silicon area constraints arisen

in the design of many-core chips.

ACKNOWLEDGMENTS

This work has been supported by the Generalitat Valenci-

ana under Grant PROMETEO/2008/060, Spanish Ministry

of Ciencia e Innovación under grant TIN2009-14475-C04-01

and European Commission FEDER funds under grant

Consolider Ingenio-2010 CSD2006-00046.

REFERENCES

[1] A. Agarwal, R. Simoni, J.L. Hennessy, and M.A. Horowitz, “An
Evaluation of Directory Schemes for Cache Coherence,” Proc. 15th
Int’l Symp. Computer Architecture (ISCA), pp. 280-289, May 1988.

[2] N. Agarwal, T. Krishna, L.-S. Peh, and N.K. Jha, “GARNET: A
Detailed On-Chip Network Model Inside a Full-System Simula-
tor,” Proc. IEEE Int’l Symp. Performance Analysis of Systems and
Software (ISPASS), pp. 33-42, Apr. 2009.

[3] A.R. Alameldeen, C.J. Mauer, M. Xu, P.J. Harper, M.M. Martin,
D.J. Sorin, M.D. Hill, and D.A. Wood, “Evaluating Non-
Deterministic Multi-Threaded Commercial Workloads,” Proc. Fifth
Workshop Computer Architecture Evaluation using Commercial Work-
loads (CAECW), pp. 30-38, Feb. 2002.

[4] A.R. Alameldeen and D.A. Wood, “Variability in Architectural
Simulations of Multi-Threaded Workloads,” Proc. Int’l Symp. High-
Performance Computer Architecture (HPCA), pp. 7-18, Feb. 2003.

[5] “AMD64 Architecture Programmer’s Manual Volume 2: System
Programming,” white paper, Advanced Micro Devices, 2010.

12 IEEE TRANSACTIONS ON COMPUTERS, VOL. 62, NO. X, XXXXXXX 2013

Fig. 23. Energy consumption.

Fig. 22. Impact of page size on (a) block classification, (b) cache miss rate, and (c) runtime.

[6] C. Bienia, S. Kumar, J.P. Singh, and K. Li, “The PARSEC
Benchmark Suite: Characterization and Architectural Implica-
tions,” Proc. 17th Int’l Conf. Parallel Architectures and Compilation
Techniques (PACT), pp. 72-81, Oct. 2008.

[7] J.F. Cantin, M.H. Lipasti, and J.E. Smith, “Improving Multi-
processor Performance with Coarse-Grain Coherence Tracking,”
Proc. Int’l Symp. Computer Architecture (ISCA), pp. 246-257, June
2005.

[8] G. Chen, “Slid - A Cost-Effective and Scalable Limited-Directory
Scheme for Cache Coherence,” Proc. Fifth Int’l PARLE Conf. Parallel
Architectures and Languages Europe (PARLE ’93), 1993.

[9] J.H. Choi and K.H. Park, “Segment Directory Enhancing the
Limited Directory Cache Coherence Schemes,” Proc. Int’l Parallel
and Distributed Processing Symp. (IPDPS), pp. 258-267, Apr. 1999.

[10] P. Conway, N. Kalyanasundharam, G. Donley, K. Lepak, and B.
Hughes, “Cache Hierarchy and Memory Subsystem of the AMD
Opteron Processor,” IEEE Micro, vol. 30, no. 2, pp. 16-29, Apr.
2010.

[11] B. Cuesta, A. Ros, M.E. Gómez, A. Robles, and J. Duato,
“Increasing the Effectiveness of Directory Caches by Deactivating
Coherence for Private Memory Blocks,” Proc. 38th Int’l Symp.
Computer Architecture (ISCA), June 2011.

[12] M. Ekman, F. Dahlgren, and P. Stenström, “TLB and Snoop
Energy-Reduction Using Virtual Caches,” Proc. Int’l Symp. Low
Power Electronics and Design (ISLPED), pp. 243-246, Aug. 2002.

[13] N.D. Enright-Jerger, L.-S. Peh, and M.H. Lipasti, “Virtual Circuit
Tree Multicasting: A Case for On-Chip Hardware Multicast
Support,” Proc. 35th Int’l Symp. Computer Architecture (ISCA),
pp. 229-240, June 2008.

[14] N.D. Enright-Jerger, L.-S. Peh, and M.H. Lipasti, “Virtual Tree
Coherence: Leveraging Regions and In-Network Multicast Tree
for Scalable Cache Coherence,” Proc. IEEE/ACM 41th Int’l Symp.
Microarchitecture (MICRO), pp. 35-46, Nov. 2008.

[15] C. Fensch and M. Cintra, “An OS-Based Alternative to Full
Hardware Coherence on Tiled CMPs,” Proc. Int’l Symp. High-
Performance Computer Architecture (HPCA), pp. 355-366, Feb. 2008.

[16] M. Ferdman, P. Lotfi-Kamran, K. Balet, and B. Falsafi, “Cuckoo
Directory: A Scalable Directory for Many-Core Systems,” Proc.
17th Int’l Symp. High-Performance Computer Architecture (HPCA),
pp. 169-180, Feb. 2011.

[17] A. Gupta, W.-D. Weber, and T.C. Mowry, “Reducing Memory
Traffic Requirements for Scalable Directory-Based Cache Coher-
ence Schemes,” Proc. Int’l Conf. Parallel Processing (ICPP), pp. 312-
321, Aug. 1990.

[18] N. Hardavellas, M. Ferdman, B. Falsafi, and A. Ailamaki,
“Reactive NUCA: Near-Optimal Block Placement and Replication
in Distributed Caches,” Proc. 36th Int’l Symp. Computer Architecture
(ISCA), pp. 184-195, June 2009.

[19] R. Kalla, B. Sinharoy, W.J. Starke, and M. Floyd, “POWER7: IBM’s
Next-Generation Server Processor,” IEEE Micro, vol. 30, no. 2,
pp. 7-15, Apr. 2010.

[20] D. Kim, J. Ahn, J. Kim, and J. Huh, “Subspace Snooping: Filtering
Snoops with Operating System Suport,” Proc. 19th Int’l Conf.
Parallel Architectures and Compilation Techniques (PACT), pp. 111-
122, Sept. 2010.

[21] M.-L. Li, R. Sasanka, S.V. Adve, Y.-K. Chen, and E. Debes, “The
ALPBench Benchmark Suite for Complex Multimedia Applica-
tions,” Proc. Int’l Symp. Workload Characterization, pp. 34-45, Oct.
2005.

[22] S. Li, J.H. Ahn, R.D. Strong, J.B. Brockman, D.M. Tullsen, and N.P.
Jouppi, “McPAT: An Integrated Power, Area, and Timing
Modeling Framework for Multicore and Manycore Architectures,”
Proc. IEEE/ACM 42nd Int’l Symp. Microarchitecture (MICRO),
pp. 469-480, Dec. 2009.

[23] P.S. Magnusson, M. Christensson, and J. Eskilson et al., “Simics: A
Full System Simulation Platform,” Computer, vol. 35, no. 2, pp. 50-
58, Feb. 2002.

[24] M.M. Martin, D.J. Sorin, and B.M. Beckmann et al., “Multifacet’s
General Execution-Driven Multiprocessor Simulator (GEMS)
Toolset,” Computer Architecture News, vol. 33, no. 4, pp. 92-99,
Sept. 2005.

[25] M.R. Marty and M.D. Hill, “Virtual Hierarchies to Support Server
Consolidation,” Proc. 34th Int’l Symp. Computer Architecture (ISCA),
pp. 46-56, June 2007.

[26] A. Moshovos, “RegionScout: Exploiting Coarse Grain Sharing in
Snoop-Based Coherence,” Proc. 32nd Int’l Symp. Computer Archi-
tecture (ISCA), pp. 234-245, June 2005.

[27] B.W. O’Krafka and A.R. Newton, “An Empirical Evaluation of
Two Memory-Efficient Directory Methods,” Proc. 17th Int’l Symp.
Computer Architecture (ISCA), pp. 138-147, June 1990.

[28] M. Shah, J. Barreh, and J. Brooks et al., “UltraSPARC T2: A
Highly-Threaded, Power-Efficient, SPARC SoC,” Proc. IEEE Asian
Solid-State Circuits Conf., pp. 22-25, Nov. 2007.

[29] R. Simoni, “Cache Coherence Directories for Scalable Multi-
processors,” PhD thesis, Stanford Univ., 1992.

[30] S.C. Woo, M. Ohara, E. Torrie, J.P. Singh, and A. Gupta, “The
SPLASH-2 Programs: Characterization and Methodological Con-
siderations,” Proc. 22nd Int’l Symp. Computer Architecture (ISCA),
pp. 24-36, June 1995.

[31] J. Zebchuk, E. Safi, and A. Moshovos, “A Framework for Coarse-
Grain Optimizations in the On-Chip Memory Hierarchy,” Proc.
IEEE/ACM 40th Int’l Symp. Microarchitecture (MICRO), pp. 314-327,
Dec. 2007.

[32] J. Zebchuk, V. Srinivasan, M.K. Qureshi, and A. Moshovos, “A
Tagless Coherence Directory,” Proc. IEEE/ACM 42nd Int’l Symp.
Microarchitecture (MICRO), pp. 423-434, Dec. 2009.

[33] H. Zeffer, Z. Radovi�c, M. Karlsson, and E. Hagersten, “TMA: A
Trap-Based Memory Architecture,” Proc. 20th Int’l Conf. Super-
computing (ICS), pp. 259-268, June 2006.

Blas Cuesta received the MS and PhD
degrees in computer science from the Univer-
sitat Politècnica de València, Spain, in 2002
and 2009, respectively. From 2004 to 2011, he
has been with the Parallel Architecture Group
(GAP) in the Department of Computer Engi-
neering at the same university, working in the
design and evaluation of scalable coherence
protocols for shared-memory multiprocessors.
Since 2011, he has been with the Intel Labs

Barcelona. His research interests include cache coherence protocols,
memory hierarchy designs, scalable cc-NUMA and chip multiprocessor
architectures, and interconnection networks.

Alberto Ros received the MS and PhD
degrees in computer science from the Univer-
sidad de Murcia, Spain, in 2004 and 2009,
respectively. In 2005, he joined the Computer
Engineering Department at the same university
as a PhD student with a fellowship from the
Spanish government. Since 2009, he has been
working as a researcher at the Parallel Archi-
tecture Group (GAP) of the Universitat Politèc-
nica de València. He is working on designing

and evaluating scalable cache coherence protocols for shared-memory
multiprocessors. His research interests include cache coherence
protocols, memory hierarchy designs, and scalable multiprocessor
architectures. He is a member of the IEEE.

Marı́a E. Gómez received the MS and PhD
degrees in computer science from the Univer-
sitat Politècnica de València, Spain, in 1996
and 2000, respectively. She joined the Depart-
ment of Computer Engineering (DISCA) at
Universitat Politècnica de València in 1996
where she is currently an associate professor
of computer architecture and technology. Her
research interests are in the field of intercon-
nection networks, networks-on-chips, and

cache coherence protocols. She is a member of the IEEE Computer
Society.

CUESTA ET AL.: INCREASING THE EFFECTIVENESS OF DIRECTORY CACHES BY AVOIDING THE TRACKING OF NONCOHERENT MEMORY... 13

Antonio Robles received the MS degree in
physics (electricity and electronics) from the
Universitat de València, Spain, in 1984 and the
PhD degree in computer engineering from the
Universitat Politècnica de València in 1995. He is
currently a full professor in the Department of
Computer Engineering at the Universitat Politèc-
nica de València. He has taught several courses
on computer organization and architecture. His
research interests include high-performance

interconnection networks for multiprocessor systems and clusters and
scalable cache coherence protocols for SMP and CMP. He has
published more than 70 refereed conference and journal papers. He
has served on program committees for several major conferences. He is
a member of the IEEE Computer Society.

José Duato received the MS and PhD degrees
in electrical engineering from the Universitat
Politècnica de València, Spain, in 1981 and
1985, respectively. He is currently a professor in
the Department of Computer Engineering at the
Universitat Politècnica de València. He was an
adjunct professor in the Department of Compu-
ter and Information Science at The Ohio State
University, Columbus. His research interests
include interconnection networks and multipro-

cessor architectures. He has published more than 380 refereed papers.
He proposed a powerful theory of deadlock-free adaptive routing for
wormhole networks. Versions of this have been used in the design of the
routing algorithms for the MIT Reliable Router, the Cray T3E super-
computer, the internal router of the Alpha 21364 microprocessor, and
the IBM BlueGene/L supercomputer. He is the first author of the
Interconnection Networks: An Engineering Approach (Morgan Kauf-
mann, 2002). He was a member of the editorial boards of the IEEE
Transactions on Parallel and Distributed Systems, IEEE Transactions
on Computers, and IEEE Computer Architecture Letters. He was a
cochair, member of the steering committee, vice chair, or member of the
program committee in more than 55 conferences, including the most
prestigious conferences in his area of interest: HPCA, ISCA, IPPS/
SPDP, IPDPS, ICPP, ICDCS, EuroPar, and HiPC. He has been
awarded with the National Research Prize Julio Rey Pastor 2009, in
the area of Mathematics and Information and Communications
Technology and the Rei Jaume I Award on New Technologies 2006.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

14 IEEE TRANSACTIONS ON COMPUTERS, VOL. 62, NO. X, XXXXXXX 2013

