
Ghost Loads:
What is the Cost of Invisible Speculation?

Christos Sakalis

Uppsala University

Uppsala, Sweden

christos.sakalis@it.uu.se

Mehdi Alipour

Uppsala University

Uppsala, Sweden

mehdi.alipour@it.uu.se

Alberto Ros

University of Murcia

Murcia, Spain

aros@ditec.um.es

Alexandra Jimborean

Uppsala University

Uppsala, Sweden

alexandra.jimborean@it.uu.se

Stefanos Kaxiras

Uppsala University

Uppsala, Sweden

stefanos.kaxiras@it.uu.se

Magnus Själander

Norwegian University of Science and

Technology

Trondheim, Norway

magnus.sjalander@ntnu.no

ABSTRACT
Speculative execution is necessary for achieving high performance

on modern general-purpose CPUs but, starting with Spectre and

Meltdown, it has also been proven to cause severe security flaws.

In case of a misspeculation, the architectural state is restored to

assure functional correctness but a multitude of microarchitectural

changes (e.g., cache updates), caused by the speculatively executed

instructions, are commonly left in the system. These changes can be

used to leak sensitive information, which has led to a frantic search

for solutions that can eliminate such security flaws. The contribu-

tion of this work is an evaluation of the cost of hiding speculative

side-effects in the cache hierarchy, making them visible only after

the speculation has been resolved. For this, we compare (for the

first time) two broad approaches: i) waiting for loads to become

non-speculative before issuing them to the memory system, and ii)

eliminating the side-effects of speculation, a solution consisting of

invisible loads (Ghost loads) and performance optimizations (Ghost

Buffer and Materialization). While previous work, InvisiSpec, has

proposed a similar solution to our latter approach, it has done so

with only a minimal evaluation and at a significant performance

cost. The detailed evaluation of our solutions shows that: i) wait-

ing for loads to become non-speculative is no more costly than

the previously proposed InvisiSpec solution, albeit much simpler,

non-invasive in the memory system, and stronger security-wise;

ii) hiding speculation with Ghost loads (in the context of a relaxed

memory model) can be achieved at the cost of 12% performance

degradation and 9% energy increase, which is significantly better

that the previous state-of-the-art solution.

CCS CONCEPTS
• Security and privacy→ Side-channel analysis and counter-
measures.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

CF ’19, April 30–May 02, 2019, Alghero, Sardinia, Italy
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.

KEYWORDS
speculative execution, side-channel attacks, caches

ACM Reference Format:
Christos Sakalis, Mehdi Alipour, Alberto Ros, Alexandra Jimborean, Stefanos

Kaxiras, and Magnus Själander. 2019. Ghost Loads: What is the Cost of

Invisible Speculation?. InCF ’19: ACM International Conference on Computing
Frontiers 2019, April 30–May 02, 2019, Alghero, Sardinia, Italy. ACM, New

York, NY, USA, 11 pages.

1 INTRODUCTION
Side-channel attacks rely on shared microarchitectural state and

behavior to leak information. Side-channel attacks on the cache

system have been practically demonstrated in many forms for the

L1 (when the attacker can share the same core as the target) [5], the

shared LLC cache (when the attacker can share the LLC) [40], and

the coherence protocol (when the attacker can simply be collocated

in the same system, under a single coherence domain, with the

target) [14]. While side-channel attacks have been known to the

architecture and the security communities for years, a new type

of speculative side-channel attacks has recently surfaced, with the

most well known ones being Spectre [19] and Meltdown [24].

As far as the target program is concerned, leaking information

across a covert side-channel is not illegal because it does not affect

the functional behavior of the program. The stealthy nature of a

speculative side-channel attack depends on the microarchitectural

state being changed by speculation even when the architectural

state remains unaffected.

In this paper, we are concerned with evaluating methods to

defend against these kinds of attacks and their performance impact.

We are not concerned with how the target program is coerced into

executing code that leaks information, as this is orthogonal to the

existence of speculative covert side-channels that leak information

to the attacker. Instead, the question we are answering is: What

is the cost of shutting down the speculative covert side-channels

existing in the cache hierarchy?

The main target is to guarantee that no microarchitectural state

throughout the system can be observed changing during speculative

execution. The obvious ways to achieve this are:

1

(1) Do not speculate (e.g., wait until memory-access instructions

become non-speculative). This is not an attractive solution

for general-purpose computing, as speculative execution

offers substantial performance benefits.

(2) Speculate but obfuscate microarchitectural changes so that

an attacker cannot discern microarchitectural changes due

to speculation [35–37].

(3) Speculate but do not change microarchitectural state until

the speculation can be resolved. The insight behind this idea

is that speculative execution by itself is not the problem,

rather the problem is speculative execution of instructions

that should not have been executed to begin with, i.e., tran-

sient instructions.

The first choice is, intuitively, detrimental for performance, as we

will have to wait for all memory-access instructions to become non-

speculative. Waiting for loads to become non-speculative is similar

to disabling speculation in general, as applications contain a large

number of loads and all computations depend on loaded values.

Still, we evaluate the cost of disabling speculation for loads and

compare it against other solutions. Our evaluation indicates that,

even though the cost is high (−50% to−74% performance, depending

on the implementation), competing solutions (e.g., InvisiSpec)might

come at a similar cost.

The second choice is akin to existing proposals for prevent-

ing side-channel attacks (for example partitioning or randomiza-

tion [35]), but to the best of our knowledge, no such solution exists

for speculative attacks. Current obfuscation approaches can only

protect from side-channel attacks that take place with the attacker

on a different address space than the victim. As the authors of

Spectre show [19], it is also possible to perform devastating attacks

from within the same context, for example using the JavaScript

JIT compiler found on all modern web browsers. Furthermore, a

lot of the work around obfuscating the access patterns focuses on

protecting small regions of code that hold sensitive data such as

encryption keys. However, the encryption keys are not the only

sensitive data in the system. For example, on a web browser, the

user’s passwords are sensitive information, but so are a lot of the

rendered web pages. Because of these reasons we do not evaluate

this as a viable solution against speculative side-channel attacks.

The third choice is having speculative memory-access instruc-

tions that are untraceable. In our proposal, we call such accesses

Ghost loads. For example, a speculative load that hits in the cache is

untraceable if it does not modify the replacement state. If it misses

in the cache, it does not cause an eviction, and if it reaches the coher-

ence domain it does not modify the coherence-protocol state. Any

prefetches generated because of that load are also made untrace-

able, preventing attackers from leaking information by training the

prefetcher. Recent works [16, 39], as well as industry have shown

interest in this type of solution. We propose our own variation

that we evaluate in detail to get insights into its performance and

energy cost. Since this is a new type of solution for a new type of

problems, we are interested in understanding the behavior of such

untraceable accesses in the memory system.

In this paper, we first explore the trade-off between delaying

an access (no speculation) and issuing it as a Ghost load. We then

explore the performance implications of Ghost loads, and how they

can be improved, achieving high security with low-performance

cost. We compare both the non-speculative solutions and the Ghost

loads with the current state-of-the-art solution, InvisiSpec [39]. We

show that, even though Ghost loads take a similar approach to

InvisiSpec, such a detailed performance evaluation is critical, as

the added complexity introduced by InvisiSpec is not supported

by the performance achieved. In fact, we will show that similar

performance can be achieved simply by delaying all speculative

accesses, without the need for any modifications to the memory

hierarchy and the cache coherence protocol.

In addition to loads, speculative stores must have similar proper-

ties with the additional requirement that the stored value remains

speculative. This is already accomplished by the use of a store queue,

so in this paper we are only concerned with loads. We focus on

presenting a detailed evaluation of single-threaded applications,

and as such, due to space constraints, coherence implications will

not be evaluated in detail.

In summary, we evaluate the following:

• InvisiSpec: We evaluate and compare InvisiSpec [39], the

current state-of-the-art solution, with our own proposals.

• Non-Speculative (Non-Spec): Speculative loads are not

issued and are instead delayed until they are no longer spec-

ulative. We evaluate two versions, one where all loads are

delayed until they reach the head of the reorder buffer (ROB)

and one where they are only delayed until they are guar-

anteed to not be squashed by another instruction. We call

these two versions Naive and Eager, respectively.
• Ghost loads: Speculative loads are executed as Ghost loads,

which are not allowed to modify any architecturally visible

state. In practice, this prevents caching for a large percentage

of the loads in the system. To mitigate the performance cost,

we also evaluate two additions to the Ghosts: The Ghost

Buffer (GhB), a small cache used exclusively by Ghost loads,

and Materialization (Mtz), which instantiates the side-effects

of Ghost loads after the speculation has been resolved.

• Ghost Prefetching: We propose and evaluate a method for

performing prefetching of Ghosts loads, something that is

missing from the current state-of-the-art solution.

Our results reveal that the Non-Spec solutions incur significant

costs, with 75% and 50% performance loss for the Naive and Eager

version, respectively. However, so does InvisiSpec, which shows

similar performance to the Eager Non-Spec solution, but with ad-

ditional hardware complexity. Ghost loads, with the Ghost Buffer,

Materialization, and prefetching, show only 12% performance loss,

accompanied by a 9% increase in energy usage. Finally, without

prefetching of Ghost loads, the performance loss is increased to 22%.

2 SPECULATIVE SHADOWS
Speculative execution works by executing instructions and hiding

their architectural side-effects until it is certain that the specula-

tion was correct. In case of a misspeculation, the misspeculated

instructions are squashed and execution is restarted from the initial

misspeculation point. The instructions that were executed but then

squashed are often referred to as transient instructions. In practice,

2

almost all instructions are executed speculatively, with few excep-

tions. In modern out-of-order (OoO) processors, non-speculative

execution is achieved by waiting until an instruction is at the head

of the reorder buffer (ROB) before being executed. For our work,

we need to be more specific with which instructions are speculative

and which are not, so we define the concept of speculative shadows.
When an instruction that can cause the CPU to misspeculate is

inserted in the ROB, it casts a speculative shadow to all following

instructions. The shadow can be lifted either when the instruction

leaves the ROB, or if possible, when it can be determined that the

instruction can no longer cause a misspeculation. For example, an

unresolved branch causes a shadow to all instructions following it,

but after the branch is resolved and the branch target can be com-

pared with the speculated branch target, the speculative shadow

can be lifted. Essentially, sources of speculation are all instructions

that can cause the wrong instructions to be executed speculatively,

which will then have to be squashed. We have categorized the

causes of speculation into four major classes:

Control: If the target of a branch is not known, then it may

be mispredicted, causing a misspeculation. This includes not only

branches but also all instructions that the branch predictor and the

branch target buffer (BTB) might identify as a branch.

Stores: Stores can cast a speculative shadow for three reasons.

Since they are memory operations, they might try to access either

memory that is i) unmapped or ii) memory that the current execu-

tion context does not have write permissions for. In that case, an

exception will be thrown and execution will have to be diverted.

Additionally, iii) if unknown addresses are involved, the store might

be conflicting with another store or a load on the same location.

Loads: Much like stores, they cast speculative shadows because

of exceptions or conflicts with other memory operations. Addition-

ally, the coherence protocol can dictate that a speculatively loaded

value has to be invalidated, to enforce the CPU’s memory model.

Operations causing exceptions: This includes every floating

point operation, and integer division. For floating point operations,

exception throwing can usually be controlled by the programmer,

allowing the system to know in advance if floating point operations

can throw exceptions or not. Other instruction types that can cause

exceptions are rare in benchmark suites like SPEC so we do not

consider them for this work, but they can be handled the same way

we handle arithmetic operations.

We make the observation that, in order to keep track of whether

a load is under a speculative shadow or not, it is enough to know

if the oldest shadow casting instruction is older than the load in

question. We leverage this to track shadows in a structure similar to

a reorder buffer (ROB) but much smaller as only a small identifier

instead of the complete instruction is needed to be stored. We call

this structure the shadow buffer or SB for short
1
. Shadow-casting

instructions are entered into the shadow buffer in the order they

are dispatched. Once an instruction no longer causes a shadow,

e.g., once a branch has been resolved, then the SB entry is updated.

Only when an instruction reaches the head of the SB and no longer

casts a shadow does it get removed from the SB. This assures that

the oldest shadow-casting instruction is always at the head of the

SB and that they exit the SB in program order, similar to how the

1
Not to be confused with InvisiSpec’s Speculation Buffer.

bzip
2

gcc

bw
av

es

gam
es

s
m

cf
m

ilc

ze
usm

p

gro
m

ac
s

ca
ct

usA
DM

les
lie

3d
nam

d

gobm
k

so
plex

hm
m

er
sje

ng

Gem
sF

DTD

lib
quan

tu
m

h264re
f

to
nto lb

m

om
net

pp
as

ta
r

wrf

sp
hin

x

G
M

ea
n

0.0

0.2

0.4

0.6

0.8

1.0

G
ho

st
L

oa
ds

Figure 1: The ratio of loads executed speculatively.

bzip
2

gcc

bw
av

es

gam
es

s
m

cf
m

ilc

ze
usm

p

gro
m

ac
s

ca
ct

usA
DM

les
lie

3d
nam

d

gobm
k

so
plex

hm
m

er
sje

ng

Gem
sF

DTD

lib
quan

tu
m

h264re
f

to
nto lb

m

om
net

pp
as

ta
r

wrf

sp
hin

x
0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

C
au

se
s

of
S

p
ec

ul
at

io
n

Other Load Store Control

Figure 2: A breakdown of the instructions casting specula-
tive shadows on executed loads.

ROB assures that instructions are committed in order. To determine

whether a load is no longer covered by a shadow it is enough

to i) mark the load at the time it is dispatched with the current

youngest shadow casting instruction and ii) compare the load’s

shadow casting instruction with the head of the SB. If the load’s

shadow casting instructions is older than the head of the SB, then

the load is not under a speculative shadow. This simple mechanism

assures that there does not exist any shadow casting instruction

older than the load.

Figure 1 displays the ratio of loads executed speculatively in each

benchmark, based on the conditions discussed above. The ratio of

speculatively executed loads is high for all benchmarks, ranging

from 67% (h264ref) and up to 97% (GemsFDTD), with a mean of 87%.

This strongly indicates that any proposed solution will have to have

low overhead, as the majority of the load operations will be affected.

We will further discuss this subject in the evaluation, see Section 6.

Figure 2 presents a breakdown of the type of instructions casting

shadows over executed load instructions in the applications found

in the SPEC2006 [1] benchmark suite. The hardware parameters of

the evaluated system can be found in Table 1. Note that only the

oldest shadow is taken into consideration and eliminating one of the

shadow types will not necessarily lead to an equal decrease in the

number of speculatively executed loads. Previous work by Alipour

et al. [2] discusses the implications of eliminating different causes of

speculation in modern out-of-order processors. We observe that the

3

majority of the speculation is caused by the first three categories:

control (branches), stores, and loads. For applications that have

frequent and irregular control flow, such as gcc, the branches cause
the majority of the speculation. On the other hand, in applications

that utilize more regular operations, such as the mathematically

heavy bwaves and cactusADM, the speculation is caused mostly

by loads or stores. Overall, for the majority of the applications,

we observe that not just one type of operation is responsible for

causing speculative execution of loads in each benchmark.

3 NON-SPECULATIVE LOADS
An intuitive solution for hiding speculative loads is to not perform

speculative loads in the first place. We evaluate two versions of this

solution, the Naive and the Eager Non-Speculative (Non-Spec). In

theNaive version, all loads in the application are delayed until they

reach the head of the ROB, ensuring that they cannot be squashed

by any other instructions. In the Eager version, loads are only

delayed until they are no longer covered by a speculative shadow.

With the eager approach, loads are delayed for a smaller period of

time and some loads are not delayed at all (Figure 1). With these

two versions, we provide both an upper and a lower bound for the

cost of disallowing the execution of speculative loads.

An interesting property of the solutions that simply delay spec-

ulative loads is that no additional steps are necessary in order to

support the TSO memory model. Out-of-order CPUs that provide

TSO already have all the necessary mechanisms to ensure that in-

structions being scheduled and executed out-of-order do not break

the guarantees of the memory model. Since the non-speculative so-

lutions described only affect the scheduling of the load instructions,

TSO can be supported out-of-the-box. Expectedly, more relaxed

memory models, such as the popular Release Consistency (RC), are

also supported without any modifications.

Another benefit of the non-speculative solutions is that they

prevent visible side-effects not only in the caches but also in the

TLBs, the main memory, the coherence state, and any other part

of the system a data fetch operation might affect. Other solutions

have to either explicitly provide ways of hiding the side-effects

in the memory system or risk leaking information. For example,

Pessl et al. [32] have already developed a side-channel that exploits

the timing of the DRAM system instead of the cache hierarchy.

4 GHOST LOADS
The principle behind invisible speculation we focus on is per-

forming speculative loads as uncacheable accesses that do not

alter the cache state. In our work, we call these uncacheable ac-

cesses “Ghosts”.AGhost load is a load operation that is undetectable
in the memory hierarchy, specifically in the cache hierarchy.

Ghost loads have the following characteristics:

(1) They are issued like any other memory request.

(2) They can hit on any level of the memory hierarchy including

private caches, shared caches, and main memory, in which

case the response data are returned directly to the core. The

replacement state in the cache remains unchanged.

(3) In case of a miss, no cache fills are performed with the re-

sponse data, and no coherence states are modified.

(4) They use a separate set of miss status handling registers

(MSHRs) that are not accessible by regular loads. Coalescing

between Ghosts is allowed only if they belong to the same

context, and so is coalescing Ghosts into in-flight regular

loads. Coalescing regular loads into Ghosts is not allowed.

(5) Any prefetches caused by Ghost loads are also marked as

Ghosts. This assures that an attacker will not be able to train

the prefetcher and abuse it as a side-channel. How Ghost

prefetches are made possible is discussed in Section 4.2.

(6) Similarly to the data caches, the relevant translation looka-

side buffers (TLBs) are also not updated during the lookups

performed by Ghost requests.

In practice, it is not possible to have memory operations that

are completely side-effect free. For example, even if we disregard

any updates to the state of the system, simply by performing a

memory request it is possible to introduce detectable contention in

the system. Ghost loads and similar techniques aim to balance the

exposure of the side-effects of speculation while also limiting the

performance and energy costs.

As Ghosts do not interact with the coherence mechanisms of

the memory system, only memory models that by default do not

enforce anymemory ordering are supported, such as the popular RC

model. Under RC, memory ordering is enforced through explicitly

placed fences, while all other (non-synchronizing) instructions are

free to execute with any order. When a special instruction, such

as a memory fence or an atomic operation is detected, it acts a

speculation barrier, preventing loads that proceed the fence in

program order to be issued before it. This way, no Ghost loads

can be reordered with the fence and the memory order is enforced

through the underlying coherence mechanism. More restrictive

memory models, such as TSO, require additional mechanisms (e.g.

Validations in InvisiSpec) that can lead to additional performance

overheads. Evaluating such mechanisms is beyond the scope of

this work, so we will assume that the Ghost loads mechanism only

supports RC or other similarly relaxed memory models.

4.1 Materialization
Performing the majority of load accesses as Ghosts can lead to

a significant performance degradation, caused primarily by the

disruption of caching. To regain some of that lost performance, the

data used by a Ghost load can be installed in the cache after the

load is no longer speculative. Materialization (Mtz) is a mechanism

for achieving that, by performing all the microarchitectural side-

effects of the memory request after the load is no longer speculative.

When a load is ready to be committed, an Mtz request is sent to the

memory system. The request will act as a regular load request, with

the difference that it will not load any data into a CPU register. As

such, it will install the cache line into the appropriate caches and

update the replacement data. However, in order to limit the number

of Mtz requests sent into the memory system, when a cache receives

an Mtz request for data it already contains, it will not forward

that request to any other caches in the hierarchy. Finally, if an

excessively large number of requests is generated, the older requests

will be discarded. An additional, alternative form of Materialization

that does not act as a normal memory request will be discussed in

the next section.

4

4.2 Ghost Buffer
The Ghost Buffer (GhB) is a very small (e.g., eight entries for the

L1), read-only cache that is only accessible by Ghost or Mtz re-

quests. Multiple Ghost buffers exist in the system, each attached

to its respective cache. Any data returned by a Ghost request are

placed in the GhB instead of the cache. It is also possible to facil-

itate prefetching of Ghost requests, by modifying the prefetcher

to recognize Ghost requests and tag prefetches initiated by them

as Ghosts. The prefetched cache lines can later by installed by the

GhB into the cache when the speculation has been resolved.

While introducing the GhB by itself improves the performance

of the Ghosts, it is when combined with the Materialization mecha-

nism that the GhB really excels. Specifically, when an Mtz request

misses in a cache, it then checks the GhB. If the data are found, then

they are installed in the cache, eliminating the need to fetch them

from somewhere else in the memory hierarchy. It is even possible

to not let the Mtz packets reach the main memory, which is what

the evaluation in Section 6 is assuming.

Since the GhB is itself a small cache, it can be susceptible to

the same side-channel attacks that regular caches are, in this case

referred to as “transient speculative attacks” [16]. These are attacks

that specifically target the structures used to hold the data for tran-

sient instructions. To prevent this, the design and behavior of the

GhB needs to be adapted accordingly, both for attacks originating

from a different execution context and for attacks originating from

the same context.

4.2.1 Different Execution Context. For attacks involving a different
execution context, we need to make sure that the entries in the GhB

belonging to different contexts are isolated. Previous works [10, 11,

15, 18, 20, 21, 26, 27, 30, 36, 37] have already identified solutions to

achieve this in regular caches, but given the special characteristics

of the GhB, we propose the following:

For L1 caches. We suggest flushing the L1 GhB every time there

is a context switch. Additionally, to support simultaneous multi-

threading (SMT), the L1 GhB is statically partitioned between the

different threads. This assures that it is not possible for one exe-

cution context to access the L1 GhB of another context. Since the

GhBs are read-only, no write-backs are required during a flush

operation, which can be achieved simply by resetting all the valid

bits in the GhB metadata.

For other caches. We instead suggest using a solution that ran-

domizes the cache placement based on the execution context. This

can be achieved by associating a random bit mask with each context

and then Xoring the address bits with that mask. By changing the

mask during flushing, we can prevent an attacker from deciphering

the access pattern of the application or the mask. Since the GhB

needs to be efficiently flushed only for a specific context, without

flushing the rest of the data, we propose associating each cache

line with its context ID and an epoch timestamp, as proposed by

Yan et al. [39]. Each time the pipeline is squashed due to a misspec-

ulation, the epoch is increased. By only allowing Ghost requests

to access data from the GhB when the context ID and the current

epoch match, we are effectively flushing the cache without the need

to wait for the GhB to actually be flushed, which would introduce

delays for GhBs other than the L1.

4.2.2 Same Execution Context. The solutions described above pro-

tect the GhB from attacks from a different execution context, but

it is still possible to orchestrate an attack from within the same

context. For example, a JavaScript JIT compiler running on the

same thread as the main browser process can potentially leak sen-

sitive user information. These attacks are harder to defend against,

since we do not want to isolate the accesses from the same context

from one another. To solve this issue, we flush the GhB every time

a misspeculation is detected and the transient state needs to be

squashed. This prevents an attacker from first using speculative

execution to load data in the GhB and then initiating a separate

speculative region to extract the previously loaded data.

For example, an attacker could use a Meltdown variant to read

a secret value from privileged memory, and then use it to index

a probe array. After the misspeculation has been corrected and

the execution has been restored, the attacker can trigger a second

speculative region where the probe array is probed. By timing the

second region, the attacker can identify if the probe was a hit or

a miss in the GhB, and by extension extract the secret value. By

flushing the GhB between speculative regions, this is no longer

possible. Instead, the attacker has to incorporate everything in

one speculative region. This makes the attack very hard for two

reasons: First, to prevent the program from crashing, the speculative

region needs to misspeculate. This means that the only information

that can be extracted from the speculative region is how long the

execution took. Second, the execution time of the speculative region

depends only on the misspeculated instruction that initiates it. The
moment the instruction is determined to have been misspeculated,

execution is aborted and squashed, unaffected by the timing of any

other instructions in the region. The only possible way to change

the time the region takes to execute is to affect the timing of the

initial speculative instruction, which is not easy to do in a way

that depends on the loaded secret value, as the instructions that

read and use the secret value succeed (in program order) the initial

speculative instruction.

5 INVISISPEC
InvisiSpec [39], much like Ghost loads, blocks speculative side-

channel attacks in the cache hierarchy by hiding the side-effects

of speculative loads until the speculation has been resolved. This

is achieved by preventing speculative loads from disturbing the

cache state in any way and instead installing the data in a small,

temporary buffer in the core. After the speculative shadow has been

resolved, the data are then verified and installed in the L1 cache.

InvisiSpec takes a similar approach to our Ghost loads but with

two major differences. First, the buffer utilized by InvisiSpec to

hide the speculative data has a one-to-one correspondence with

the entries of the load queue (LQ). In contrast, the Ghost Buffer

functions as a read-only cache that might contain any random set

of cache lines. Because of this, Ghost can support prefetching that

is triggered by speculative loads, while InvisiSpec can only safely

prefetch non-speculatively.

The second difference is that, in order to support total store order

(TSO) coherence, InvisiSpec needs to validate the data from the

speculative buffer before installing them in the cache. This means

that load instructions need to wait for the validation to succeed

5

Table 1: The simulation parameters used for the evaluation.

Parameter Value

Technology node 22nm

Processor type out-of-order x86 CPU

Processor frequency 3.4GHz

ROB/IQ/LQ/SQ entries 192/64/32/32

Decode/Issue/Commit width 8

Cache line size 64 bytes

L1 private cache size 32KiB, 8-way, 8 entries GhB

L1 private cache access latency 2 cycles

L2 shared cache size 1MiB, 16-way, 256 entries GhB

L2 shared cache access latency 20 cycles

bzip
2

gcc

bw
av

es

gam
es

s
m

cf
m

ilc

ze
usm

p

gro
m

ac
s

ca
ct

usA
DM

les
lie

3d
nam

d

gobm
k

so
plex

hm
m

er
sje

ng

Gem
sF

DTD

lib
quan

tu
m

h264re
f

to
nto lb

m

om
net

pp
as

ta
r

wrf

sp
hin

x

1.0

1.5

2.0

2.5

3.0

3.5

A
ve

ra
ge

#
of

A
cc

es
se

s

Regular

Ghost

Figure 3: The average number of consecutive, exclusively
regular or Ghost accesses to a cache line in the L1. For each
cache line we maintain a counter that is incremented every
time consecutive accesses of the same type occur and is reset
for every access of the opposite type. The deviation, though
significant, is omitted for clarity.

before being committed, potentially increasing the pressure on the

ROB and the LQ. Additionally, only one validation at a time (per

execution context) can be in-flight in the system. This limits the

amount of memory level parallelism (MLP) that InvisiSpec can take

advantage of, even when optimizations to convert some of the vali-

dations to what they call exposures, which are not constraint by the

same limitations. Ghost loads only support release consistency (RC)

and are not constrained by any of these issues. We will see in the

evaluation (Section 6) how these differences affect the performance

of the two approaches.

6 EVALUATION
We start by discussing the characteristics of the Ghost loads and

then proceed to the effects that the various evaluated solutions

have on the memory behavior of the applications, as well as the

performance and energy implications.

6.1 Methodology
We evaluate the different solutions and the suggested improve-

ments using the SPEC2006 benchmark suite [1], from which we

exclude five applications due to simulation issues encountered in

the baseline simulation. We use the Gem5 [4] simulator combined

with McPAT [22] and Cacti [23] for the performance and energy

evaluation. Each Ghost Buffer (GhB) is modelled as a small cache

in McPAT, on the same level of the hierarchy as the cache it is

attached to. For the DRAM, we use the power model built into

Gem5, as McPAT does not provide one. We perform the simula-

tion by first skipping one billion instructions in atomic mode and

then simulating in detail for another three billion instructions. The

characteristics of the simulated system can be found in Table 1. We

simulate a system with a private L1 and a shared L2 cache. As the

baseline we use a large, unmodified OoO CPU. For InvisiSpec we

only simulate the TSO version because, according to its authors, the

performance is not improved significantly in the RC version [39].

6.2 Ghost Loads
Before discussing the performance and energy implications of the

proposed solutions, we need to first understand the behavior of the

Ghost loads, and how they interact with regular memory accesses.

Figure 3 presents the number of consecutive Ghost loads to a

cache line between two regular loads, and vice versa. To simplify

the figure, only the average is presented. We observe that for all

benchmarks, the average number of accesses is very small, around

two consecutive accesses for most, both for Ghost and for regular

loads. We also know from our data (not shown) that the number of

cycles between consecutive loads, either Ghosts or regular, is very

small, which is not surprising given how common loads are in the

instruction mix. These numbers indicate that the data stored in the

GhB will be short-lived, as when a regular access installs data in the

cache the GhB data becomes obsolete. In addition, Materialization

requests need to be fast, as regular accesses to the same cache line

follow closely after the Ghosts. These observations indicate that

large buffers holding all speculative data are unnecessary, as quite

often some other load instruction will install the data in the cache

before the speculative load has a chance to.

We have also observed that, with the exception of Non-Spec, all

solutions increase the number of loads that are executed as Ghosts,

because the introduced delays in the execution introduce, in turn,

more speculation in the pipeline.

6.3 Memory Behavior
With the exception of the Non-Spec solutions, the proposed meth-

ods alter how the cache hierarchy works. Hence, the behavior of

the cache is what primarily affects the performance and energy

characteristics of the system.

Figure 4 features the L1-data and L2 cache miss ratios for all

the different solutions. Both Naive and Eager Non-Spec, which we

present as alternatives to invisible speculation, reduce the number

of L1 and L2 misses, as well as the number of DRAM reads. This

is due to the memory accesses and the overall execution being

slowed down, which provides more time for the memory system to

respond to requests. Additionally, without speculative execution,

only the data that are actually needed by the applications are read

and brought into the caches. However, whether Non-Spec reduces

the amount of cache misses or not is irrelevant, as it does not

change how the cache system works. Instead, we will see in the

next section that the cost of the Non-Spec methods is observed in

6

bzip
2

gcc

bw
av

es

gam
es

s
m

cf
m

ilc

ze
usm

p

gro
m

ac
s

ca
ct

usA
DM

les
lie

3d
nam

d

gobm
k

so
plex

hm
m

er
sje

ng

Gem
sF

DTD

lib
quan

tu
m

h264re
f

to
nto lb

m

om
net

pp
as

ta
r

wrf

sp
hin

x

G
M

ea
n

0.00

0.25

0.50

0.75

1.00

L
1D

M
is

s
R

at
io

baseline invisispec nonspec-naive nonspec-eager ghosts

bzip
2

gcc

bw
av

es

gam
es

s
m

cf
m

ilc

ze
usm

p

gro
m

ac
s

ca
ct

usA
DM

les
lie

3d
nam

d

gobm
k

so
plex

hm
m

er
sje

ng

Gem
sF

DTD

lib
quan

tu
m

h264re
f

to
nto lb

m

om
net

pp
as

ta
r

wrf

sp
hin

x

G
M

ea
n

0.00

0.25

0.50

0.75

1.00

L
2

M
is

s
R

at
io

baseline invisispec nonspec-naive nonspec-eager ghosts

Figure 4: L1-data & L2 cache miss ratios.

bzip
2

gcc

bw
av

es

gam
es

s
m

cf
m

ilc

ze
usm

p

gro
m

ac
s

ca
ct

usA
DM

les
lie

3d
nam

d

gobm
k

so
plex

hm
m

er
sje

ng

Gem
sF

DTD

lib
quan

tu
m

h264re
f

to
nto lb

m

om
net

pp
as

ta
r

wrf

sp
hin

x

G
M

ea
n

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

N
or

m
al

iz
ed

D
R

A
M

R
ea

ds

invisispec nonspec-naive nonspec-eager ghosts

Figure 5: Normalized DRAM reads. The number of DRAM writes is not affected by the different solutions.

the performance of the benchmarks. For this reason, we will only

focus on the Ghosts and InvisiSpec in this section.

Both Ghost loads and InvisiSpec leave the mean L1-data miss

ratio unaffected. If we examine each benchmark individually, we

will see that there are some benchmarks were the miss ratio is

increased, with the worst case being libquantum for InvisiSpec,

but overall there are no significant differences. The same is not

true for the L2 cache, where InvisiSpec shows increased miss ratios

in a number of benchmarks, with the most prominent ones being

zeusmp, leslie3d, and sphinx. Ghosts also see an increase in the

miss ratio, but not as significant, with the most problematic appli-

cations begin bwaves and leslie3d. Overall, we observe a bigger
variation in the L2 miss ratios than we do in the L1, with mean miss

ratio increases of 25% for InvisiSpec and 13% for the Ghosts.

We can observe these differences more prominently in the num-

ber of DRAM reads performed in the system, as seen in Figure 5.

We only focus on the reads because the number of writes are not

significantly affected by any of the evaluated solutions. InvisiSpec

features a mean increase of 31%, while Ghosts are at 27%. The worst

applications are zeusmp and libquantum for InvisiSpec and mcf
and gromacs for Ghosts, with all four featuring more than 2× reads

when compared to the baseline.

Overall, we can conclude that both InvisiSpec and Ghosts intro-

duce memory system overheads, with the Ghosts outperforming

InvisiSpec by a few percentage points. On the other hand, the Non-

Spec solutions do not have such negative side-effects.

7

bzip
2

gcc

bw
av

es

gam
es

s
m

cf
m

ilc

ze
usm

p

gro
m

ac
s

ca
ct

usA
DM

les
lie

3d
nam

d

gobm
k

so
plex

hm
m

er
sje

ng

Gem
sF

DTD

lib
quan

tu
m

h264re
f

to
nto lb

m

om
net

pp
as

ta
r

wrf

sp
hin

x

G
M

ea
n

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

IP
C

Baseline: OoO CPU

invisispec nonspec-naive nonspec-eager ghosts

Figure 6: Normalized performance (IPC).

bzip
2

gcc

bw
av

es

gam
es

s
m

cf
m

ilc

ze
usm

p

gro
m

ac
s

ca
ct

usA
DM

les
lie

3d
nam

d

gobm
k

so
plex

hm
m

er
sje

ng

Gem
sF

DTD

lib
quan

tu
m

h264re
f

to
nto lb

m

om
net

pp
as

ta
r

wrf

sp
hin

x

G
M

ea
n

0

1

2

3

4

N
or

m
al

iz
ed

E
ne

rg
y

U
sa

ge

baseline invisispec nonspec-naive nonspec-eager ghosts

Figure 7: Normalized energy usage. The bottom (shaded) part represents the static (leakage) energy of the system.

6.4 Performance
Figure 6 presents the relative performance of the various simulated

solutions, in the form of instructions per cycle (IPC) normalized

to an unmodified out-of-order CPU. As anticipated, the Non-Spec

solutions, where loads are executed non-speculatively, suffer from

a steep performance loss. We observe a mean performance loss of

75% for the Naive version, and 50% for Eager. Load instructions are

very common in applications, and all computation depends on the

values loaded from memory. We also know that the large majority

of loads in the SPEC2006 benchmarks are speculative (Figure 1).

The combination of these two facts means that with the Non-Spec

solutions not only are most loads delayed, but that these loads also

constitute a large and latency-critical part of the applications. In

essence, by using the Non-Spec solutions, we force the large and

power hungry out-of-order CPU to execute with similar constraints

to that of a slower, strict in-order CPU but without the accompany-

ing area and power reduction benefits. In the Naive Non-Spec in

particular, which makes it impossible to have more than one load

in flight in parallel, the CPU cannot take advantage of the memory

level parallelism (MLP) available in the applications.

However, we can also observe quite similar results with Invi-

siSpec, which reaches a mean performance loss of 46%, just 4%

points better than the Eager Non-Spec version. InvisiSpec is even

outperformed by the Eager Non-Spec in five benchmarks, namely

zeusmp, leslie3d, libquantum, lbm, and omnetpp. Given the re-

duced complexity, additional security, and reduced area overhead,

these performance results indicate that simply delaying speculative

instructions is in fact a better alternative to InvisiSpec.

However, neither Eager Non-Spec or InvisiSpec can compete

with the Ghost loads when it comes to performance, because the

latter is featuring a mean performance loss of only 12%. In addition,

Ghosts consistently offer good performance, outperforming Invi-

siSpec in every single benchmark, and with only two applications,

bwaves and leslie3d, dropping below the −25% mark. When it

comes to leslie3d, the application with the greatest performance

loss, we observe in Figure 4 that it suffers from an increase in the

L2 miss ratio. However, that in itself does not explain the perfor-

mance loss, as other applications have the same problem. Instead,

by analyzing the detailed statistics made available from Gem5, we

observed that it also suffers from a large increase in the number of

MSHR misses, both in the L1 and the L2, and particularly MSHR

misses for Ghost accesses. Only one other applications suffers an

equal amount of MSHRmisses, cactusADM, but without a similar in-

crease of the L2 miss ratio. This indicates that not only is leslie3d

8

suffering from an increased miss ratio, but also its available MLP

is not fully harnessed. Since regular accesses cannot be coalesced

with in-flight Ghosts due to security, and we know from Figure 3

that regular accesses and Ghosts are tightly interleaved, not all of

the available MLP in the application can be taken advantage of.

6.5 Energy Efficiency
Figure 7 presents the results of the energy usage evaluation. Both

versions of Non-Spec affect the execution time of the benchmarks

negatively, but not the number of cache misses and accesses to

the main memory, thus affecting more the static energy usage

of the system. We observe a mean energy increase of 2.5× for

the Naive version, and 49% for Eager. The energy usage increases

are not directly proportional to the execution time because i) the
dynamic activity is not increased proportionally (the same number

of instructions is still executed) and ii) the static power increase is
reduced due to power gating, as modelled by McPAT. Given that

a much smaller percentage of loads can be in-flight at the same

time (Figure 1), the resources of the system (e.g., load queue) can be

scaled down to help reduce the energy usage, but we do not take

this into consideration in the evaluation.

As one would expect, for Non-Spec, there is a direct and clear

correlation between the benchmarks that perform badly in terms of

performance and the benchmarks with the highest energy increase.

On the contrary, the remaining solutions also negatively affect the

memory access patterns during execution, which leads to large

changes in the dynamic energy usage of the system as well. For

InvisiSpec, we see an mean energy usage increase of 46%, which

is very close to the energy usage in the Eager Non-Spec version,

further supporting our view that the latter is a better solution.

Finally, Ghosts outperform both InvisiSpec and the Eager Non-

Spec version significantly, with a mean energy increase of 9% over

the baseline. A large part of this low overhead is due to the small

execution time overhead, while also keeping the GhB sizes small.

6.6 Contribution of each Ghost Mechanism
The proposed Ghost loads solution consists of a combination of

different mechanisms, namely the Ghost Buffer, Materialization,

and Ghost prefetching. When discussing the Ghosts in the rest of

the paper we assume that all of these mechanisms are used, in order

to achieve the best possible performance. However, it is important

to understand how much each of these mechanisms contributes to

the final result, and if all of them are necessary.

Figure 8 contains the performance results for different Ghost

configurations. In addition to the baseline and the full Ghost load

solution, it contains results for four additional Ghost versions, one

with neither the GhB nor Mtz (ghosts-nothing), one without Mtz

(ghosts-nomtz), one without the GhB (ghosts-noghb), and finally one
without Ghost prefetching enabled (ghosts-nopref).

With the Ghost version that uses neither the GhB norMtz (ghosts-
nothing), we observe a mean performance loss of 61% under the

baseline, which is worse than both InvisiSpec and the Eager Non-

Spec version. The benchmark that is hurt the most by this version

of the Ghosts is bwaves, a benchmark that is already sensitive to the

other solutions, reaching a performance loss of 93%. Introducing

the GhB (ghosts-nomtz) leads to a significant performance improve-

ment, with a mean performance loss of 33%, outperforming both

InvisiSpec and the Eager Non-Spec version. Since we have sup-

port for prefetching Ghost loads, this version benefits from it even

without Mtz support, as the latter is not necessary for training and

triggering the prefetcher. Similar results can be seen when Mtz is

introduced (but without a GhB – ghosts-noghb), featuring a mean

performance loss of 37%. Note that without a GhB, Ghost prefetch-

ing is not possible, which additionally hurts the performance of

this version. We can easily conclude from these results that both

mechanisms are necessary in order to achieve good performance.

Finally, we have evaluated the performance of the Ghost loads

when Ghost prefetching is not available (ghosts-nopref). The pre-
fetcher is instead trained and triggered by the Materializations sent

once the speculation has been resolved, much like in InvisiSpec.

Note that both the GhB and Mtz are used in these results, only

the mechanism for prefetching based on Ghost loads has been dis-

abled. With this version, we observe a performance loss of 22%

under the baseline, 10% points more than Ghosts with prefetching

(ghosts). This demonstrates the importance of considering prefetch-

ing when proposing such solutions, something that is overlooked

by InvisiSpec (and SafeSpec).

7 RELATEDWORK
This work was inspired by the Meltdown [24] and Spectre [19]

attacks published in the early 2018. However, as we explain in the

introduction, our goal is not to solve just these attacks but to provide

and evaluate a solution that prevents information leakage from

cache memory accesses during speculative execution in general.

For Meltdown and Spectre, CPU vendors have promised specific

solutions in future microcode updates. Software solutions also exist,

both for operating systems [6] and for compilers [31, 34]. These

solutions can incur very high costs, especially for applications

that perform numerous system calls. Unfortunately, since these

solutions are based on the existing attacks, they might not work

for the new attacks and variants that have been released since the

initial Meltdown and Spectre attacks were discovered.

Non-speculative cache side-channel attacks have existed for

some time [3, 12–14, 29, 35, 40]. These attacks focus on observ-

ing the difference in execution time caused by the cache behavior

in order to leak information from the target application. A lot of

these attacks focus specifically on attacking cryptographic func-

tions that utilize S-boxes or S-box style encryption tables, such as

AES. By detecting the access pattern of the cryptographic algorithm

to the S-box, the secret encryption key can be identified. Since such

keys are extremely sensitive data, numerous solutions have been

proposed [7, 9–11, 15, 17, 18, 21, 25–27, 30, 33, 36, 37, 41], usually

utilizing either partitioning, cache locking, or obfuscation through

random noise introduced to the access patterns of the application.

These solutions focus on preventing the side-channel attacks by

either preventing or hiding the timing differences observed by the

cache accesses. In our work, we focus instead on preventing or

hiding the side-effects of speculative execution that, in combination

with the traditional cache attacks mentioned above, could other-

wise be used to leak sensitive information. Additionally, many of

these methods focusing on AES and similar algorithms only protect

9

bzip
2

gcc

bw
av

es

gam
es

s
m

cf
m

ilc

ze
usm

p

gro
m

ac
s

ca
ct

usA
DM

les
lie

3d
nam

d

gobm
k

so
plex

hm
m

er
sje

ng

Gem
sF

DTD

lib
quan

tu
m

h264re
f

to
nto lb

m

om
net

pp
as

ta
r

wrf

sp
hin

x

G
M

ea
n

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

IP
C

Baseline: OoO CPU

ghosts ghosts-nothing ghosts-nomtz ghosts-noghb ghosts-nopref

Figure 8: The contribution of each Ghost mechanism to performance (IPC).

against attacks that try to determine the access pattern to the S-box.

This means that they only work for small amounts of explicitly

specified data, which is different from our solution, which secures

the whole address space.

When it comes to protecting against speculative attacks, in ad-

dition to InvisiSpec by Yan et al. [39], Khasawneh et al. [16] have

also been working on a similar solution, named SafeSpec, but their

approach differs from our in a number of different aspects. First of

all, they discuss instructions caches, something that both we and

Yan et al. have left as future work. However, their approach only

considers branches as the source of speculation. Instead, both Ghost

loads and InvisiSpec consider all instructions that might cause a

misspeculation and lead to squashing in the pipeline. Additionally,

prefetching is not discussed, except in the context of the prefetching

effect that previously squashed loads have in the system. As we

have shown in the evaluation disregarding prefetching can lead

to a significant performance degradation. Furthermore, similarly

to InvisiSpec, SafeSpec requires a buffer large enough to hold all

in-flight loads. The exact buffer size not specified in their work,

but it is implied that it is larger than the 8-entry L1 GhB the Ghost

loads utilize in our evaluation. Unfortunately, we are not aware of

the paper having been published to a peer-reviewed venue and as

we cannot ascertain the implementation details of their solution,

we cannot compare the designs and the performance differences.

Finally, attacks and defences for the rest of the memory system

also exist [8, 28, 32, 35, 38, 42]. These focus on different areas from

our proposal and should be considered as complementary solutions.

8 FUTUREWORK
Coherence is an integral part of the caches in modern CPUs, so

developing a solution and evaluating it in detail is important. Simi-

larly, other parts of the cache hierarchy, such as the TLBs and the

instruction caches, need an equally in-depth evaluation.

In parallel to further reducing the side-effects of speculative exe-

cution that are exposed to the system, we need to also investigate

ways of further improving the performance and reducing the en-

ergy cost. In the current implementation, all Ghost loads that are

successfully committed issue a Materialization packet to the cache.

This is not efficient, as we have determined that a large number

of times this results to an L1 hit, which leads to the cache simply

discarding the Mtz packet. If we could know in advance (or predict)

if a Materialization is necessary, we could avoid the unnecessary

L1 lookups. Furthermore, not all speculative loads need to be exe-

cuted as Ghosts. For example, not all data in a system are sensitive

and need to be secured. If these data constitute a large enough

part of the memory accessed during an applications execution, the

performance and energy costs of our proposed solutions can be

reduced. Finally, the number of speculative loads can be reduced if

speculative instructions are disambiguated in advance, using either

hardware or compiler techniques.

9 CONCLUSION
We have evaluated in detail the performance and energy costs of

different solutions for the problem of speculative execution leaking

information through microarchitectural side-effects in the cache

hierarchy. Namely, we have evaluated three different solutions, a

non-speculative approach, where speculative loads are delayed un-

til they can be safely issued, Ghost loads, where loads are issued

but their side-effects are kept hidden, and InvisiSpec, the current

state-of-the-art solution. We have shown that while the cost of the

non-speculative solution is, expectedly, high, it is similar to that

of InvisiSpec. At the same time, the non-speculative solution is

simpler, as it requires no modifications to the cache hierarchy, has

lower area and energy overhead, and protects from a wider range

of speculative side-channel attacks. We have also shown that is

is possible to reduce the cost of hiding speculation even further

using our Ghost loads, a solution similar to InvisiSpec but with key

design differences that lead to significant performance improve-

ments. Overall, we have not only provided more efficient solutions

than the current state of the art, but we have also shown, through

our detailed evaluation, that a more thorough understanding of the

problem and the performance implications is necessary in order to

formulate effective solutions.

ACKNOWLEDGMENTS
This work was funded by Vetenskapsrådet project 2015-05159. The

computations were performed on resources provided by SNIC

through UPPMAX and by UNINETT Sigma2.

10

REFERENCES
[1] 2006. SPEC CPU Benchmark Suite. http://www.specbench.org/osg/cpu2006/.

[2] M. Alipour, T. E. Carlson, and S. Kaxiras. 2017. Exploring the Performance Limits

of Out-of-order Commit. In Proceedings of the ACM International Conference on
Computing Frontiers. ACM, New York, NY, USA, 211–220. https://doi.org/10.

1145/3075564.3075581

[3] D. J. Bernstein. 2005. Cache-timing attacks on AES. (2005).

[4] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu, J. Hestness,

D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell, M. Shoaib, N. Vaish, M. D.

Hill, and D. A. Wood. 2011. The gem5 Simulator. ACM SIGARCH Computer
Architecture News 39, 2 (Aug. 2011), 1–7. Issue 2. https://doi.org/10.1145/2024716.
2024718

[5] J. Bonneau and I. Mironov. 2006. Cache-Collision Timing Attacks Against AES.

In Cryptographic Hardware and Embedded Systems. Springer Berlin Heidelberg,

201–215.

[6] J. Corbet. 2017. KAISER: hiding the kernel from user space. https://lwn.net/

Articles/738975/.

[7] L. Domnitser, A. Jaleel, J. Loew, N. Abu-Ghazaleh, and D. Ponomarev. 2012.

Non-monopolizable Caches: Low-complexity Mitigation of Cache Side Channel

Attacks. ACM Transactions on Architecture and Code Optimization 8, 4 (Jan. 2012),

35:1–35:21. https://doi.org/10.1145/2086696.2086714

[8] X. Dong, Z. Shen, J. Criswell, A. Cox, and S. Dwarkadas. 2018. Spectres, Virtual

Ghosts, and Hardware Support. In Proceedings of the International Workshop
on Hardware and Architectural Support for Security and Privacy. ACM, 5:1–5:9.

https://doi.org/10.1145/3214292.3214297

[9] H. Fang, S. S. Dayapule, F. Yao, M. Doroslovac̆ki, and G. Venkataramani. 2018.

Prefetch-guard: Leveraging hardware prefetches to defend against cache tim-

ing channels. In Proceedings of the IEEE International Symposium on Hardware
Oriented Security and Trust. 187–190. https://doi.org/10.1109/HST.2018.8383912

[10] A. Fuchs and R. B. Lee. 2015. Disruptive Prefetching: Impact on Side-channel At-

tacks and Cache Designs. In Proceedings of the 8th ACM International Systems and
Storage Conference. ACM, 14:1–14:12. https://doi.org/10.1145/2757667.2757672

[11] D. Gruss, J. Lettner, F. Schuster, O. Ohrimenko, I. Haller, and M. Costa. 2017.

Strong and efficient cache side-channel protection using hardware transactional

memory. In Proceedings of the USENIX Security Symposium. USENIX Association,

217–233.

[12] D. Gruss, R. Spreitzer, and S. Mangard. 2015. Cache Template Attacks: Automating

Attacks on Inclusive Last-Level Caches.. In Proceedings of the USENIX Security
Symposium. 897–912.

[13] D. Gullasch, E. Bangerter, and S. Krenn. 2011. Cache Games – Access-Based

Cache Attacks on AES to Practice. In Proceedings of the IEEE Symposium on
Security and Privacy. 490–505. https://doi.org/10.1109/SP.2011.22

[14] G. Irazoqui, T. Eisenbarth, and B. Sunar. 2016. Cross Processor Cache Attacks.

In Proceedings of the ACM on Asia Conference on Computer and Communications
Security. ACM, 353–364. https://doi.org/10.1145/2897845.2897867

[15] G. Keramidas, A. Antonopoulos, D. N. Serpanos, and S. Kaxiras. 2008. Non

deterministic caches: a simple and effective defense against side channel attacks.

Design Automation for Embedded Systems 12, 3 (Sept. 2008), 221–230. https:

//doi.org/10.1007/s10617-008-9018-y

[16] K. N. Khasawneh, E. M. Koruyeh, C. Song, D. Evtyushkin, D. Ponomarev, and

N. Abu-Ghazaleh. 2018. SafeSpec: Banishing the Spectre of a Meltdown with

Leakage-Free Speculation. arXiv:1806.05179 [cs] (June 2018). arXiv:1806.05179
http://arxiv.org/abs/1806.05179

[17] T. Kim, M. Peinado, and G. Mainar-Ruiz. 2012. STEALTHMEM: System-level

Protection Against Cache-based Side Channel Attacks in the Cloud. In Proceedings
of the USENIX Security Symposium. USENIX Association, 11–11. http://dl.acm.

org/citation.cfm?id=2362793.2362804

[18] V. Kiriansky, I. Lebedev, S. Amarasinghe, S. Devadas, and J. Emer. 2018. DAWG:

A Defense Against Cache Timing Attacks in Speculative Execution Processors.

[19] P. Kocher, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp, S. Mangard, T.

Prescher, M. Schwarz, and Y. Yarom. 2018. Spectre Attacks: Exploiting Speculative

Execution. arXiv:1801.01203 [cs] (Jan. 2018). arXiv:1801.01203 http://arxiv.org/

abs/1801.01203

[20] J. Kong, O. Aciicmez, J.-P. Seifert, and H. Zhou. 2008. Deconstructing New

Cache Designs for Thwarting Software Cache-based Side Channel Attacks. In

Proceedings of the ACMWorkshop on Computer Security Architectures. ACM, 25–34.

https://doi.org/10.1145/1456508.1456514

[21] J. Kong, O. Aciicmez, J. P. Seifert, and H. Zhou. 2009. Hardware-software inte-

grated approaches to defend against software cache-based side channel attacks.

In Proceedings of the International Symposium High-Performance Computer Archi-
tecture. 393–404. https://doi.org/10.1109/HPCA.2009.4798277

[22] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and N. P. Jouppi.

2009. McPAT: An Integrated Power, Area, and Timing Modeling Framework

for Multicore and Manycore Architectures. In Proceedings of the ACM/IEEE In-
ternational Symposium on Microarchitecture. 469–480. https://doi.org/10.1145/

1669112.1669172

[23] S. Li, K. Chen, J. H. Ahn, J. B. Brockman, and N. P. Jouppi. 2011. CACTI-P:

Architecture-Level Modeling for SRAM-based Structures with Advanced Leakage

Reduction Techniques. In Proceedings of the IEEE/ACM International Conference
on Computer-Aided Design. IEEE, 694–701. http://dx.doi.org/10.1109/ICCAD.

2011.6105405

[24] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, S. Mangard, P. Kocher, D.

Genkin, Y. Yarom, and M. Hamburg. 2018. Meltdown. arXiv:1801.01207 [cs] (Jan.
2018). arXiv:1801.01207 http://arxiv.org/abs/1801.01207

[25] F. Liu and R. B. Lee. 2013. Security Testing of a Secure CacheDesign. In Proceedings
of the International Workshop on Hardware and Architectural Support for Security
and Privacy. ACM, 3:1–3:8. https://doi.org/10.1145/2487726.2487729

[26] F. Liu and R. B. Lee. 2014. Random Fill Cache Architecture. In Proceedings of
the ACM/IEEE International Symposium on Microarchitecture. 203–215. https:

//doi.org/10.1109/MICRO.2014.28

[27] F. Liu, H. Wu, K. Mai, and R. B. Lee. 2016. Newcache: Secure Cache Architecture

Thwarting Cache Side-Channel Attacks. IEEE Micro 36, 5 (Sept. 2016), 8–16.

https://doi.org/10.1109/MM.2016.85

[28] R. Martin, J. Demme, and S. Sethumadhavan. 2012. TimeWarp: Rethinking

Timekeeping and Performance Monitoring Mechanisms to Mitigate Side-channel

Attacks. In Proceedings of the International Symposium on Computer Architecture.
IEEE Computer Society, 118–129. http://dl.acm.org/citation.cfm?id=2337159.

2337173

[29] D. A. Osvik, A. Shamir, and E. Tromer. 2006. Cache attacks and countermeasures:

the case of AES. In Proceedings of the RSA Conference. Springer, 1–20.
[30] D. Page. 2005. Partitioned Cache Architecture as a Side-Channel Defence Mecha-

nism. IACR Cryptology ePrint archive 2005, 280 (2005).
[31] A. Pardoe. 2018. Spectre mitigations in MSVC. https://blogs.msdn.microsoft.

com/vcblog/2018/01/15/spectre-mitigations-in-msvc/.

[32] P. Pessl, D. Gruss, C. Maurice, M. Schwarz, and S. Mangard. 2016. DRAMA:

Exploiting DRAM Addressing for Cross-CPU Attacks.. In Proceedings of the
USENIX Security Symposium. USENIX Association, 565–581.

[33] M. K. Qureshi. 2018. CEASER: Mitigating Conflict-Based Cache Attacks via

Encrypted-Address and Remapping. In Proceedings of the ACM/IEEE International
Symposium on Microarchitecture.

[34] P. Turner. 2018. Retpoline: a software construct for preventing branch-target-

injection. https://support.google.com/faqs/answer/7625886.

[35] Z. Wang and R. B. Lee. 2006. Covert and Side Channels Due to Processor Archi-

tecture. In Proceedings of the Annual Computer Security Applications Conference.
473–482. https://doi.org/10.1109/ACSAC.2006.20

[36] Z. Wang and R. B. Lee. 2007. New Cache Designs for Thwarting Software Cache-

based Side Channel Attacks. In Proceedings of the International Symposium on
Computer Architecture. ACM, 494–505. https://doi.org/10.1145/1250662.1250723

[37] Z. Wang and R. B. Lee. 2008. A Novel Cache Architecture with Enhanced Per-

formance and Security. In Proceedings of the ACM/IEEE International Sympo-
sium on Microarchitecture (MICRO 41). IEEE Computer Society, 83–93. https:

//doi.org/10.1109/MICRO.2008.4771781

[38] Z. Wu, Z. Xu, and H. Wang. 2012. Whispers in the Hyper-space: High-speed

Covert Channel Attacks in the Cloud.. In Proceedings of the USENIX Security
Symposium. USENIX Association, 159–173.

[39] M. Yan, J. Choi, D. Skarlatos, A. Morrison, C. W. Fletcher, and J. Torrellas. 2018.

InvisiSpec: Making Speculative Execution Invisible in the Cache Hierarchy. In

Proceedings of the ACM/IEEE International Symposium on Microarchitecture.
[40] Y. Yarom and K. Falkner. 2014. FLUSH+ RELOAD: A High Resolution, Low Noise,

L3 Cache Side-Channel Attack.. In Proceedings of the USENIX Security Symposium,

Vol. 1. 22–25.

[41] Y. Zhang and M. K. Reiter. 2013. Düppel: Retrofitting Commodity Operating

Systems to Mitigate Cache Side Channels in the Cloud. In Proceedings of the ACM
SIGSAC Conference on Computer & Communications Security. ACM, 827–838.

https://doi.org/10.1145/2508859.2516741

[42] X. Zhuang, T. Zhang, and S. Pande. 2004. HIDE: An Infrastructure for Efficiently

Protecting Information Leakage on the Address Bus. In Proceedings of the Archi-
tectural Support for Programming Languages and Operating Systems. ACM, 72–84.

https://doi.org/10.1145/1024393.1024403

11

http://www.specbench.org/osg/cpu2006/
https://doi.org/10.1145/3075564.3075581
https://doi.org/10.1145/3075564.3075581
https://doi.org/10.1145/2024716.2024718
https://doi.org/10.1145/2024716.2024718
https://lwn.net/Articles/738975/
https://lwn.net/Articles/738975/
https://doi.org/10.1145/2086696.2086714
https://doi.org/10.1145/3214292.3214297
https://doi.org/10.1109/HST.2018.8383912
https://doi.org/10.1145/2757667.2757672
https://doi.org/10.1109/SP.2011.22
https://doi.org/10.1145/2897845.2897867
https://doi.org/10.1007/s10617-008-9018-y
https://doi.org/10.1007/s10617-008-9018-y
http://arxiv.org/abs/1806.05179
http://arxiv.org/abs/1806.05179
http://dl.acm.org/citation.cfm?id=2362793.2362804
http://dl.acm.org/citation.cfm?id=2362793.2362804
http://arxiv.org/abs/1801.01203
http://arxiv.org/abs/1801.01203
http://arxiv.org/abs/1801.01203
https://doi.org/10.1145/1456508.1456514
https://doi.org/10.1109/HPCA.2009.4798277
https://doi.org/10.1145/1669112.1669172
https://doi.org/10.1145/1669112.1669172
http://dx.doi.org/10.1109/ICCAD.2011.6105405
http://dx.doi.org/10.1109/ICCAD.2011.6105405
http://arxiv.org/abs/1801.01207
http://arxiv.org/abs/1801.01207
https://doi.org/10.1145/2487726.2487729
https://doi.org/10.1109/MICRO.2014.28
https://doi.org/10.1109/MICRO.2014.28
https://doi.org/10.1109/MM.2016.85
http://dl.acm.org/citation.cfm?id=2337159.2337173
http://dl.acm.org/citation.cfm?id=2337159.2337173
https://blogs.msdn.microsoft.com/vcblog/2018/01/15/spectre-mitigations-in-msvc/
https://blogs.msdn.microsoft.com/vcblog/2018/01/15/spectre-mitigations-in-msvc/
https://support.google.com/faqs/answer/7625886
https://doi.org/10.1109/ACSAC.2006.20
https://doi.org/10.1145/1250662.1250723
https://doi.org/10.1109/MICRO.2008.4771781
https://doi.org/10.1109/MICRO.2008.4771781
https://doi.org/10.1145/2508859.2516741
https://doi.org/10.1145/1024393.1024403

	Abstract
	1 Introduction
	2 Speculative Shadows
	3 Non-Speculative Loads
	4 Ghost Loads
	4.1 Materialization
	4.2 Ghost Buffer

	5 InvisiSpec
	6 Evaluation
	6.1 Methodology
	6.2 Ghost Loads
	6.3 Memory Behavior
	6.4 Performance
	6.5 Energy Efficiency
	6.6 Contribution of each Ghost Mechanism

	7 Related Work
	8 Future work
	9 Conclusion
	Acknowledgments
	References

