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Abstract In the last decade computer engineers have faced changes in the way mi-
croprocessors are designed. New microprocessors do not only need to be faster than
the previous generation, but also be feasible in terms of energy consumption and
thermal dissipation. Recently, a new challenge appeared for computer engineers, the
static power consumption. As process technology advances toward deep submicron,
the static power component becomes a serious problem, especially for large on-chip
array structures such as caches or prediction tables, and it must be taken into consid-
eration. We can fight to reduce leakage power in two different ways: we can switch off
the structure, reducing its leakage to zero but losing its contents (non-state preserving
techniques), or we can lower its voltage (state preserving techniques), obtaining less
savings but being able to restore the state of the structure in a reasonable time.

Data dependences are one of the key factors that limit performance in modern
microprocessors. Value Prediction (VP) is a paradigm that exploits value locality in
order to predict the output of an instruction, overcoming data dependences. The more
accurate the predictor, the more performance is obtained, at the expense of becoming
a potential source of power consumption and a thermal hot spot.

In this work we propose a leakage-efficient design of traditional Value Predictors
(Stride, FCM, and DFCM) based on the fact that many VP entries remain unused dur-
ing long periods of time before being eventually evicted. By applying both state and
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non-state preserving techniques, the unused entries are disabled obtaining substantial
leakage energy reductions (50–80% depending on the configuration and predictor
type).

Keywords Power consumption · Value prediction · Low power · Leakage · Static
power

1 Introduction

Nowadays, when we think about the design of embedded microprocessors we al-
ways think in terms of energy consumption and power dissipation, especially in the
case of battery-operated devices. This trend is also moving to the high performance
domain where operating costs and thermal constrains are becoming a serious prob-
lem. There are two sources of power dissipation: dynamic and static power (power
dissipated regardless of activity, even when transistors are not switching). For sev-
eral generations, static power (leakage) has been just a small fraction of the overall
power consumption in microprocessors, and it was not considered a major concern
[13, 14]. The continued CMOS scaling allows a lower supply voltage which has the
positive effect of reducing the dynamic power component (Pd ∝ V 2

dd). However, us-
ing smaller geometries, along with very small threshold voltages, has the additional
effect of increasing leakage loss exponentially, which leads to static power beginning
to dominate the overall power consumption as process technology drops below 65
nm [1, 7].

Several proposals can be found in literature at both circuit and architecture levels
to reduce the leakage power. Those proposals can be classified into State and Non-
state preserving techniques. Non-state preserving techniques focus on reducing the
leakage power by switching off unused portions of large array structures. Cache De-
cay [12] selectively turns individual data cache lines off if they have not been used
for a long time, reducing leakage energy at the expense of losing the contents of the
cache line. State preserving techniques such as drowsy [6] try to reduce leakage with-
out losing the contents of the structure by using different supply voltages according
to the state of the structure’s entry. The leakage reduction is not as high as in decay
scheme, but restoring the structure’s contents is more power-efficient in drowsy than
in decay.

On the other hand, data dependences are one of the key factors that limit per-
formance in current high-performance superscalar microprocessors. Recent works
suggested that Value Prediction (VP) can overcome the limits imposed by data de-
pendences [8, 9, 17, 19]. Value prediction is a technique that predicts the output of an
instruction as soon as it is fetched allowing subsequent instructions that depend on
that result to execute using the predicted value. These instructions must be validated
once the actual values are computed. More recently, VP has also been successfully
used to perform early load retirements in high performance processors [15]. However,
the use of value prediction techniques has not been widespread, despite the speedup
provided (15% on average as reported in [3]), mainly due to complexity-delay issues.
Note that unlike other prediction structures, such as branch predictors, the access
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time in VPs is not crucial. Firstly, the predicted value is not needed until the instruc-
tion has reached its issue stage, and secondly, current high performance processors
typically implement deeper pipelines (14 stages or more) which effectively hide the
VP latency. In addition, the use of VP structures incurs additional dynamic and sta-
tic power dissipation. The continuous access to the prediction tables in almost each
clock cycle may result in a thermal hot spot, increasing the leakage power of the
structure, as it also happens in caches and branch predictors. In modern high perfor-
mance processors, due to high operating temperatures, it is crucial to reduce leakage
in every possible structure. Although the VP is a small structure compared to an L2
cache, if we let it overheat (likely, as it is accessed frequently and resides quite close
to the core) without any precaution to regulate its leakage, the negative effects can be
quite serious. Small hot structures can leak more than larger but cooler ones and we
cannot afford to allow leakage even in the smallest structures.

In previous papers we proposed the use of non-state preserving techniques for re-
ducing leakage power in value predictors, including Static Value Prediction Decay
(SVPD) [4] and Adaptive Value Prediction Decay (AVPD) [5]. These techniques ei-
ther statically or dynamically locate VP entries that have not been accessed for a
noticeable amount of time and switch them off to prevent leakage.

The major contributions we present in this extended work are the following:

• A novel power-performance and leakage-efficient drowsy approach for Value Pre-
dictors is introduced. This approach will locate unused entries and lower their sup-
ply voltage, retaining the data but requiring five additional cycles to access it again.

• A new Sect. 4.3 that introduces the drowsy mechanism and different ways to im-
plement it has been added to better understand the benefits of the novel proposal.

• A detailed analysis of the experimental results obtained by the novel drowsy mech-
anism for reducing leakage in value predictors has been added (a new Sect. 5.2.2).

• Finally, Sect. 5.2.3 has been extended in order to provide a comparative analysis
of the best drowsy mechanism against previously proposed non-state preserving
mechanisms for reducing leakage in value predictors.

The Adaptive Value Prediction Decay (AVPD) approach is needed for two reasons.
First, adapting the decay interval individually for individual VP entries (as opposed
to cache lines) would represent significant overhead and, thus, we consider it imprac-
tical. Second, VPs are non-tagged structures and, therefore, it is infeasible to track
the ideal miss rate vs. the induced miss rate. AVPD uses a global run-time decay in-
terval, requiring no additional hardware per entry. To adapt this global decay interval
without tags, AVPD uses a time-based approach to judge whether the current decay
interval causes an inordinate number of entries to be prematurely shut off.

The rest of the paper is organized as follows. Section 2 provides some background
and reviews some related work. Section 3 analyzes the utilization of the value pre-
diction tables. The proposed schemes for reducing leakage power in value predictors
are described in Sect. 4. Section 5 shows the experimental methodology and the leak-
age energy savings obtained. Finally, Sect. 6 summarizes the main conclusions of the
work.
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2 Related work

2.1 Approaches for reducing leakage power

Fighting to reduce leakage has been an important topic in microprocessor develop-
ment in the last few years. The techniques to deal with leakage have been categorized
into non-state preserving and state preserving [2, 16, 20, 23].

In the non-state preserving scenario, Powell et al. [18] proposed gated-VDD as a
procedure to restrain leakage power by gating off the supply voltage of cells. This
non-state preserving technique, known as decay, reduces the leakage power drasti-
cally at the expense of losing the cell’s contents. Decay techniques must be applied
very carefully since the information loss can result in an increase of the dynamic
power. Kaxiras et al. [12] successfully applied decay techniques to individual cache
lines in order to reduce leakage in cache structures (67% of static power consumption
can be saved with minimal performance loss). This technique has also been applied
to conditional branch predictors and BTB structures [10, 11].

Conversely, the state preserving scenario is lead by drowsy techniques which try
to reduce leakage without losing the cell’s contents. Drowsy caches [6] use different
supply voltages according to the state of each cache line. The lines in drowsy mode
use a low-voltage level that allows a leakage reduction while retaining the data, but
requiring a high voltage level to access it again. Waking up from the drowsy state
is similar to a pseudo-cache miss incurring in some penalty cycles (about 7 cycles)
according to [16]. Of course, the leakage power savings of this mechanism are lower
than the decay ones, but the additional dynamic power consumption due to the infor-
mation loss is also decreased. Flautner et al. [6] showed that a drowsy cache, which
is putting to sleep all cache blocks periodically, achieves 54% leakage power savings
with negligible performance degradation (about 1%). The authors in [16] confronted
the state and non-state preserving techniques for caches and showed that, for a fast
L2 cache (5–8 latency cycles), decay techniques are superior in terms of both perfor-
mance degradation and energy savings compared to drowsy ones.

As an example of an adaptive decay mechanism suited for caches, Zhou et al. [22]
proposed an adaptive time-based mechanism that dynamically disables cache lines
in order to reduce leakage power dissipation. The mechanism takes advantage of the
cache tag array, which is never switched off, to track if there are many induced cache
misses in order to adapt the length of the decay interval accordingly.

Finally, quasi-static, four-transistor (4T) memory cells are an alternative to tradi-
tional decay techniques. These cells are approximately as fast as 6T SRAM cells,
but do not have connections to the supply voltage (VSS). Conversely, the 4T cells are
charged upon each access whether read or write, and slowly leak the charge over time
until, eventually, the values stored are lost. Authors in [11] applied decay techniques
to branch predictors by using 4T cells, removing some of the drawbacks of gated-
VDD transistors, since any access to a 4T cell automatically reactivates it, whereas
reactivating a 6T cell from the “sleep” mode is somehow more complex, requiring
extra hardware involved in gating the supply voltage.
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2.2 Value prediction overview

This section introduces the most common value predictors and their particularities.
The last value predictor was introduced by Lipasti et al. [17]. This is the most basic
prediction mechanism and, basically, it assumes that the next value produced by an
instruction will be the same as the previous one. A generalization of the last value
predictor leads to the stride value predictor (STP). Introduced by Gabbay et al. [8],
STP uses the last value produced by an instruction plus a stride pattern. In a stride pat-
tern, the difference between two consecutive values is a constant. The next predicted
value is computed by adding the last value to the stride.

The finite context method value predictor (FCM), introduced by Sazeides et al.
[19], uses the history of recent values, called the context, to determine the next value.
This is implemented by using two-level prediction tables. The first level stores the
recent history of the instructions outputs (VHT). The second level stores, for each
possible context, the value which is most likely to follow that pattern (VPT). The
value is predicted by using the program counter to access the VHT table and, ac-
cording to the context hash function, the VPT table is accessed to get the predicted
value.

Finally, the differential finite context method value predictor (DFCM) introduced
by Goeman et al. [9], joins the two previous predictors in one structure. DFCM works
like FCM (two-level prediction tables), but it stores as the context the differences
between the outputs instead of the outputs themselves, plus the last output of the
instruction. In this way, DFCM can predict stride patterns using less storage space
than FCM by adding the last value to the stride associated with the context. For non-
stride patterns, DFCM works just like the FCM predictor.

3 Problem overview: generational behavior in value prediction structures

As introduced before, there are two sources of power dissipation in all processor
structures, dynamic and static power. In value prediction, the dynamic component
is produced by the repeated capacitance charge and discharge on the transistor gate
outputs and strongly depends on the utilization of the VP tables: the more use the
more consumption. The output values of instructions can be predicted at different
demanding levels: the most aggressive utilization predicts the output for all instruc-
tions traversing the pipeline (this is the worst-case scenario for power reduction tech-
niques, and it will be the one used in the rest of this paper). Other approaches restrict
the use of the value predictor to just a fraction of instructions such as long-latency
instructions, load instructions that miss in the data caches, instructions that belong to
the critical path, or just to predict the effective address for memory disambiguation.
Therefore, restricting the VP utilization to just a fraction of selected instructions ef-
fectively reduces the dynamic power component of this structure. However, the static
power component is still there: the VP structure leaks regardless of activity, especially
through subthreshold leakage currents and gate leakage currents that flow even when
transistors are nominally off, with increasing leakage loss for finer process technolo-
gies. For this reason, our work is focused on reducing the VP structure’s static power
component.
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Fig. 1 Temporal behavior of a
value predictor entry

Fig. 2 Fraction of time VP
entries spend in dead state
(SpecInt2000)

Value predictors share many similarities with caches as they are both array struc-
tures. As happened in [12], looking at the value predictor entries’ behavior we can
divide the stream of accesses into generations. A generation is defined as the period
of time an entry is accessed by the same instruction. Entries have an initial usage time
(known as live time) followed by a period of no-utilization (known as dead time) be-
fore they are accessed by a different instruction, as shown in Fig. 1. An entry’s live
time will be the period of time the entry is accessed by the same PC and its dead
time will be the period of time between the last access with a specific PC and the first
access with a new one.

In order to evaluate the generational behavior and the utilization of the VP en-
tries, Fig. 2 shows the fraction of time each entry remains in the dead state1 for the
whole SpecInt2000 benchmark suite as a function of VP size. This way we can deter-
mine if disabling all the entries during the dead times will produce enough savings to
justify the mechanism. It can be observed that the three evaluated value predictors—
Stride, FCM and DFCM—present a similar utilization regardless of their size. For
sizes around 20 KB, the average fraction of dead time is 43%, and for predictor sizes
around 40 KB, the average fraction of time the entries spend in their dead state is
47%. Therefore, if we were able to take advantage of these dead times by detecting
them and shutting the entries off, we could reduce the leakage energy of the value
predictor structure by one half on average. However, it is important to note that this is
not an upper bound on the leakage energy savings that could be achieved by decaying

1This fraction of time can be measured as the ratio total dead time/(total live time + total dead time).
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VP entries. Long periods of inactive live time could also be detected to early shut the
entry off in order to obtain further leakage savings, at the expense of slightly reduc-
ing the VP accuracy and processor performance, as we will show in the following
sections.

4 Techniques for reducing leakage in value predictors

4.1 Non-state preserving scheme: static decay

We will begin introducing the non-state preserving techniques. Static decay is a tech-
nique that tries to locate unused VP entries in order to switch them off [5]. To decide
if an entry is unused, a decay interval is established, i.e. the number of cycles we
should wait before shutting an entry off if there are not any instructions accessing it.
If we choose short decay intervals we will increase the energy savings, but we can
degrade processor performance, as we can disable entries during their live time, los-
ing their contents. On the other hand, choosing long decay intervals will decrease the
chances of disabling entries during live time, but we will lose some potential energy
savings from dead times. Therefore, we need to track the accesses to each VP entry
in order to detect if a particular entry is accessed very frequently or, conversely, the
entry has been unused for a long period of time, probably entering into a dead state.
For the static decay scheme it is crucial to explore a wide range of decay intervals to
precisely detect the dead states while, at the same time, not degrading the VP accu-
racy and, therefore, the speedup provided. Ideally, the best static decay interval is the
one that minimizes the performance impact of prematurely disabling a VP entry.

The static decay mechanism will be implemented by the means of a hierarchi-
cal counter composed of a global decay counter and a two-bit saturated gray-code
counter on each value predictor entry.2 The local counters will only be incremented
when the global counter reaches zero. Any access to an entry will reset its local
counter. When a local counter reaches its upper limit it means that the entry has been
unused for a decay interval, and can be shut off, reducing its leakage power con-
sumption to almost zero. As cited in Sect. 1, the access time to the VP structure is not
crucial but, in our study, we will use a moderate access time of 5 cycles.

To prevent VP entries from leaking we will use gated-VDD transistors [18]. These
“sleep” transistors are inserted between the ground (or supply) and the cells of each
VP entry, which reduces their leakage in several orders of magnitude and can be
considered negligible. An alternative to using gated-VDD transistors consists of using
quasi-static 4T transistors in the VP array, although similar leakage savings would be
expected [11].

The length of the decay interval is controlled by the global decay counter. If we set
the global decay counter to a low value, the VP entries may be disabled prematurely
and leakage will be reduced drastically, but so will the hit rate of the predictor. On

2Using a hierarchical counter is more power-efficient since it allows accessing the local counters at a much
coarser level. Accessing the local counters each cycle would be prohibitive because of the power overhead.
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the other hand, if we increase the global counter too much (a long decay interval), the
leakage energy savings will not be as high as their potential.

Regarding the utilization of VPs, throughout the paper we are predicting the output
values for all instructions traversing the pipeline. However, it is important to note that
this aggressive prediction scheme does not benefit a decay mechanism, either static or
adaptive, since it is based on locating unused predictor entries. The more demanding
use of the VP structure, the less opportunities to detect unused VP entries and the less
leakage energy savings obtained from a decaying mechanism.

There are several overheads that must be considered when performing the leakage
energy savings evaluation. The first component overhead takes into account the extra
dynamic and static power that results from the additional hardware (a global decay
interval counter as well as the two-bit local counters3 per VP entry [5]). The second
component overhead comes from the induced VP misses (when a VP entry is pre-
maturely disabled) that increase execution time. These extra cycles that the program
is running will also lead to additional static and dynamic power dissipation. Note
that this second overhead is highly destructive since each extra cycle accounts for
the overall processor dynamic and static power and can easily cancel whatever VP
leakage energy savings provided by the decay scheme.

4.2 Non-state preserving scheme: adaptive value prediction decay (AVPD)

Adaptive Value Prediction Decay (AVPD) is, like Static Decay, a time-based mech-
anism that analyzes the VP tables to detect unused entries. If an entry is unused for
a long period of time, it probably means that it has entered in a dead state, and we
should proceed to turn it off. As we will see in Sect. 5.2.1, the decay interval is de-
pendant on the application running in the processor or even on the code section being
executed. During program execution there are sections of code where the VP usually
hits or fails its predictions (correct and wrong predictions appear clustered depending
on the program phase). We can also find program sections where the number of VP
entries being accessed is abnormally low, and even identify instructions whose opti-
mal decay interval is different from others. Therefore, if we are able to dynamically
adapt the decay interval to the program needs, higher leakage energy savings could
be obtained compared to statically setting the decay interval.

The AVPD mechanism will use basically the same implementation as the static
approach. The mechanism uses a hierarchical counter composed of a global counter
and a two-bit saturated gray-code counter for each individual value predictor entry
(local counters) to implement the decay interval. The AVPD mechanism considers
that each VP entry can be in one of the following three states, as shown in Fig. 3:
enabled (both data and the local counter are enabled), partially disabled (data is shut
off but the local counter is enabled) or disabled (both data and the local counter are
shut off).

AVPD uses two additional global counters that account for: (a) the number of
partially disabled entries (entries that change from the enable state to the partially

3The dynamic and static power overhead of all 2-bit local counters has been measured to be less than 2%
of the total VP structure.
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Fig. 3 AVPD mechanism

disabled state) within the previous decay interval; and (b) the number of re-enabled
entries (entries that change from the partially disabled state to the enabled state)
within the current decay interval. After a number of cycles equal to the average live
time,4 a reactivation ratio is calculated as the number of re-enabled entries over the
number of partially disabled entries.

As we cannot identify the instruction accessing the value predictor (because it
is implemented as a non-tagged table), it is not possible to determine if there is a
real generational change or if we disabled the entry during its live time. Therefore,
we will use a time-based approach. We will add an intermediate state between the
enabled and disabled states and account, during a short period of time, if there are
many entries that are re-enabled (come back from the intermediate state to enable
state). If that happens, the decay interval is too short. If there are not many re-enabled
entries, we can try to lower the decay interval to increase savings. A positive effect of
AVPD compared to the original cache decay mechanism is that prematurely disabling
a VP entry is not as harmful as disabling a cache line: losing the contents of the
cache line always leads to an extra access to L2 cache or memory to retrieve the lost

4The static decay experiments showed that the average live time is around 400 cycles for the three evalu-
ated VPs.
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information incurring in extra execution cycles. However, losing the contents of a VP
entry might result—or not—in a value miss prediction on the next access to that entry,
but this is exactly what would happen if we had a real generation change (which is
a very common situation and one of the major limitations in traditional non-tagged
VPs, where the huge number of destructive interferences dramatically shortens the
generational replacement).

In addition, AVPD uses two predefined threshold values (increasing threshold and
decreasing threshold) in order to determine whether the length of the current decay
interval is correct: i.e., if the current decay interval makes VP entries to decay during
their live time (prematurely) or during their dead time (as expected). Therefore, if the
reactivation ratio is higher than the increasing threshold, the current decay window
is too short and it is doubled since there are many entries being disabled prematurely.
On the other hand, if the reactivation ratio is lower than the decreasing threshold,
the current decay window is too long and it is halved since we are shutting entries off
too late, losing opportunities to reduce the VP leakage. In order to make the AVPD
mechanism easier to implement, we will use power-of-two decay intervals. VP entries
are shut off, preventing them from leaking, by using gated-VDD transistors [18].

The AVPD mechanism works as follows (see Fig. 3): in each cycle, the global
decay counter is incremented by one and, when it overflows, the local counters of all
VP entries in either enabled or partially disabled states are incremented. However,
an access to any VP entry will result in an immediate reset of its local counter. In
addition:

• For those entries in the enabled state (both VP data and the local counter are en-
abled): if the entry remains unused for a long time, its local counter will eventually
overflow and the entry will change to the partially disabled state. The number of
partially disabled entries is incremented.

• For those entries in the partially disabled state (VP data is shut off whereas the
local counter is enabled): if the entry is not accessed within the average live time,
it will be changed to the disabled state and the local counter will be also shut off.
However, an access to a partially disabled entry will change it to the enabled state,
increasing the number of re-enabled entries.

• For those entries in the disabled state (both VP data and the local counter are shut
off): any access to the entry will change it to the enabled state.

Regarding the predefined values used for the increasing and decreasing thresholds,
it is important to note that setting the decreasing threshold to small values will make
AVPD sure that there are few re-enabled entries before lowering the decay interval,
resulting in a more conservative policy. On the other hand, setting the decreasing
threshold to high values will make AVPD to decrease the decay interval more fre-
quently, resulting in a more aggressive policy. Analogously, setting the increasing
threshold to small values means that AVPD will increase the decay interval even if
there are few re-enabled entries; whereas setting the increasing threshold to high
values will make AVPD to wait until having a great fraction of reactivations before
increasing the decay interval. In Sect. 5.2.3 we evaluate the leakage-efficiency of the
AVPD mechanism for different increasing and decreasing thresholds.

We can split the power overhead of the AVPD mechanism into three main compo-
nents. The first component is associated with the dynamic and static power derived
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from the two-bit local counters inserted into every predictor entry (same overhead
as for the static decay scheme). The second component comes from the three global
counters: one is part of the hierarchical decay interval counter (also appears in the
static decay scheme) and the other two counters are specific of the adaptive decay
scheme. The third component overhead is derived from the induced VP misses (when
a VP entry is prematurely disabled) that increase program execution time. These ex-
tra cycles that the program is running will also lead to additional static and dynamic
power dissipation.

It is important to note that AVPD is virtually not introducing additional power over-
head nor complexity when compared to the static decay scheme (just the additional
two global counters whose power overhead that has been conveniently modeled into
the AVPD power model).

4.3 State preserving scheme: drowsy

The drowsy technique aims to reduce leakage power consumption while preserv-
ing the contents of a cell by switching between two working modes, low-power and
high-power. While the cell is in low-power mode, the information is preserved, but
it cannot be accessed. In order to access the cell again it must be reinstated into the
high-power mode. A drowsy scheme can be configured according to the following
parameters [6]:

• Update window size: specifies if the amount of cycles to wait before turning entries
into drowsy mode can be varied.

• Simple or No-access policy: “simple” means that all entries are turned into drowsy
mode after a number of cycles. “No-access” puts to drowsy mode only the entries
that have not been accessed in a number of cycles.

• Awake or drowsy tags: put tags into drowsy mode or not (affects latency).

According to Flautner et al. [6], the simple policy with a window size of 8000
cycles comes very close to the behavior of the no-access policy with a window size
of 2000. They choose a simple policy with a window size of 4000 cycles for their
tests, as it reaches a reasonable compromise between simplicity of implementation,
power savings and performance. In our case, it is not fair to compare the decay and
drowsy approaches using the simple policy since the decay approach will delete all
the information of the structure every decay interval (data loss will mean an access
to L2 or memory in decay, but only a few cycles for drowsy to re-enable the entry).
Instead, we will then use an update window–no-access policy.5 In our case, drowsy
will be used exactly as decay, at an entry level. The leakage power consumption of a
transistor in drowsy mode is measured to be 15% of the original leakage (as estimated
in [6]), something significant compared with the almost 0% of the decay scheme.

There are several ways of implementing these two power-level techniques (ABC-
MTCMOS, DVS, etc.). The Dynamic Voltage Scaling (DVS) [6] mechanism allows
structures to dynamically change their speed and voltage while operating, increas-
ing their energy efficiency. If we refer to memory structures, it is possible to reduce

5The awake/drowsy tags policy cannot be evaluated because the evaluated VPs do not have tags.
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their supply voltage while retaining the data. Scaling the voltage of the cell to 0.5
times the supply voltage can maintain the cell’s state. This reduction of the operat-
ing voltage allows us to reduce the leakage currents, and thus the leakage power of
the memory cell. DVS must be controlled by a voltage scheduler to dynamically ad-
just the processor speed and voltage during execution. Voltage schedulers analyze the
state and context of the system in order to predict future workload of the processor,
increasing the complexity of scheduling.

Auto-Backgate-Controlled MT-CMOS is a mechanism that dynamically increases
the transistors’ threshold voltages when going to “sleep” mode by raising the tran-
sistors’ body voltage. This higher VT reduces the leakage current without losing the
cells contents when going to “sleep” mode but offsets the total leakage power sav-
ings. This technique also requires high energy to switch between states increasing the
time needed to transition. DVS is faster, easier to implement, and obtains more power
reduction than ABC but depends on the process technology and is more sensible to
SEU noise.

5 Experimental results

5.1 Simulation methodology

To evaluate the energy-efficiency of SVPD, AVPD and drowsy techniques we have
used the SpecInt2000 benchmark suite. All benchmarks were compiled with max-
imum optimizations (-O4-fast) by the Compaq Alpha compiler and they were run
using a modified version of HotLeakage power-performance simulator [21] that
includes the dynamic and static power models for the evaluated Value Predictors
(Stride, FCM and DFCM), as well as the power overhead associated with SVPD,
AVPD and drowsy techniques. All benchmarks were run to completion using the re-
duced input data set (test). The VP access latency has been set to 5 cycles for the
three evaluated VPs.

Table 1 shows the configuration of the simulated architecture. The STP value pre-
dictor has 76 bits per entry: value (64) + stride (8) + confidence (2) + decay counter
(2). FCM has a variable number of bits per entry on the first level table: first level
decay counter (2) + history bits for second level table (variable) and 68 bits per entry
on the second level table: value (64) + confidence (2) + second level decay counter
(2). DFCM has 68 bits per entry + a variable amount of bits on the first level table:
value (64) + first level decay counter (2) + confidence bits (2) + history bits for sec-
ond level table (variable) and 12 bits on the second level table: confidence (2) + decay
counter (2) + stride (8). The leakage-related parameters have been taken from the Al-
pha 21264 processor provided with the HotLeakage simulator suite, using a process
technology of 70 nanometers.

5.2 Leakage-efficiency of state and non-state preserving mechanisms

As discussed previously, predicting the output values for all instructions traversing
the pipeline does not benefit any of the proposed mechanisms, either static or adap-
tive, since they are based on locating unused predictor entries. The more demanding
use of the VP structures, the less opportunities to detect unused VP entries.
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Table 1 Processor
configuration Processor core

Process Technology: 70 nanometers

Frequency: 3200 MHz

Instruction Window 128 RUU, 64 LSQ

Decode Width: 8 inst/cycle

Issue Width: 8 inst/cycle

Functional Units: 8 Int Alu; 2 Int Mult

8 FP Alu; 2 FP Mult

Memory hierarchy

L1 I-cache: 64 KB, 2-way

L1 D-cache: 64 KB, 2-way

L2 cache: 2 MB, 4-way, unified

Memory: 2 memports

Other information

Branch Predictor: 16 bit Gshare

Branch & Value Pred.: 2 ports

Fig. 4 Average speedup for the
static decay and drowsy schemes
for 10 KB VPs (SpecInt2000)

In order to better understand the effects of prematurely deactivating a VP entry,
Fig. 4 shows the differences in speedup for both static decay and drowsy with decay
intervals from 256 K cycles to just 64 cycles. We must never forget that traditional
value prediction (with no power-saving technique) can provide significant speedups
(13% for a 10 KB DFCM).

Looking into the performance degradation caused by static decaying, we can no-
tice that for FCM and DFCM predictors there is no IPC degradation until 256-cycle
decay intervals. For the STP predictor, there is a slight but negligible IPC degrada-
tion (less than 1%) for 1024- and 512-cycle decay intervals. As happened before,
for 256-cycle (and smaller) intervals the performance degradation is not tolerable.
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Fig. 5 STP value predictor
performance degradation
(SpecInt2000)

We measured the VP entries’ average live time to be about 400 cycles, so, when the
decay interval exceeds that critical point, the speedup provided falls apart.

On the other hand, the drowsy technique “normalizes” the optimal decay interval
for all predictors to 256 cycles, behind the average live time, but close enough to it
to maintain the speedups provided by the value predictor. Note that drowsy does not
lose the entries’ contents, which makes drowsy not to fall in performance as quickly
as decay does. But this does not make drowsy more energy-efficient, as performance
is only an element of the energy metric, and the power reduction provided by drowsy
is lower than decay’s.

5.2.1 Static decay for VPs

In this section we perform an evaluation on the energy-efficiency of the static decay
scheme for value predictors for different predictor sizes (sizes are not power-of-two
numbers because of the extra 2-bit counters per entry) and for several decay interval
windows: 64, 256, 512, 1024, 4 K, 32 K and 256 K cycles.

For each evaluated VP we report the IPC degradation as we reduce the decay
interval and the corresponding leakage energy6 savings for the VP structure. Overall
leakage energy savings are not presented due to HotLeakage limitations that only
provide static power models for regular array structures such as caches, predictors,
and the register file.

Figure 5 shows the performance degradation of the STP value predictor for dif-
ferent sizes (SpecInt2000 average). Looking at the performance degradation caused
by static decay we can notice that it is degraded as expected, due to the data loss of
prematurely deactivating VP entries that still are in a live state. In particular, there is
a slight IPC degradation (around 1%) for 1024- and 512-cycle decay intervals. How-
ever, due to early deactivation of entries and the induced extra execution cycles for
256-cycle and smaller decay intervals, the performance loss is not tolerable.

6Recall that the performance degradation is also included in the energy metrics (leakage energy = leakage
power * delay).
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Fig. 6 STP value predictor
leakage energy savings
(SpecInt2000)

Fig. 7 FCM value predictor
performance degradation
(SpecInt2000)

Figure 6 shows the average leakage energy savings of the STP predictor. As ex-
pected from the IPC degradation, for very small decay intervals (64 and 256 cycles),
the early deactivation of entries results in no leakage energy savings at all due to the
induced extra execution cycles that completely cancel whatever leakage power sav-
ings provided by the decay mechanism. However, for 1024 cycles and, particularly,
for a 4 K-cycle decay interval, the proposed VP decay approach obtains 52% average
leakage energy savings when considering a medium size (20 KB) predictor.

Figures 7 and 8 show the performance degradation and the average leakage energy
savings of the FCM value predictor. Since FCM is a two-level predictor (with the rel-
evant data stored in the second level table), we will disable both levels independently.
We can notice a behavior similar to the STP predictor for the very small decay inter-
vals (64 and 256 cycles), again with negative leakage energy savings due to the early
deactivation of entries and the induced extra execution cycles. On the other hand,
for very big decay intervals (32 K and 256 K cycles), the overhead is almost zero,
but we obtain very small leakage energy savings (Fig. 8) since there are almost no
deactivations of VP entries. However, as we reduce the decay interval length, there
is an increase in leakage savings with a maximum in the 512-cycle interval. For this
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Fig. 8 FCM value predictor
leakage energy savings
(SpecInt2000)

Fig. 9 DFCM value predictor
performance degradation
(SpecInt2000)

Fig. 10 DFCM value predictor
leakage energy savings
(SpecInt2000)

decay interval, a 20 KB FCM predictor obtains average leakage energy savings of
75%, showing the benefits of Value Prediction Decay.

Figures 9 and 10 show the performance degradation and the average leakage en-
ergy savings of the DFCM value predictor. We can notice that the DFCM predictor
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Fig. 11 Static drowsy scheme
for the DFCM value predictor
(SpecInt2000)

behaves very close to FCM. However, for big decay intervals, DFCM obtains better
energy savings (Fig. 10) due to a positive side effect when shutting entries off, which
results in a reduction of destructive interferences. Imagine that we have entries in
the first level table with different predictions that point to different second level table
entries. If the instruction that these entries are predicting changes, there is “trash” on
the tables from the previous prediction that will interfere during some cycles with the
new information until the predictor gets stable, whereas if we decay, all entries will
reset, so they will always behave the same. Again, as we reduce the decay interval
length, there is an increase in leakage energy savings with a maximum in the 512-
cycle interval. In this case, for a predictor size of around 20 KB we obtain average
leakage energy savings of 65%. For both FCM and DFCM predictors, the best en-
ergy savings are obtained for a decay interval within the 512-cycle range, unlike data
caches where the best decay intervals are within the 8 K-cycle range [12].

5.2.2 Drowsy for VPs

This section shows the results of the drowsy technique applied to DFCM, STP and
FCM value predictors per entry. In order to access an entry in drowsy state, we add 5
additional latency cycles to the original 5 latency cycles of the VP structure.

Figure 11 shows the average energy savings for a DFCM predictor using the
drowsy technique applied statically. Compared to Fig. 10, the best drowsy config-
uration obtains less leakage energy savings than the best static decay. Despite the fact
that drowsy shortens the best decay interval from 512 to 256 cycles, the performance
degradation and the additional overhead (15% extra consumption) makes drowsy to
lose against static decay for DFCM. For a predictor size of around 10 KB, drowsy
obtains average leakage energy savings of 44% while for a size around 20 KB, the
average leakage energy savings are 57%.

In the STP predictor case (Figs. 12 and 6), drowsy behaves better than decay. As
we can see in Fig. 4, the speedup degradation in the static decay for STP predictor
begins in 4 K cycles but, for drowsy, it starts at 256 cycles. This reduction of the
decay interval and the low IPC degradation makes energy savings greater in drowsy
than in decay.
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Fig. 12 Static drowsy scheme
for the STP value predictor
(SpecInt2000)

Fig. 13 Static drowsy scheme
for the FCM value predictor
(SpecInt2000)

As happened previously with the DFCM predictor, the FCM predictor behaves
better for the static decay scheme than for drowsy (Figs. 8 and 13). As we can see in
Fig. 13, there best decay interval depends on the predictor’s size. For small predictor
sizes, the best decay interval is 256 cycles, and, for anything greater than 10 KB,
the best decay interval is 512 cycles. This is due to extra penalty cycles in the FCM
predictor for sizes bigger than 10 KB. For a predictor size of around 10 KB, the
drowsy scheme obtains average leakage energy savings of 51%, while for a size about
20 KB it obtains 64% energy savings.

5.2.3 Adaptive decay for VPs

Using a static decay interval means that we must choose that decay interval care-
fully in order to maximize the leakage savings. Figure 14 shows the leakage energy
savings, per benchmark, for a 10 KB DFCM value predictor using the static decay
technique. In some cases, the best static decay interval may differ between applica-
tions (as it can be seen in Fig. 14, where the best static decay interval is 4 K cycles
for some benchmarks—mcf and gap—and 512 cycles for the rest). However, even
when using profiling techniques in order to determine the best decay interval per ap-
plication, there is no guarantee that the best leakage savings are obtained, since the
static decay approach cannot capture variations within an application. This second
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Fig. 14 Static decay scheme for
a 10 KB DFCM value predictor

effect is important in the case of value prediction structures since correct and wrong
predictions appear clustered depending on the program phase. Therefore, an adaptive
decay scheme can dynamically choose decay intervals at run-time to more precisely
match the generational behavior of prediction tables’ entries.

This section presents the leakage-efficiency evaluation of the proposed AVPD
mechanism for the Stride, FCM and DFCM predictors, compared to the best con-
figuration of both static decay and drowsy schemes. Each figure shows the average
VP leakage energy savings for some representative configurations of the adaptive
mechanism, as well as the best static decay (512-cycle decay interval according to
Sect. 5.2.1) and the best static drowsy configuration (256-cycle interval according to
Sect. 5.2.2) for comparison purposes.

For the evaluation of AVPD we carried out a comprehensive set of experiments for
many configurations using different decreasing threshold and increasing threshold
values. In this paper we only present the most representative configurations:

• Configuration 00/100 (decreasing threshold set to 0% / increasing threshold set to
100%): this is the most conservative policy since AVPD will only try to decrease
the decay interval if none of the entries are reactivated; and it will only try to
increase the decay interval when all the entries are reactivated. It works pretty well
for all the studied predictors as it does not take any risks when changing the decay
interval.

• Configuration 50/50: this is the most aggressive configuration as it continuously
keeps changing the decay interval, increasing or decreasing the decay interval ac-
cording to the reactivation ratio.

• Configurations 40/60 and 70/100: these are the best ones we have found for the
different predictors. The 40/60 is also aggressive but works well with the Stride
predictor, as it balances long decay intervals with short ones. The 70/100 configu-
ration tends to shorten the decay interval whenever possible, only raising it when
all decayed entries are reactivated.

Figure 15 shows the average leakage energy savings for the DFCM predictor and
the cited adaptive configurations as well as the best static and drowsy decay intervals
(512 and 256 cycles respectively). For this predictor, the best adaptive configuration
is 70/100 and surpasses the best static decay and drowsy schemes for all evaluated
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Fig. 15 DFCM value predictor
leakage energy savings
(SpecInt2000)

Fig. 16 STP value predictor
leakage energy savings
(SpecInt2000)

predictor sizes. For an average size of 10.5 KB, AVPD obtains 64% average leakage
energy savings versus 55% of the static scheme and 44% of drowsy. For the smaller
size of 5 KB, the difference between the adaptive and static schemes is even more
evident: AVPD provides additional average leakage energy savings of 14% with re-
spect to the static scheme (AVPD obtains 55% and the static scheme just 41%) and
26% with respect to the drowsy scheme (55% versus 29%). It can be observed that, as
size grows, the differences between the adaptive and static schemes disappear, both
obtaining 80% average leakage energy savings for a size of 87 KB. In such large
predictors there is no need for an adaptive scheme, because there are very low gen-
erational changes, and they can be easily identified by the static scheme. The 70/100
configuration is the best one we have found since it tends to reduce the decay in-
terval toward its lower limit (256 cycles). In general, we have seen that whatever
configuration that tends to shorten the decay interval will perform well with DFCM,
but constant changes of the decay interval will result in a loss of net leakage energy
savings.

Figure 16 shows the average leakage energy savings for the STP predictor. As
cited in Sect. 4.2, the AVPD mechanism tries to decrease the decay interval in order
to reduce the leakage energy. The STP predictor is especially susceptible to these
trials of reducing the decay interval since a big interval reduction degrades the STP
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Fig. 17 FCM value predictor
leakage energy savings
(SpecInt2000)

accuracy (as shown in Fig. 4) enough to make the power overhead due to the induced
extra cycles equal to the power savings provided by AVPD. This makes the adap-
tive scheme to behave similarly to the static scheme. The STP predictor works better
with configurations that change the decay interval quickly, like 50/50 or 40/60, be-
cause configurations that tend to shorten the decay interval (like 70/100) decrease the
predictor’s accuracy too much, making the overhead much greater than the provided
energy savings. On the other hand, as said in Sect. 5.2.2, drowsy dominates over de-
cay approaches for the STP due to the reduction of the decay interval from 4 K cycles
to 256. This reduction increases power savings more than the drowsy costs, without
any major effect on performance, making the energy savings larger for drowsy than
decay schemes.

Finally, Fig. 17 shows the average leakage energy savings for the FCM predictor.
This value predictor behaves very similarly to DFCM, with the same best configu-
ration of 70/100, but obtaining even greater leakage energy savings. In addition, the
differences compared to the best static decay and the best drowsy schemes are also
higher. For a predictor size of 4.6 KB, the static decay approach obtains 50% leak-
age energy savings whereas the adaptive scheme obtains 74% (an additional 24%).
Drowsy only obtains 35% average leakage energy savings for that size. For bigger
sizes, the difference between the static and adaptive schemes keeps lowering until it
converges to the same leakage energy savings for big predictor sizes (close to 90%
savings for a size of 78 KB), but still perform better than the static drowsy. If we focus
on moderated FCM sizes (around 10 KB), the best static decay scheme obtains 64%
average leakage energy savings, while the best drowsy obtains 51%, and the AVPD
obtains 77% (13% and 28% of additional savings). Note that FCM, like DFCM, per-
forms well with any configuration that tends to decrease the decay interval, due to the
negligible impact on its accuracy.

6 Conclusions

This paper analyzes several mechanisms able to dramatically reduce the average leak-
age energy of traditional value predictors with negligible impact on neither prediction
accuracy nor processor performance making Value Prediction a low-power approach
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to increase performance in energy-efficient microprocessor designs. We must reduce
leakage in any possible structure, despite its size, as smaller and hotter structures can
leak more than larger but cooler ones. In this paper we evaluate both state and non-
state preserving techniques for reducing leakage power in value predictors including
Static Value Prediction Decay (SVPD) [4], Adaptive Value Prediction Decay (AVPD)
[5] and a novel power-performance drowsy approach for Value Predictors. SVPD and
AVPD are mechanisms able to dramatically reduce the leakage energy of traditional
value predictors with negligible impact on neither prediction accuracy nor processor
performance, even in the proposed pessimistic scenario where all instructions are pre-
dicted. These techniques dynamically locate VP entries that have not been accessed
for a noticeable amount of time and switch them off to prevent leakage. On the other
hand, the drowsy approach will locate these entries and lower the supply voltage,
retaining the data but requiring five additional cycles to access it again.

AVPD extends the static decay approach in order to better exploit the variable
program behavior as well as the different code sections where the value predictor can
be infra-utilized. On the other hand, the drowsy approach shows how important is to
retain the data in some cases (STP predictor) at the expense of a reactivation penalty.
Also note that if an entry has been unused for a long time, even if drowsy can restore
its previous state, the prediction is likely to be incorrect either because the instruction
inside the predictor is different (destructive interference) or because it has entered
a new program phase and the predictor must warm up before being able to predict
accurately.

The AVPD mechanism requires just slight modifications, with virtually no extra
hardware overhead compared to the static decay scheme, and it is able to beat both
static decay and drowsy for the most precise value predictors (FCM and DFCM)
while the STP predictor behaves better with the drowsy approach. The reason is that
the STP predictor is more sensitive to losing the entries’ contents than FCM and
DFCM, since the STP has all the information stored in only one table while the other
are two level predictors. Experimental results show that, for the DFCM value predic-
tor and considering an average predictor size of 10 KB, the leakage energy savings
obtained by AVPD surpass the static approach by 14% and the drowsy approach by
24%, on average.

Finally, the present work shows that the use of low-power value prediction struc-
tures could make Value Prediction still a power-performance efficient mechanism
suitable for both low-power and high-performance processor designs.
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