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Abstract—In the recent years virtually all processor 
architectures employ multiple cores per chip (CMPs). It is 
possible to use legacy (i.e., single-core) power saving techniques 
in CMPs which run either sequential applications or 
independent multithreaded workloads. However, new 
challenges arise when running parallel shared-memory 
applications. In the later case, sacrificing some performance in 
a single core (thread) in order to be more energy-efficient 
might unintentionally delay the rest of cores (threads) due to 
synchronization points (locks/barriers), therefore, harming the 
performance of the whole application.  

CMPs increasingly face thermal and power-related 
problems during their typical use. Such problems can be 
solved by setting a power budget to the processor/core. This 
paper initially studies the behavior of different techniques to 
match a predefined power budget in a CMP processor. While 
legacy techniques properly work for thread independent/multi-
programmed workloads, parallel workloads exhibit the 
problem of independently adapting the power of each core in a 
thread dependent scenario. In order to solve this problem we 
propose a novel mechanism, Power Token Balancing (PTB), 
aimed at accurately matching an external power constraint by 
balancing the power consumed among the different cores using 
a power token-based approach while optimizing the energy 
efficiency. We can use power (seen as tokens or coupons) from 
non-critical threads for the benefit of critical threads. PTB 
runs transparent for thread independent / multiprogrammed 
workloads and can be also used as a spinlock detector based on 
power patterns. Results show that PTB matches more 
accurately a predefined power budget (total energy consumed 
over the budget is reduced to 8% for a 16-core CMP) than 
DVFS with only a 3% energy increase. Finally, we can trade 
accuracy on matching the power budget for energy-efficiency 
reducing the energy a 4% with a 20% of accuracy. 

Keywords: power consumption; power budget; DVFS; power 
tokens; power balancing. 

I.  INTRODUCTION 

CMP architectures exhibit some peculiarities in terms of 
power and performance compared to a single-core processor. 
In terms of power consumption, whenever the number of 
processing cores is doubled, power consumption is almost 
multiplied by two. Although technology scaling reduces 
dynamic power consumption, the complexity of the 
interconnection network and caches increases when more 
cores are incorporated into the die resulting in higher power 

consumption. Furthermore, when a CMP is running parallel 
multithreaded workloads many interdependent threads are 
usually executed in different cores. In this scenario, if a 
power-saving mechanism is independently applied to a 
single core, it can affect the rest of threads in the next 
synchronization point, slowing down the whole program 
execution and increasing the overall energy consumption. 
Global information is required to reduce power in threads 
that are not in the critical path of execution (e.g., threads that 
arrive earlier to synchronization points)  [1] [11] [12] [13] [17]. 

The more cores in the processor, the more thermal 
problems. A relevant technique to reduce temperature is to 
set a power budget to the processor  [1] [2]. This processor’s 
power budget is not only useful to control power and 
temperature but also to satisfy external power constraints 
(i.e., power cuts or shared power supply). It could also be 
used to increase the number of cores in a CMP maintaining 
the same TDP (Thermal Design Power), or to reuse an 
existent processor design with a cheaper thermal package. A 
well-known approach to make the processor’s power 
converge to a power budget is Dynamic Voltage and 
Frequency Scaling (DVFS)  [5] [6] [7]. DVFS relies on 
modifications in voltage and frequency to reduce the 
processor’s dynamic power, as dynamic power depends on 
both voltage (quadratically) and frequency (linearly). 
However, DVFS has some important drawbacks: a) long 
transition times between power modes  [8]; b) long 
exploration and use windows in order to amortize DVFS 
overheads, making it difficult to adapt precisely to the 
program behaviour; and c) when activated DVFS affects all 
instructions within a thread regardless of their usefulness in 
the program. 

In order to overcome those DVFS limitations, in  [2] 
Cebrián et al. proposed the use of fine-grained 
microarchitectural power-saving techniques to accurately 
match a predefined power budget in a single-core scenario. 
However, in a CMP scenario these techniques have a great 
impact on power and performance due to synchronization 
points which make them not good candidates to lower the 
power under the budget. In the literature it can be found 
other specific CMP proposals to match a predefined power 
budget such as  [1] [18] or  [19], but they are only suitable for 
CMPs running multiple single-threaded (or 
multiprogrammed) applications but not parallel workloads 
and they do not perform any accuracy analysis on the budget 
requirements. There are other works aimed at reducing the 
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power wasted when cores wait at synchronization points, 
either putting cores to sleep  [12] or trying to make all cores 
reach the synchronization point simultaneously (e.g., meeting 
points  [11] or thrifty barriers  [13]), however, these 
mechanisms are not suitable for matching a power budget on 
their own, the main goal of this work. 

To address the shortcomings of previous works we 
propose Power Token Balancing (PTB), a mechanism that 
balances the CMP power consumption by means of 
efficiently distributing power tokens among the cores. 
Whenever the CMP exceeds a predefined global power 
budget, local power budgets are applied to all running cores. 
Without any global mechanism the power would be just 
equally split between the cores. However, PTB globally 
manages power consumption so cores that are under the 
power budget give away their remaining allotment of power 
(up to the local budget) to cores over the budget so they can 
continue execution without performance degradation 
ensuring that the global power budget is not exceeded. PTB 
benefits from any power unbalance among cores (cache 
misses, ROB stalls, pipeline stalls, etc.) but has another 
important feature: it transparently benefits from thread’s 
busy-waiting synchronization in a very “lightweight” way. 
Since a core waiting in a barrier naturally reduces its power 
consumption, PTB allows its spare power tokens to be given 
to other cores doing useful work (i.e., critical threads). The 
same applies to locks: a core that enters into a critical section 
receives extra power tokens from other cores waiting on 
spinlocks. Due to the additional power tokens its local power 
budget is less restrictive and the core can leave the critical 
section faster.  

The main advantages of PTB over previous approaches 
focused on low-power spinning (such as meeting points  [11], 
thrifty barriers  [13] or  [19]) are: 

• PTB is designed (but not limited) to work in a CMP 
scenario running parallel workloads. Unlike other 
proposals, PTB is not limited to multiple instances of 
applications and also works properly with 
multiprogrammed workloads. 

• PTB’s main goal is to make the per-cycle power 
consumption go under a certain power budget while 
maximizing accuracy, not to reduce overall energy. 
Previous approaches on low-power spinning are not 
suitable for a power-constrained scenario, as power 
saving mechanisms must be applied outside the 
synchronization points. 

• PTB takes advantage of any power unbalance 
including both barriers/locks in a spinning state 
(busy-wait) plus thread criticality by just relying on 
power token information, making it more generic 
than previous approaches. 

• PTB can identify critical threads faster than 
 [11] [12] [13] (the critical thread can change during 
execution) since it relies on cycle-level information, 
increasing its adaptability to the application 
behavior. 

• PTB is a fine-grained approach, unlike 
 [11] [12] [13] [19], because it relies on actual real-time 

information and not time/power estimations, 
increasing accuracy when matching the budget and 
minimizing the standard power deviation from the 
selected power budget. 

• PTB is able to reduce both the average power 
consumption and the average chip temperature with 
minimal standard deviation due to its precision on 
matching the predefined power budget. 

The rest of the paper is organized as follows. Section II 
provides some background on power-saving techniques for 
both single-core processors and CMPs. Section III describes 
our simulation methodology and shows a first analysis on the 
individual techniques and motivates the need for CMP-
specific approaches to match the power budget. Section IV 
reports the main experimental results. Finally, Section V 
shows our concluding remarks. 

II. BACKGROUND AND RELATED WORK 

A.  Dynamic Voltage Frequency Scaling (DVFS) 

DVFS, introduced in the 90’s  [6], is based on the fact that 
the per-cycle power consumption of a transistor depends 
quadratically on the supply voltage and linearly on its 
frequency (P ∝ VDD

2× f) and downscales both voltage and 
frequency to save power  [7]. But as the process technology 
goes into deep submicron, the margin between VDD (supply 
voltage) and VT (threshold voltage) is reduced. As this 
margin decreases, the processor’s reliability is reduced, 
among other undesirable effects.  

Furthermore, the transistor’s delay (or switching speed) 
depends on δ ≈ 1/ (VDD – VT)α, with α > 1. That means that 
we can lower VDD for DVFS as long as we keep constant the 
margin between VDD and VT (i.e., VT must be lowered 
accordingly) so we can obtain the desired speed increase 
derived from technology scaling. However, the counterpart 
of reducing VT is twofold: a) leakage power increases as it 
exponentially depends on VT  [3] [4]; and b) processor 
reliability is further reduced. 

B.  Hybrid Power Control Approaches 

Recently, in  [2] we introduced the concept of power 
tokens in a single-core scenario along with a two-level 
approach that firstly applies DVFS as a coarse-grained 
approach to reduce power consumption towards a predefined 
power budget, and secondly chooses between different 
microarchitectural techniques to remove the remaining 
power spikes. The second-level mechanism depends on how 
far the processor is over the power budget in order to select 
the most appropriate microarchitectural technique.  

Experimental results show improvements in terms of 
both energy reduction and accuracy on matching the power 
budget for a single-core scenario. Sasanka et al. propose the 
use of DVFS and some micro-architectural techniques to 
specifically reduce the power consumption in real time video 
programs  [9]. Their selected microarchitectural techniques 
try to reduce the power of functional units and the instruction 
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window by using profiling. Winter et al. also propose the use 
of a two-level approach that merges DVFS and thread 
migration to reduce temperature in SMT processors  [10].  

C. CMP-specific Power Control Mechanisms  
As mentioned before, CMP processors have some 

peculiarities when managing power and performance in 
parallel workloads. In such workloads threads must 
periodically synchronize (e.g., for communication purposes) 
and any delay introduced in one of the threads may end up 
delaying the whole application.  

1) Spin-lock Detection to Reduce Power 

When a processor is waiting in either a lock or a barrier it 
enters in a “spinning” state that may become an important 
source of useless power consumption if it remains there for 
too long. In order to detect spinning, first approaches used 
source code or binary instrumentation but that requires 
recompilation and might be infeasible in certain situations. In 
 [12] Li et al. proposed a real-time hardware mechanism to 
detect processors in spinning state. Their mechanism checks 
the machine’s state between instructions that cause a 
backward control transfer (BCT), usually a branch or a jump 
instruction. If the machine’s state remains the same between 
several BCTs, the processor has entered in a spinning state. 
They also propose scaling frequency for processors in a 
spinning state assuming that they can wake up a processor. 
However this mechanism does not provide precise power 
management and cannot be applied outside locks/barriers. 

2)  DVFS in CMPs 

As cited in the introduction, Li et al. proposed thrifty 
barriers  [13], a DVFS-based mechanism to reduce power 
consumption in CMPs. Basically, they calculate the per-core 
time interval between synchronization points and once they 
know how long it takes the different cores to get to the next 
synchronization point, they disable or DVFS cores that get to 
the barrier. They approximate the wakeup time by the time 
the slowest thread takes to get to the barrier. If the 
sleep/wakeup takes more time than they can save, the 
technique is not used. In  [1] Isci et al. proposed a chip-level 
dynamic power management for CMPs but just focusing on 
single-threaded programs while Sartori et al.  [19] extends 
this work to reduce peak power in a distributed way. These 
mechanisms selectively change between several DVFS 
power modes for the different cores maximizing throughput 
under certain power constraints. Unfortunately, as they rely 
on the use of performance counters and/or time estimation, 
these proposals only work properly for multiprogrammed or 
single-threaded applications simultaneously running on the 
different cores of the CMP, because for parallel workloads 
performance counters (and time estimations) are almost 
useless for relating performance and power (due to 
synchronization points). A spinning core may have a high 
IPC, but doing nothing but spinning. In other words, 
synchronization points may increase global execution time 
although local core performance counters show a 
performance increase. Moreover, none of the mentioned 

techniques provides any precision on matching an imposed 
power budget. 

In  [11] Cai et al. proposed meeting points. This 
mechanism locates critical threads in parallel regions and 
uses DVFS to reduce power consumption of non-critical 
threads. They propose two approaches: thread delaying, that 
slows down the fastest thread to ensure that all threads get to 
the synchronization point (meeting point) at the same time; 
and thread balancing, that gives priority to the critical thread 
when accessing resources in a 2-way SMT processor. They 
achieve substantial energy reduction as long as the critical 
thread can be identified.  

In the commercial area, Intel’s i7 turbo mode shuts off 
idle cores, reducing their voltage to zero, rather than just 
lowering the power provided to them. Not having as many 
cores on producing heat will allow other cores to use more 
power, increasing the performance of those cores, while still 
not exceeding the maximum TDP of the processor. Again, 
this is useful when running sequential or low-parallel 
applications. However, for parallel workloads, overclocking 
two cores does not necessarily mean a performance 
improvement due to memory dependences and 
synchronization points. 

III. ENFORCING A POWER BUDGET IN CMPS 

There are certain circumstances, usually related to power 
or thermal constraints, where precise power/energy control 
of the processor is required. Our goal is to reduce power 
consumption to accurately match an imposed power budget 
in an energy-efficient way, always having in mind the 
peculiarities of CMP processors running parallel workloads. 
To achieve this goal we need: first to detect program points 
where power can be saved without harming performance 
(e.g., spin-locks, wrong execution paths, cache misses, etc.) 
and reduce it; second, to balance the power between the 
cores; and finally (when nothing else can be done), to reduce 
the power locally even at the cost of degrading performance 
(by means of DVFS and/or microarchitectural techniques).  

A. Simulation Environment 
 For evaluating the proposed approaches we have used 

the Virtutech Simics platform  [14] extended with Wisconsin 
GEMS v2.1  [15]. GEMS provides both detailed memory 
simulation through a module called Ruby and a cycle-level 
pipeline simulation through a module called Opal. We have 
extended both Opal and Ruby with all the studied 
mechanisms that will be explained next. The simulated 
system is a homogeneous CMP consisting of a number of 
replicated cores connected by a switched 2D-mesh direct 
network. Table 1 shows the most relevant parameters of the 
simulated system. Power scaling factors for a 32nm 
technology were obtained from Cacti’s v5.1  [16]. To 
evaluate the performance and power consumption of the 
different mechanisms we used scientific applications from 
the SPLASH-2 benchmark suite in addition to some 
PARSEC applications (the ones that finished execution in 
less than 3 days in our cluster). Results have been extracted 
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from the parallel phase of each benchmark. Benchmark sizes 
are specified in Table 2. 

 As simulation results we will provide both overall CMP 
energy consumption along with the accuracy of each 
evaluated technique on matching a predefined global power 
budget. To measure each technique’s accuracy we define the 
metric Area over the Power Budget (AoPB). This metric 
measures the amount of energy (in joules) between the 
power budget and each core dynamic power curve 
(represented by shadowed areas in Figure 1). The lower the 
area (energy) the more accurate the technique (the ideal 
AoPB is zero). Performance results are only shown for the 
dynamic approach (see section IV.B) due to space limitations 
and because performance is implicitly accounted in the 
reported energy results.  

B.  Measuring Power in Real-time  
 The concept of Power-Tokens (introduced in  [2]) 

basically consists of calculating the dynamic power 
consumed by an instruction at commit stage by adding, to the 
base power consumption of the instruction (i.e., all regular 
accesses to structures done by that instruction which are 
known a priori), a variable component that depends on the 
time it spends in the pipeline. A power-token unit is defined 
as the joules consumed by one instruction staying in the 
ROB for one cycle. The number of power-tokens consumed 
by an instruction will be calculated as the addition of its base 
power-tokens plus the number of cycles it spends in the 

ROB. As in  [2], the implementation of the Power-Token 
approach is done by means of an 8K-entry history table 
(Power-Token History Table – PTHT), accessed by PC, 
which stores the power cost (in tokens) of each instruction’s 
last execution. The PTHT is updated with the current number 
of power-tokens consumed when an instruction commits. We 
calculated the base power-tokens of every instruction type by 
running the SPECint2000 benchmark suite with the 
processor configuration shown in Table 1. Once we had the 
base power for all the possible instructions, we used a K-
mean algorithm to group instructions with similar base 
power consumption. Our simulated results show that having 
just 8 groups of instructions is accurate enough for the 
Power-Token approach to properly work with an error lower 
than 1% (compared to accounting for the actual power 
consumption in joules as provided by HotLeakage).  

 Hence, the overall processor power consumption in a 
given cycle can be easily estimated based on the instructions 
that are traversing the pipeline without using performance 
counters just by accumulating the power-tokens (provided by 
the PTHT) of each instruction being fetched. Note that the 
extra power consumption of the PTHT structure is also 
accounted in our results.  

C. Matching a Power Budget in a CMP Running 
Parallel Workloads 
This section discusses different approaches for managing 

power consumption under power constraints. Initially, we 
will adapt and tune the best proposed techniques in  [2] to a 

Table 1. Simulated CMP configuration. 
  

Processor Core 
Process Technology: 

Frequency: 
VDD: 

Instruction Window:  
Decode Width:  

Issue Width: 
Functional Units:  

 
Pipeline:  

Branch Predictor: 

32 nanometres 
3000 MHz 

0.9 V 
128 entries + 64 Load Store Queue  

4 inst/cycle 
4 inst/cycle 

6 Int Alu; 2 Int Mult 
4 FP Alu; 4 FP Mult 

14 stages 
64KB, 16 bit Gshare 

Memory Hierarchy 
Coherence Protocol 

Memory Latency 
L1 I-cache:  

L1 D-cache:  
L2 cache: 

MOESI 
300 Cycles 

64KB, 2-way, 1 cycle lat.  
64KB, 2-way, 1 cycle lat. 

1MB/core, 4-way, unified, 12 
cycles latency 

Network Parameters 
Topology 

Link Latency 
Flit size: 

Link Bandwidth: 

2D mesh  
4 cycles 
4 bytes 

1 flit / cycle 

 Benchmark Size Benchmark Size 
Barnes 8192 bodies, 4 time steps Raytrace Teapot 

Cholesky tk16.0 Water-NSQ 512 molecules, 4 time steps 
FFT 256K complex doubles Water-SP 512 molecules, 4 time steps 

Ocean 258x258 ocean Tomcatv 256 elements, 5 iterations 

 
 
SPLASH-2 

Radix 1M keys, 1024 radix Unstructured Mesh.2K, 5 time steps 
Blackscholes simsmall Swaptions simsmall  

PARSEC Fluidanimate simsmall x264 simsmall 

Figure 1- Area over the Power Budget (AoPB) metric 
example – shadowed areas. 
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CMP scenario. These evaluated techniques are:  
a) DVFS with five power modes (Voltage, Frequency): 

(100% VDD, 100% F); (95% VDD, 95% F); (90% VDD, 90% 
F); (90% VDD, 75% F); and (90% VDD, 65% F). 

b) DFS: similar to a) but only scaling down frequency 
(VDD remains 100% in all cases). 

c) Hybrid: as in  [2], a 2-level approach that uses DVFS 
to lower the average power consumption towards the power 
budget and then uses different microarchitectural techniques 
to remove power spikes (2level in the graphs). 

Note that techniques from  [2] were designed for the 
single-core scenario and, therefore, they are applied at the 
core-level instead of at the CMP-level, so the first step is to 
decide how to split the power available for the whole CMP 
(as determined by the global power budget) among the 
different cores. A naive and straightforward initial 
implementation consists of assigning to each core the same 
amount of available power. In this case, power budget 
techniques will be locally applied to a particular core if: 1) 
the whole CMP is over the global power budget (Σ corei 
power > global power budget); and 2) a particular core is 
over its local power budget (corei power > global power 
budget/number of cores). 

Initially, we will show simulation results when applying 
the above power matching techniques (DVFS, DFS, 2level) 
to a 16-core CMP (results for 2, 4 and 8 cores have been 
omitted due to space limitations) for the SPLASH-2 
benchmark suite and some PARSEC benchmarks with a 
global power budget set to 50% of the original processor 
peak power consumption and using clock gating. It is 
important to note that we have selected Kim’s 
implementation  [8] as a best case scenario for DVFS with a 
fast transition time of 30-50 mV/ns. Using a slower and more 
realistic DVFS will mean that microarchitecture-level 
techniques (used in the 2-level experiment) will become 
even more accurate and energy-efficient than DVFS.  

Figure 2 shows normalized energy and area over the 
power budget (AoPB) with respect to a base case where no 
power-control mechanisms are used to meet the global 
power budget. In terms of energy, all the evaluated 

techniques behave accordingly with the numbers we reported 
in  [2] for the single-core scenario. In some benchmarks, like 
Cholesky, the 2-level approach reduces energy by almost 
13%. In terms of performance, the average degradation is 
under 1% for the studied benchmarks. However, differences 
arise when looking at the accuracy metric (AoPB). Although 
there are particular benchmarks that report a reduced AoPB 
(depending on the evaluated technique – for example 
Blackscholes, Swaptions and x264 from PARSEC), the 
average AoPB is still very high, around 45%, which is far 
from the average 10% AoPB we obtained for the single-core 
scenario  [2]. Moreover, for benchmarks like Ocean and 
Radix, the AoPB is especially high, around 70-80%, which 
means that the global power budget constraint is not well 
respected.   

What is happening in the CMP scenario? The main 
difference are synchronization points found in parallel 
workloads and thus, the optimal execution configuration for 
each individual core may not be the optimal configuration 
for the whole CMP. Applications with low AoPB have no 
lock/barrier contention as we will see in Figure 3. 

This initial analysis shows that previous mechanisms for 
managing power under temporary power constraints are not 
suitable for a CMP scenario when using this naive 
distribution policy that equally splits the power among cores.  

D. Analysis on the Power Consumed in Spinning  
Differently, our major goal is now to accurately match an 

imposed power budget in an energy-efficient way while 
having in mind the peculiarities of CMP processors running 
parallel workloads. In this case, it is important to focus on 
places where power can be saved without harming 
performance such as synchronization points. 

Figure 3 shows a first analysis on the time spent by a 
CMP with a varying number of cores (from 2 to 16) either 
spinning or performing useful work. Each bar shows the 
fraction of time spent in lock acquisition, lock release, 
barriers, and useful computation (busy). As expected, the 
time each application wastes in spinning grows linearly with 
the number of cores. Some applications (Unstructured/ 
Fluidanimate) spend a significant time in Lock-Acq and 
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Lock-Rel states (contended locks) while others (Cholesky/ 
Blackscholes/Swaptions/x264), in contrast, have no lock/ 
barrier contention. While Cholesly’s behavior is due to a 
well balanced code, the other three benchmarks only 
synchronize at the end of the code. 

More interestingly, Figure 4 shows the power wasted 
while spinning normalized to the total power consumed by 
the original processor. As explained in Section II.C, this 
wasted power can be reduced by detecting spinning and 
slowing down/stalling the cores. Specifically, improving the 
previously proposed spin-detection techniques is out of the 
scope of this paper, however, the use of Power-Tokens can 
indirectly be used to detect spinning states as we will 
describe in the next section. This spinlock power is close to a 
10% on average for a 16-core processor running all the 
studied benchmarks. In any case, this potential power 
savings due to spinning are not enough to accurately match a 
restrictive power budget (e.g., 50% of the peak power) since 
a) it is a small amount (10%); and b) spinning is located in 
very specific points over time while we are aimed at meeting 
the power budget constraint the whole time it lasts. 
Therefore, we need a more generic approach that could 
benefit from other wasteful situations such as mispredictions 
events. 

E. Power Token Balancing (PTB) 

1) PTB Basics 

If we take a look at the power consumed by each 
individual core at a cycle level, even if the total power 
consumed by the CMP is over the global power budget, there 

may be cores under their power budget share. For example, 
assuming a 4-core CMP and global power budget of 40W, 
the naive implementation cited before assigns to each core a 
local power budget of 10W. Looking at Figure 5, cycles 1, 2 
and 4 are over the global power budget (40W), so local 
power-savings should be enabled. In cycle 1, no power-
control mechanisms are applied to cores 1 and 2 since they 
are under their local power budget (10W). Differently, cores 
3 and 4 apply their local power-saving mechanisms. 
However, slowing down those cores could be more harmful 
than it seems since it may cause the whole application to 
slow down in a future synchronization point if they are 
critical execution threads. The same happens in cycle 2 with 
core 3. In cycle 3, however, although there are cores 
exceeding their local power budget, no mechanism is applied 
as the global CMP power is under the budget. Finally, in 
cycle 4, all cores exceed their local power budget (so does 
the CMP which exceeds the global one), and hence, local 
mechanisms are applied to all cores. Note however, that in 
cycles 1 and 2, if we were able to tell cores 3&4 that their 
respective local power budgets are less restrictive than 10W 
(since cores 1&2 have some power left, 4+2 W; 2+1 W), the 
effects on the performance should be less harmful.  

The PTB approach is based on Power-Token accounting. 
Each individual core will count, at a cycle level, how many 
power tokens it has consumed from the available local power 
tokens. In a given cycle, if a core still has available power 
tokens and the CMP is over the global power budget, the 
core offers its spare tokens to the PTB load-balancer. Tokens 
are used as a currency to account for power, so it is 
important to note that they are neither sent nor received, 
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Figure 3. Execution time breakdown for a varying number of cores. 
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cores just send the number of spare tokens. Analogously, 
cores over their local power budget will receive extra tokens 
from the PTB load-balancer which will prevent them to 
enable a power-saving technique (that can reduce 
performance) as long as the global power budget constraint 
is met. The PTB load-balancer calculates every cycle the 
overall available power tokens based on the spare tokens that 
cores have for that cycle. Therefore, PTB is not a loan/refund 
mechanism, a core can reuse power from others but there is 
no need to give it back.  

PTB has two power distribution policies: a) give tokens 
to the most power-hungry core (ToOne policy); or b) equally 
distribute the extra tokens among all cores over the power 
budget (ToAll policy). PTB also exhibits two inherent 
features that allow “transparent” optimizations without any 
specific mechanism: 1) indirect spinning detection, and 2) an 
automatic priority system for non-spinning threads. 

Figures 6 help us to illustrate how PTB could be used to 
detect spinning. When a core enters a spinning state, the 
consumed power follows the behavior shown in Figure 6. 
After the initial power peak due to useful computation, if the 
spinning state lasts enough, power lowers and stabilizes 
(cycle >35 in Figure 6) to an amount that is usually under the 
budget that presumably means the core is spinning. Note, 
however, that spinning is just a particular case of power 
unbalance, so our mechanism will benefit from spinning but 

that is not the only case. Actually, PTB knows nothing about 
locks, barriers, mispredictions, etc, it just balances power. 

For illustrating purposes, and continuing with the 
spinning example, Figure 7 shows how PTB works in the 
case of a barrier. For this example let us suppose there are 
four cores (C1 to C4) with local power budgets set to 10 
tokens and that when spinning a core consumes 4 tokens. As 
cited before, a spinning core gives its spare tokens to the 
PTB load-balancer. Figure 7-a shows that core 2 reaches to 
the barrier and so it will transfer 6 tokens to the load-
balancer. Now the rest of cores have more available power to 
burn until they get to the synchronization point (in our 
example, cores 1, 3, 4 receive 2 extra tokens each from the 
load-balancer, raising their local budget to 12 tokens). When 
any other core (e.g., core 3 in Figure 7-b) reaches to the 
barrier it also gives its 6 spare tokens to the PTB load-
balancer which allows cores 1&4 to use the 6+6 extra tokens 
from cores 2&3, raising their local budget to 16. Finally, 
Figure 7-c also shows core 1 spinning in the barrier and 
giving its 6 spare tokens to the PTB load-balancer which 
prevents the last core (C4) to be slowed down  as it can use 
all the spare tokens. Again, note that PTB does not explicitly 
distinguish between barrier- or lock-spinning. As PTB 
basically detects power unbalance among cores it will benefit 
from any misprediction event (e.g., a cache miss or a 
mispredicted branch), not only from spinning states.  
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2) PTB Implementation 

To implement the Power Token Balancing mechanism 
we need a centralized structure, the PTB load-balancer, that 
receives the number of spare power tokens from all cores 
under their local power budget and splits them among the 
cores exceeding it (with the aim of not triggering any power-
saving mechanism for the exceeding cores which would 
result in a performance degradation).  

Balancing is done every cycle, so tokens from previous 
cycles are not stored in the balancer. We need to build the 
interconnection wires to send the number of tokens from/to 
the cores to/from the PTB load-balancer as depicted in 
Figure 8. We will use 4 wires for sending and 4 wires for 
receiving the number of tokens per core; this limits the 
amount of given/received tokens but makes the mechanism 
more power-efficient. Note that these wires are used to send 
the amount of spare tokens, not the tokens themselves 
(tokens are used as a currency to account for power). All 
these wires will be placed on a different layer of that of the 
interconnection network.  

We have estimated the delays using Xilinx ISE for a 
processor running at 3GHz without buffers as a reference to 
calculate the logic delay of the circuit and eliminated the 
delay caused by the pins and router delay, making the logic 
delay almost equivalent to the delay of a circuit in an ASIC 
implementation. For a 4-core CMP delays are: one cycle for 
sending tokens, one for processing tokens and one for 
sending tokens back to the cores over the power budget. For 
an 8-core processor, wire delay increases to 2 cycles, so it 
will take a total of 5 cycles to send and receive tokens 
to/from the PTB load-balancer. For a 16-core CMP the 
mechanism needs 4 cycles for receiving the tokens, 2 cycles 
for processing and 4 cycles for sending the tokens to the 
cores over the power budget, according to Xilinx ISE. When 
a core gives away tokens it sets a more restrictive power 
budget to ensure it won’t consume power until tokens reach 
its destination. The power consumption of the PTB 
mechanism plus the interconnection wires has been 
estimated using Xilinx XPower Analyzer with the same 
configuration as the delay latency, increasing the average 
application power consumption by just 1%, which is also 
accounted in the experimental results presented in the next 
section.  

Problems might arise as we increase the number of 
processing cores, and thus, the PTB load-balancer 
interconnection and processing latencies. However, for the 
analyzed number of cores and latencies the experimental 
results show significant improvements in terms of accuracy 
on matching the power budget, temperature and energy, even 
with a pessimistic 10-cycle delay for sending/receiving 
tokens from other cores. Nevertheless, one approach to make 
PTB more scalable (>32 cores) consists of clustering the 
PTB load-balancer into groups of 8 or 16 cores and replicate 
the structure as needed. Results in next section will show that 
such a group of cores (8 or 16) is enough for PTB to 
efficiently balance power and accurately match the imposed 
power budget. 

IV. EXPERIMENTAL RESULTS 

A. Efficiency of Power Token Balancing (PTB) 
This section reports simulation results for a global power 

budget of 50% of the peak power consumption1 with clock 
gating and a varying number of processing cores in the CMP 
(2 to 16 cores). We evaluate the proposed PTB mechanism 
with the previously defined power-token distribution policies 
ToAll (that shares the power-tokens among all the cores over 
their local power budget) and ToOne (that gives all the spare 
power-tokens to the core that needs them the most). All 
results are normalized to a base case where no power-control 
mechanisms are used to match the global power budget. 
Figure 9 (left) shows the energy consumption for different 
pairs of {core number/policy} for the evaluated techniques 
(enumerated in Section III.C) whereas Figure 9 (right) shows 
the AoPB metric. It can be observed that, when using the 
proposed PTB mechanism, area numbers go back to the 
reported numbers in our previous work  [2] for the single-
core scenario: average 10% of AoPB for a 16-core CMP 
when the PTB+2level technique is used (although energy 
numbers are not as good as in the single-core scenario). In a 
16-core CMP, DVFS and DFS are unable to lower the AoPB 
below 65% while PTB+2level reduces the average area to 
just 8%, getting close to the ideal AoPB of zero, with only 
3% more energy consumed. It can also be observed that 
accuracy on matching the power budget increases (AoPB 
decreases) with the number of cores, because we have more 
chances of receiving tokens from other cores.  

A more detailed analysis (Figures 10 and 11) shows that 
there are benchmarks, like Unstructured, where energy 
increases when using power saving techniques (mainly due 
to sync points - see Figures 3&4). Unstructured has many 
thread dependences and slowing down a core causes a great 
impact on performance. On the other hand, benchmarks like 

                                                           
1 We only report results for a 50% power budget due to space limitations. 
For less restrictive power budgets PTB also works properly. 

Core 1 Core 2 

Core 3 Core 4 

PTB  
load-balancer 

 
Figure 8. PTB implementation diagram for a 4-core CMP.
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Barnes and Ocean, that reported very high AoPB of 70% for 
the naive power-distribution implementation discussed in 
Section III.C (Figure 2), now offer an AoPB of just 2% 
thanks to the efficient power distribution among cores 
performed by PTB. However, in some benchmarks the extra 
accuracy on matching the global power budget comes at the 
cost of higher energy consumption than that of DVFS alone. 
DVFS shows an average energy reduction of 6% whereas 
PTB increases the energy in 3%. Note, however, that this 

energy increase can be turned into energy savings if we relax 
the accuracy constraint of PTB, as we will show in section 
IV.C. 

When comparing both the ToAll and ToOne power-token 
distribution policies, on average, the former works better 
than the later. However, benchmarks like Unstructured and 
Waternsq work better when the extra power is given to a 
single core rather than to all cores. In these benchmarks, 
threads have an unbalanced workload and spend a significant 
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     Figure 9. Normalized energy (left) and area over the power budget (right) for a varying number of cores and PTB policies. 
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Figure 10. Detailed energy (left) and AoPB (right) for a 16-core CMP with the ToAll PTB policy. 

barnes
cholesky

fft
ocean

radix
raytrace

tomcatv
unstruct.

waternsq
watersp

blacksc.
fluidani.

swaptions
x264

Avg.

-20

-10

0

10

20

30

40
DVFS
DFS
2Level
PTB+2Level

N
or

m
al

iz
ed

 E
ne

rg
y 

(%
)

barnes
cholesky

fft
ocean

radix
raytrace

tomcatv
unstruct.

waternsq
watersp

blacksc.
fluidani.

swaptions
x264

Avg.

0

10

20

30

40

50

60

70

80

90

100

110

N
or

m
al

iz
ed

 A
oP

B 
(%

)

Figure 11. Detailed energy (left) and AoPB (right) for a 16-core CMP with the ToOne PTB policy. 
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fraction of their time spinning on locks. They benefit, 
therefore, from giving the extra power (priority) to threads 
that enter in a critical section (i.e., the ToOne policy). 

B. Dynamic Policy Selector 
In a barrier scenario the ToAll policy will split power 

tokens from cores already waiting in the barrier among the 
remaining cores, speeding them all in order to get to the 
barrier as soon as possible whereas the ToOne policy will 
only benefit one core, that will get faster to the barrier, but 
we still have to wait for the rest of cores. On the other hand, 
when a core is spinning in a lock and gets access to a critical 
section, giving all the tokens to this core will benefit the 
overall program execution.  

Results in the previous section showed that the ToAll 
policy is best suited for applications with many barriers in 
the code whereas the ToOne policy works better for 
applications with high lock contention. Therefore, in order to 
enhance the PTB power balancing mechanism we have 
included a dynamic selector for the power sharing policy 
(either ToOne or ToAll). This selector will change the policy 
depending on the current state of the spinning cores. If the 
spinning is taking place to access a lock, the mechanism will 
use the ToOne policy. If the spinning is taking place in a 

barrier (or there is no spinning) the PTB mechanism will use 
the ToAll policy.  

Figure 12 shows how this dynamic policy selection 
approach obtains the best results for the evaluated techniques 
in terms of both area and energy metrics and making PTB 
really close to DVFS (around 2%) in terms of performance, 
as shown in Figure 13, but with the added benefit of PTB 
being far more accurate on matching the imposed power 
budget than DVFS or DFS approaches. Normalized energy 
goes down to 2%, 1% less than the static ToAll and 3% less 
than the static ToOne. Accuracy is improved in 3% 
compared with the static ToAll and 5% compared with the 
static ToOne policy. In terms of performance, Unstructured 
is the application that is more affected by the micro-
architectural power-control mechanisms. 

Note that the dynamic policy selector (for the presented 
results) is assisted by actual application-specific information 
although pure indirect dynamic detection of the type of 
spinning is possible (and practical) via heuristics (e.g., 
monitoring the number of cores that stop spinning 
simultaneously via their power token consumption, run-time 
instruction analysis or techniques similar to those described 
in  [12]). For the sake of clarity, we only report on the first 
approach which does not entail any additional energy cost 
for the classification of spinning to barrier- or lock-spinning. 

C. Relaxing PTB to be More Energy-Efficient 
Our initially proposed PTB mechanism is optimized for 

accuracy on matching the power budget. As explained 
before, this kind of focus hurts performance and, therefore, 
slightly increases overall energy consumption. However, if 
we relax the accuracy constraint, PTB could also achieve 
energy savings since power-saving mechanisms would be 
applied in a less restrictive way, therefore, not affecting 
performance that much. In order to analyze this new focus, 
Figure 14 shows how PTB behaves when optimizing for 
energy-efficiency instead of just accuracy for several relaxed 
area thresholds (i.e., +10%, +20%, +30%, etc). These relaxed 
thresholds are used to delay triggering a power-saving 
mechanisms when the global/local power budgets are 
exceeded. Note that the original PTB triggers the power-

Figure 12. Detailed energy (left) and AoPB (right) for a 16-core CMP using the dynamic policy selector. 
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Figure 13. Detailed Performance for a 16-core CMP 
using the dynamic policy selector. 

barnes
cholesky

fft
ocean

radix
raytrace

tomcatv
unstruct.

waternsq
watersp

blacksc.
fluidani.

swaptions
x264

Avg.

-10

-5

0

5

10

15

20

P
er

fo
rm

an
ce

 S
lo

w
do

w
n 

(%
)

440440440



saving mechanisms immediately after detecting the current 
power budget is exceeded.  

It can be seen that, for a 16-core CMP with a relaxed 
AoPB metric allowed to be 20% above the power budget, 
PTB obtains an average energy reduction of 4% similar to 
that obtained by DVFS, however, still being more accurate 
than DVFS that obtains a huge AoPB of 65%. Of course, 
better energy savings can be achieved for the same 16-core 
CMP if we relax more the area constraint. Furthermore, 
higher energy savings could be achieved if we use PTB as a 
spinlock detector and we disable the spinning cores to save 
power. But the later is out of the scope of the current paper 
and part of our future work. 

D. The Importance of Accuracy 
Finally, we will provide an example that tries to illustrate 

the importance of the accuracy on matching a predefined 
power budget, which is closely related to what authors try to 
achieve in  [19], where they increase the number of cores of a 
CMP maintaining the same TDP (thermal design power).  

Let us suppose that we want to increase the number of 
cores in a CMP maintaining the same TDP. For a 16-core 
CMP with a 100W TDP there are 6.25W per core (for 
simplicity let us ignore the interconnection network). If we 
set a power budget of 50% we could ideally duplicate the 
number of cores in that CMP with the same TDP (up to 32 
cores each one consuming an average of 3.125W). But for 
this ideal case it is needed a perfect accuracy on matching 
the power budget.  

According to our previous results, DVFS has an error of 
65% energy left over the power budget. Therefore, with a 
65% error each core consumption raises to 
3.125*1.65=5.15W, and for a 100W TDP we can put a 
maximum of 100/5.15=19 cores inside the CMP. For a 
regular 2level approach (without PTB) the error is reduced to 
40% that gives us a potential average power consumption of 
3.125*1.40=4.375W per core, so we can put 100/4.375=22 
cores in the CMP with the same TDP. Finally, when using 
the non-relaxed PTB approach the error is reduced below 
10%, that gives us a potential average power consumption of 
3.125*1.1=3.4375W per core, so we can put 100/3.4375=29 

cores inside our CMP. If our application is parallel enough to 
use these cores it can perfectly overcome the 5% 
performance degradation of using the non-relaxed PTB 
approach. 

V. CONCLUSIONS  
Design complexity and verification of microprocessors is 

increasingly costly. Some companies cannot afford the 
design of custom processors for their products (especially for 
cost-sensitive consumer handheld devices and gadgets) and 
have to rely on existing processors that may not meet their 
power requirements. In other scenarios it might be useful to 
increase the number of cores on a CMP maintaining the 
same thermal envelopment. Furthermore, thermal envelop 
design in processors cannot be done for the worst case, 
because production costs are raised. Being able to set a 
power budget to the processor can be helpful in these cases. 

In a CMP running parallel workloads, previously 
proposed power managing mechanisms fail to accurately 
adapt to temporary power constraints, due to thread 
dependences and synchronization points. However, power 
saved just from spinlocks is not enough to match an 
aggressive power budget because is too local and too low. A 
global control mechanism is needed to match these design 
peculiarities. In this paper we propose Power Token 
Balancing (PTB), a novel mechanism that dynamically 
balances power among the different cores to ensure that the 
whole processor accurately matches a predefined and global 
power budget. Our proposed mechanism accounts for unused 
power from cores that are under the power budget (translated 
into power-tokens) and passes that power to cores over the 
power budget, hence, not having to slow them down to 
match their local power budget constraint.  

PTB is a fine-grained mechanism that ensures maximum 
accuracy with minimal standard deviation from the power 
budget, which is crucial if you want to optimize packaging 
costs or to increase the number of cores in a CMP with the 
same TDP. However, the accuracy constraint can be relaxed 
in order for PTB to be more energy-efficient by means of 
applying the power-saving mechanisms in a less restrictive 
way, and therefore, not affecting performance that much.  

Figure 14. Normalized energy (left) and area over the power budget (right) for a varying number of cores and PTB policies. 
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Experimental results have shown that PTB is able to 
accurately match the global power budget with an AoPB of 
just 8% for a 16-core CMP with a negligible energy increase 
(3%) and with a more stable temperature over execution time 
(due to the increased accuracy when matching the power 
budget), as opposed to DVFS which fails to match the power 
budget precisely, resulting in a high AoPB of around 65%. 
Furthermore, when considering a relaxed PTB approach that 
allows being 20% above the power budget (still far from the 
65% AoPB obtained by DFVS), PTB obtains the same 
energy reduction as DVFS for the 16-core CMP. Of course, 
better energy savings can be achieved if the area constraint is 
relaxed still more. 
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