
Power Token Balancing: Adapting CMPs to Power Constraints
for Parallel Multithreaded Workloads

Juan M. Cebrián, Juan L. Aragón
Dept. of Computer Engineering,

University of Murcia, Murcia, Spain
{jcebrian,jlaragon}@ditec.um.es

Stefanos Kaxiras
Dept. of Information Technology,

University of Uppsala, Uppsala, Sweden
stefanos.kaxiras@it.uu.se

Abstract—In the recent years virtually all processor
architectures employ multiple cores per chip (CMPs). It is
possible to use legacy (i.e., single-core) power saving techniques
in CMPs which run either sequential applications or
independent multithreaded workloads. However, new
challenges arise when running parallel shared-memory
applications. In the later case, sacrificing some performance in
a single core (thread) in order to be more energy-efficient
might unintentionally delay the rest of cores (threads) due to
synchronization points (locks/barriers), therefore, harming the
performance of the whole application.

CMPs increasingly face thermal and power-related
problems during their typical use. Such problems can be
solved by setting a power budget to the processor/core. This
paper initially studies the behavior of different techniques to
match a predefined power budget in a CMP processor. While
legacy techniques properly work for thread independent/multi-
programmed workloads, parallel workloads exhibit the
problem of independently adapting the power of each core in a
thread dependent scenario. In order to solve this problem we
propose a novel mechanism, Power Token Balancing (PTB),
aimed at accurately matching an external power constraint by
balancing the power consumed among the different cores using
a power token-based approach while optimizing the energy
efficiency. We can use power (seen as tokens or coupons) from
non-critical threads for the benefit of critical threads. PTB
runs transparent for thread independent / multiprogrammed
workloads and can be also used as a spinlock detector based on
power patterns. Results show that PTB matches more
accurately a predefined power budget (total energy consumed
over the budget is reduced to 8% for a 16-core CMP) than
DVFS with only a 3% energy increase. Finally, we can trade
accuracy on matching the power budget for energy-efficiency
reducing the energy a 4% with a 20% of accuracy.

Keywords: power consumption; power budget; DVFS; power
tokens; power balancing.

I. INTRODUCTION

CMP architectures exhibit some peculiarities in terms of
power and performance compared to a single-core processor.
In terms of power consumption, whenever the number of
processing cores is doubled, power consumption is almost
multiplied by two. Although technology scaling reduces
dynamic power consumption, the complexity of the
interconnection network and caches increases when more
cores are incorporated into the die resulting in higher power

consumption. Furthermore, when a CMP is running parallel
multithreaded workloads many interdependent threads are
usually executed in different cores. In this scenario, if a
power-saving mechanism is independently applied to a
single core, it can affect the rest of threads in the next
synchronization point, slowing down the whole program
execution and increasing the overall energy consumption.
Global information is required to reduce power in threads
that are not in the critical path of execution (e.g., threads that
arrive earlier to synchronization points) [1] [11] [12] [13] [17].

The more cores in the processor, the more thermal
problems. A relevant technique to reduce temperature is to
set a power budget to the processor [1] [2]. This processor’s
power budget is not only useful to control power and
temperature but also to satisfy external power constraints
(i.e., power cuts or shared power supply). It could also be
used to increase the number of cores in a CMP maintaining
the same TDP (Thermal Design Power), or to reuse an
existent processor design with a cheaper thermal package. A
well-known approach to make the processor’s power
converge to a power budget is Dynamic Voltage and
Frequency Scaling (DVFS) [5] [6] [7]. DVFS relies on
modifications in voltage and frequency to reduce the
processor’s dynamic power, as dynamic power depends on
both voltage (quadratically) and frequency (linearly).
However, DVFS has some important drawbacks: a) long
transition times between power modes [8]; b) long
exploration and use windows in order to amortize DVFS
overheads, making it difficult to adapt precisely to the
program behaviour; and c) when activated DVFS affects all
instructions within a thread regardless of their usefulness in
the program.

In order to overcome those DVFS limitations, in [2]
Cebrián et al. proposed the use of fine-grained
microarchitectural power-saving techniques to accurately
match a predefined power budget in a single-core scenario.
However, in a CMP scenario these techniques have a great
impact on power and performance due to synchronization
points which make them not good candidates to lower the
power under the budget. In the literature it can be found
other specific CMP proposals to match a predefined power
budget such as [1] [18] or [19], but they are only suitable for
CMPs running multiple single-threaded (or
multiprogrammed) applications but not parallel workloads
and they do not perform any accuracy analysis on the budget
requirements. There are other works aimed at reducing the

2011 IEEE International Parallel & Distributed Processing Symposium

1530-2075/11 $26.00 © 2011 IEEE

DOI 10.1109/IPDPS.2011.49

431

2011 IEEE International Parallel & Distributed Processing Symposium

1530-2075/11 $26.00 © 2011 IEEE

DOI 10.1109/IPDPS.2011.49

431

2011 IEEE International Parallel & Distributed Processing Symposium

1530-2075/11 $26.00 © 2011 IEEE

DOI 10.1109/IPDPS.2011.49

431

power wasted when cores wait at synchronization points,
either putting cores to sleep [12] or trying to make all cores
reach the synchronization point simultaneously (e.g., meeting
points [11] or thrifty barriers [13]), however, these
mechanisms are not suitable for matching a power budget on
their own, the main goal of this work.

To address the shortcomings of previous works we
propose Power Token Balancing (PTB), a mechanism that
balances the CMP power consumption by means of
efficiently distributing power tokens among the cores.
Whenever the CMP exceeds a predefined global power
budget, local power budgets are applied to all running cores.
Without any global mechanism the power would be just
equally split between the cores. However, PTB globally
manages power consumption so cores that are under the
power budget give away their remaining allotment of power
(up to the local budget) to cores over the budget so they can
continue execution without performance degradation
ensuring that the global power budget is not exceeded. PTB
benefits from any power unbalance among cores (cache
misses, ROB stalls, pipeline stalls, etc.) but has another
important feature: it transparently benefits from thread’s
busy-waiting synchronization in a very “lightweight” way.
Since a core waiting in a barrier naturally reduces its power
consumption, PTB allows its spare power tokens to be given
to other cores doing useful work (i.e., critical threads). The
same applies to locks: a core that enters into a critical section
receives extra power tokens from other cores waiting on
spinlocks. Due to the additional power tokens its local power
budget is less restrictive and the core can leave the critical
section faster.

The main advantages of PTB over previous approaches
focused on low-power spinning (such as meeting points [11],
thrifty barriers [13] or [19]) are:

• PTB is designed (but not limited) to work in a CMP
scenario running parallel workloads. Unlike other
proposals, PTB is not limited to multiple instances of
applications and also works properly with
multiprogrammed workloads.

• PTB’s main goal is to make the per-cycle power
consumption go under a certain power budget while
maximizing accuracy, not to reduce overall energy.
Previous approaches on low-power spinning are not
suitable for a power-constrained scenario, as power
saving mechanisms must be applied outside the
synchronization points.

• PTB takes advantage of any power unbalance
including both barriers/locks in a spinning state
(busy-wait) plus thread criticality by just relying on
power token information, making it more generic
than previous approaches.

• PTB can identify critical threads faster than
 [11] [12] [13] (the critical thread can change during
execution) since it relies on cycle-level information,
increasing its adaptability to the application
behavior.

• PTB is a fine-grained approach, unlike
 [11] [12] [13] [19], because it relies on actual real-time

information and not time/power estimations,
increasing accuracy when matching the budget and
minimizing the standard power deviation from the
selected power budget.

• PTB is able to reduce both the average power
consumption and the average chip temperature with
minimal standard deviation due to its precision on
matching the predefined power budget.

The rest of the paper is organized as follows. Section II
provides some background on power-saving techniques for
both single-core processors and CMPs. Section III describes
our simulation methodology and shows a first analysis on the
individual techniques and motivates the need for CMP-
specific approaches to match the power budget. Section IV
reports the main experimental results. Finally, Section V
shows our concluding remarks.

II. BACKGROUND AND RELATED WORK

A. Dynamic Voltage Frequency Scaling (DVFS)

DVFS, introduced in the 90’s [6], is based on the fact that
the per-cycle power consumption of a transistor depends
quadratically on the supply voltage and linearly on its
frequency (P ∝ VDD

2× f) and downscales both voltage and
frequency to save power [7]. But as the process technology
goes into deep submicron, the margin between VDD (supply
voltage) and VT (threshold voltage) is reduced. As this
margin decreases, the processor’s reliability is reduced,
among other undesirable effects.

Furthermore, the transistor’s delay (or switching speed)
depends on δ ≈ 1/ (VDD – VT)α, with α > 1. That means that
we can lower VDD for DVFS as long as we keep constant the
margin between VDD and VT (i.e., VT must be lowered
accordingly) so we can obtain the desired speed increase
derived from technology scaling. However, the counterpart
of reducing VT is twofold: a) leakage power increases as it
exponentially depends on VT [3] [4]; and b) processor
reliability is further reduced.

B. Hybrid Power Control Approaches

Recently, in [2] we introduced the concept of power
tokens in a single-core scenario along with a two-level
approach that firstly applies DVFS as a coarse-grained
approach to reduce power consumption towards a predefined
power budget, and secondly chooses between different
microarchitectural techniques to remove the remaining
power spikes. The second-level mechanism depends on how
far the processor is over the power budget in order to select
the most appropriate microarchitectural technique.

Experimental results show improvements in terms of
both energy reduction and accuracy on matching the power
budget for a single-core scenario. Sasanka et al. propose the
use of DVFS and some micro-architectural techniques to
specifically reduce the power consumption in real time video
programs [9]. Their selected microarchitectural techniques
try to reduce the power of functional units and the instruction

432432432

window by using profiling. Winter et al. also propose the use
of a two-level approach that merges DVFS and thread
migration to reduce temperature in SMT processors [10].

C. CMP-specific Power Control Mechanisms
As mentioned before, CMP processors have some

peculiarities when managing power and performance in
parallel workloads. In such workloads threads must
periodically synchronize (e.g., for communication purposes)
and any delay introduced in one of the threads may end up
delaying the whole application.

1) Spin-lock Detection to Reduce Power

When a processor is waiting in either a lock or a barrier it
enters in a “spinning” state that may become an important
source of useless power consumption if it remains there for
too long. In order to detect spinning, first approaches used
source code or binary instrumentation but that requires
recompilation and might be infeasible in certain situations. In
 [12] Li et al. proposed a real-time hardware mechanism to
detect processors in spinning state. Their mechanism checks
the machine’s state between instructions that cause a
backward control transfer (BCT), usually a branch or a jump
instruction. If the machine’s state remains the same between
several BCTs, the processor has entered in a spinning state.
They also propose scaling frequency for processors in a
spinning state assuming that they can wake up a processor.
However this mechanism does not provide precise power
management and cannot be applied outside locks/barriers.

2) DVFS in CMPs

As cited in the introduction, Li et al. proposed thrifty
barriers [13], a DVFS-based mechanism to reduce power
consumption in CMPs. Basically, they calculate the per-core
time interval between synchronization points and once they
know how long it takes the different cores to get to the next
synchronization point, they disable or DVFS cores that get to
the barrier. They approximate the wakeup time by the time
the slowest thread takes to get to the barrier. If the
sleep/wakeup takes more time than they can save, the
technique is not used. In [1] Isci et al. proposed a chip-level
dynamic power management for CMPs but just focusing on
single-threaded programs while Sartori et al. [19] extends
this work to reduce peak power in a distributed way. These
mechanisms selectively change between several DVFS
power modes for the different cores maximizing throughput
under certain power constraints. Unfortunately, as they rely
on the use of performance counters and/or time estimation,
these proposals only work properly for multiprogrammed or
single-threaded applications simultaneously running on the
different cores of the CMP, because for parallel workloads
performance counters (and time estimations) are almost
useless for relating performance and power (due to
synchronization points). A spinning core may have a high
IPC, but doing nothing but spinning. In other words,
synchronization points may increase global execution time
although local core performance counters show a
performance increase. Moreover, none of the mentioned

techniques provides any precision on matching an imposed
power budget.

In [11] Cai et al. proposed meeting points. This
mechanism locates critical threads in parallel regions and
uses DVFS to reduce power consumption of non-critical
threads. They propose two approaches: thread delaying, that
slows down the fastest thread to ensure that all threads get to
the synchronization point (meeting point) at the same time;
and thread balancing, that gives priority to the critical thread
when accessing resources in a 2-way SMT processor. They
achieve substantial energy reduction as long as the critical
thread can be identified.

In the commercial area, Intel’s i7 turbo mode shuts off
idle cores, reducing their voltage to zero, rather than just
lowering the power provided to them. Not having as many
cores on producing heat will allow other cores to use more
power, increasing the performance of those cores, while still
not exceeding the maximum TDP of the processor. Again,
this is useful when running sequential or low-parallel
applications. However, for parallel workloads, overclocking
two cores does not necessarily mean a performance
improvement due to memory dependences and
synchronization points.

III. ENFORCING A POWER BUDGET IN CMPS

There are certain circumstances, usually related to power
or thermal constraints, where precise power/energy control
of the processor is required. Our goal is to reduce power
consumption to accurately match an imposed power budget
in an energy-efficient way, always having in mind the
peculiarities of CMP processors running parallel workloads.
To achieve this goal we need: first to detect program points
where power can be saved without harming performance
(e.g., spin-locks, wrong execution paths, cache misses, etc.)
and reduce it; second, to balance the power between the
cores; and finally (when nothing else can be done), to reduce
the power locally even at the cost of degrading performance
(by means of DVFS and/or microarchitectural techniques).

A. Simulation Environment
 For evaluating the proposed approaches we have used

the Virtutech Simics platform [14] extended with Wisconsin
GEMS v2.1 [15]. GEMS provides both detailed memory
simulation through a module called Ruby and a cycle-level
pipeline simulation through a module called Opal. We have
extended both Opal and Ruby with all the studied
mechanisms that will be explained next. The simulated
system is a homogeneous CMP consisting of a number of
replicated cores connected by a switched 2D-mesh direct
network. Table 1 shows the most relevant parameters of the
simulated system. Power scaling factors for a 32nm
technology were obtained from Cacti’s v5.1 [16]. To
evaluate the performance and power consumption of the
different mechanisms we used scientific applications from
the SPLASH-2 benchmark suite in addition to some
PARSEC applications (the ones that finished execution in
less than 3 days in our cluster). Results have been extracted

433433433

from the parallel phase of each benchmark. Benchmark sizes
are specified in Table 2.

 As simulation results we will provide both overall CMP
energy consumption along with the accuracy of each
evaluated technique on matching a predefined global power
budget. To measure each technique’s accuracy we define the
metric Area over the Power Budget (AoPB). This metric
measures the amount of energy (in joules) between the
power budget and each core dynamic power curve
(represented by shadowed areas in Figure 1). The lower the
area (energy) the more accurate the technique (the ideal
AoPB is zero). Performance results are only shown for the
dynamic approach (see section IV.B) due to space limitations
and because performance is implicitly accounted in the
reported energy results.

B. Measuring Power in Real-time
 The concept of Power-Tokens (introduced in [2])

basically consists of calculating the dynamic power
consumed by an instruction at commit stage by adding, to the
base power consumption of the instruction (i.e., all regular
accesses to structures done by that instruction which are
known a priori), a variable component that depends on the
time it spends in the pipeline. A power-token unit is defined
as the joules consumed by one instruction staying in the
ROB for one cycle. The number of power-tokens consumed
by an instruction will be calculated as the addition of its base
power-tokens plus the number of cycles it spends in the

ROB. As in [2], the implementation of the Power-Token
approach is done by means of an 8K-entry history table
(Power-Token History Table – PTHT), accessed by PC,
which stores the power cost (in tokens) of each instruction’s
last execution. The PTHT is updated with the current number
of power-tokens consumed when an instruction commits. We
calculated the base power-tokens of every instruction type by
running the SPECint2000 benchmark suite with the
processor configuration shown in Table 1. Once we had the
base power for all the possible instructions, we used a K-
mean algorithm to group instructions with similar base
power consumption. Our simulated results show that having
just 8 groups of instructions is accurate enough for the
Power-Token approach to properly work with an error lower
than 1% (compared to accounting for the actual power
consumption in joules as provided by HotLeakage).

 Hence, the overall processor power consumption in a
given cycle can be easily estimated based on the instructions
that are traversing the pipeline without using performance
counters just by accumulating the power-tokens (provided by
the PTHT) of each instruction being fetched. Note that the
extra power consumption of the PTHT structure is also
accounted in our results.

C. Matching a Power Budget in a CMP Running
Parallel Workloads
This section discusses different approaches for managing

power consumption under power constraints. Initially, we
will adapt and tune the best proposed techniques in [2] to a

Table 1. Simulated CMP configuration.

Processor Core
Process Technology:

Frequency:
VDD:

Instruction Window:
Decode Width:

Issue Width:
Functional Units:

Pipeline:

Branch Predictor:

32 nanometres
3000 MHz

0.9 V
128 entries + 64 Load Store Queue

4 inst/cycle
4 inst/cycle

6 Int Alu; 2 Int Mult
4 FP Alu; 4 FP Mult

14 stages
64KB, 16 bit Gshare

Memory Hierarchy
Coherence Protocol

Memory Latency
L1 I-cache:

L1 D-cache:
L2 cache:

MOESI
300 Cycles

64KB, 2-way, 1 cycle lat.
64KB, 2-way, 1 cycle lat.

1MB/core, 4-way, unified, 12
cycles latency

Network Parameters
Topology

Link Latency
Flit size:

Link Bandwidth:

2D mesh
4 cycles
4 bytes

1 flit / cycle

 Benchmark Size Benchmark Size
Barnes 8192 bodies, 4 time steps Raytrace Teapot

Cholesky tk16.0 Water-NSQ 512 molecules, 4 time steps
FFT 256K complex doubles Water-SP 512 molecules, 4 time steps

Ocean 258x258 ocean Tomcatv 256 elements, 5 iterations

SPLASH-2

Radix 1M keys, 1024 radix Unstructured Mesh.2K, 5 time steps
Blackscholes simsmall Swaptions simsmall

PARSEC Fluidanimate simsmall x264 simsmall

Figure 1- Area over the Power Budget (AoPB) metric
example – shadowed areas.

Power budget

Power budget

time Po
w

er
 c

on
su

m
pt

io
n

time Po
w

er
 c

on
su

m
pt

io
n

after

T1 T2

before

T1 T2+delay

Table 2. Evaluated benchmarks and input working sets.

434434434

CMP scenario. These evaluated techniques are:
a) DVFS with five power modes (Voltage, Frequency):

(100% VDD, 100% F); (95% VDD, 95% F); (90% VDD, 90%
F); (90% VDD, 75% F); and (90% VDD, 65% F).

b) DFS: similar to a) but only scaling down frequency
(VDD remains 100% in all cases).

c) Hybrid: as in [2], a 2-level approach that uses DVFS
to lower the average power consumption towards the power
budget and then uses different microarchitectural techniques
to remove power spikes (2level in the graphs).

Note that techniques from [2] were designed for the
single-core scenario and, therefore, they are applied at the
core-level instead of at the CMP-level, so the first step is to
decide how to split the power available for the whole CMP
(as determined by the global power budget) among the
different cores. A naive and straightforward initial
implementation consists of assigning to each core the same
amount of available power. In this case, power budget
techniques will be locally applied to a particular core if: 1)
the whole CMP is over the global power budget (Σ corei
power > global power budget); and 2) a particular core is
over its local power budget (corei power > global power
budget/number of cores).

Initially, we will show simulation results when applying
the above power matching techniques (DVFS, DFS, 2level)
to a 16-core CMP (results for 2, 4 and 8 cores have been
omitted due to space limitations) for the SPLASH-2
benchmark suite and some PARSEC benchmarks with a
global power budget set to 50% of the original processor
peak power consumption and using clock gating. It is
important to note that we have selected Kim’s
implementation [8] as a best case scenario for DVFS with a
fast transition time of 30-50 mV/ns. Using a slower and more
realistic DVFS will mean that microarchitecture-level
techniques (used in the 2-level experiment) will become
even more accurate and energy-efficient than DVFS.

Figure 2 shows normalized energy and area over the
power budget (AoPB) with respect to a base case where no
power-control mechanisms are used to meet the global
power budget. In terms of energy, all the evaluated

techniques behave accordingly with the numbers we reported
in [2] for the single-core scenario. In some benchmarks, like
Cholesky, the 2-level approach reduces energy by almost
13%. In terms of performance, the average degradation is
under 1% for the studied benchmarks. However, differences
arise when looking at the accuracy metric (AoPB). Although
there are particular benchmarks that report a reduced AoPB
(depending on the evaluated technique – for example
Blackscholes, Swaptions and x264 from PARSEC), the
average AoPB is still very high, around 45%, which is far
from the average 10% AoPB we obtained for the single-core
scenario [2]. Moreover, for benchmarks like Ocean and
Radix, the AoPB is especially high, around 70-80%, which
means that the global power budget constraint is not well
respected.

What is happening in the CMP scenario? The main
difference are synchronization points found in parallel
workloads and thus, the optimal execution configuration for
each individual core may not be the optimal configuration
for the whole CMP. Applications with low AoPB have no
lock/barrier contention as we will see in Figure 3.

This initial analysis shows that previous mechanisms for
managing power under temporary power constraints are not
suitable for a CMP scenario when using this naive
distribution policy that equally splits the power among cores.

D. Analysis on the Power Consumed in Spinning
Differently, our major goal is now to accurately match an

imposed power budget in an energy-efficient way while
having in mind the peculiarities of CMP processors running
parallel workloads. In this case, it is important to focus on
places where power can be saved without harming
performance such as synchronization points.

Figure 3 shows a first analysis on the time spent by a
CMP with a varying number of cores (from 2 to 16) either
spinning or performing useful work. Each bar shows the
fraction of time spent in lock acquisition, lock release,
barriers, and useful computation (busy). As expected, the
time each application wastes in spinning grows linearly with
the number of cores. Some applications (Unstructured/
Fluidanimate) spend a significant time in Lock-Acq and

barnes
cholesky

fft
ocean

radix
raytrace

tomcatv
unstruct.

waternsq
watersp

blacksc.
fluidani.

swaptions
x264

Avg.

0

10

20

30

40

50

60

70

80

90

100

N
or

m
al

iz
ed

 A
oP

B
 (%

)

barnes
cholesky

fft
ocean

radix
raytrace

tomcatv
unstruct.

waternsq
watersp

blacksc.
fluidani.

swaptions
x264

Avg.

-15

-10

-5

0

5

10
DVFS
DFS
2Level

N
or

m
al

iz
ed

 E
ne

rg
y

(%
)

Figure 2. Normalized Energy (left) and AoPB (right) for a 16-core CMP with a power budget of 50%.

435435435

Lock-Rel states (contended locks) while others (Cholesky/
Blackscholes/Swaptions/x264), in contrast, have no lock/
barrier contention. While Cholesly’s behavior is due to a
well balanced code, the other three benchmarks only
synchronize at the end of the code.

More interestingly, Figure 4 shows the power wasted
while spinning normalized to the total power consumed by
the original processor. As explained in Section II.C, this
wasted power can be reduced by detecting spinning and
slowing down/stalling the cores. Specifically, improving the
previously proposed spin-detection techniques is out of the
scope of this paper, however, the use of Power-Tokens can
indirectly be used to detect spinning states as we will
describe in the next section. This spinlock power is close to a
10% on average for a 16-core processor running all the
studied benchmarks. In any case, this potential power
savings due to spinning are not enough to accurately match a
restrictive power budget (e.g., 50% of the peak power) since
a) it is a small amount (10%); and b) spinning is located in
very specific points over time while we are aimed at meeting
the power budget constraint the whole time it lasts.
Therefore, we need a more generic approach that could
benefit from other wasteful situations such as mispredictions
events.

E. Power Token Balancing (PTB)

1) PTB Basics

If we take a look at the power consumed by each
individual core at a cycle level, even if the total power
consumed by the CMP is over the global power budget, there

may be cores under their power budget share. For example,
assuming a 4-core CMP and global power budget of 40W,
the naive implementation cited before assigns to each core a
local power budget of 10W. Looking at Figure 5, cycles 1, 2
and 4 are over the global power budget (40W), so local
power-savings should be enabled. In cycle 1, no power-
control mechanisms are applied to cores 1 and 2 since they
are under their local power budget (10W). Differently, cores
3 and 4 apply their local power-saving mechanisms.
However, slowing down those cores could be more harmful
than it seems since it may cause the whole application to
slow down in a future synchronization point if they are
critical execution threads. The same happens in cycle 2 with
core 3. In cycle 3, however, although there are cores
exceeding their local power budget, no mechanism is applied
as the global CMP power is under the budget. Finally, in
cycle 4, all cores exceed their local power budget (so does
the CMP which exceeds the global one), and hence, local
mechanisms are applied to all cores. Note however, that in
cycles 1 and 2, if we were able to tell cores 3&4 that their
respective local power budgets are less restrictive than 10W
(since cores 1&2 have some power left, 4+2 W; 2+1 W), the
effects on the performance should be less harmful.

The PTB approach is based on Power-Token accounting.
Each individual core will count, at a cycle level, how many
power tokens it has consumed from the available local power
tokens. In a given cycle, if a core still has available power
tokens and the CMP is over the global power budget, the
core offers its spare tokens to the PTB load-balancer. Tokens
are used as a currency to account for power, so it is
important to note that they are neither sent nor received,

0

20

40

60

80

100

2 4 8 16 2 4 8 16 2 4 8 16 2 4 8 16 2 4 8 16 2 4 8 16 2 4 8 16 2 4 8 16 2 4 8 16 2 4 8 16 2 4 8 16 2 4 8 16 2 4 8 16 2 4 8 16

barnes cholesky fft ocean radix raytrace tomcatv unstructured waternsq watersp blackscholesfluidanimate swaptions x264

Benchmark / Cores

E
xe

cu
tio

n
tim

e
(%

)

 Lock-Acquisition Lock-Release Barrier Busy

0

20

40

60

80

100

2 4 8 16 2 4 8 16 2 4 8 16 2 4 8 16 2 4 8 16 2 4 8 16 2 4 8 16 2 4 8 16 2 4 8 16 2 4 8 16 2 4 8 16 2 4 8 16 2 4 8 16 2 4 8 16

barnes cholesky fft ocean radix raytrace tomcatv unstructured waternsq watersp blackscholesfluidanimate swaptions x264

Benchmark / Cores

P
ow

er
 (%

)

Spinlock Power (%)

Figure 4. Normalized spinlock power for a varying number of cores.

Figure 3. Execution time breakdown for a varying number of cores.

436436436

cores just send the number of spare tokens. Analogously,
cores over their local power budget will receive extra tokens
from the PTB load-balancer which will prevent them to
enable a power-saving technique (that can reduce
performance) as long as the global power budget constraint
is met. The PTB load-balancer calculates every cycle the
overall available power tokens based on the spare tokens that
cores have for that cycle. Therefore, PTB is not a loan/refund
mechanism, a core can reuse power from others but there is
no need to give it back.

PTB has two power distribution policies: a) give tokens
to the most power-hungry core (ToOne policy); or b) equally
distribute the extra tokens among all cores over the power
budget (ToAll policy). PTB also exhibits two inherent
features that allow “transparent” optimizations without any
specific mechanism: 1) indirect spinning detection, and 2) an
automatic priority system for non-spinning threads.

Figures 6 help us to illustrate how PTB could be used to
detect spinning. When a core enters a spinning state, the
consumed power follows the behavior shown in Figure 6.
After the initial power peak due to useful computation, if the
spinning state lasts enough, power lowers and stabilizes
(cycle >35 in Figure 6) to an amount that is usually under the
budget that presumably means the core is spinning. Note,
however, that spinning is just a particular case of power
unbalance, so our mechanism will benefit from spinning but

that is not the only case. Actually, PTB knows nothing about
locks, barriers, mispredictions, etc, it just balances power.

For illustrating purposes, and continuing with the
spinning example, Figure 7 shows how PTB works in the
case of a barrier. For this example let us suppose there are
four cores (C1 to C4) with local power budgets set to 10
tokens and that when spinning a core consumes 4 tokens. As
cited before, a spinning core gives its spare tokens to the
PTB load-balancer. Figure 7-a shows that core 2 reaches to
the barrier and so it will transfer 6 tokens to the load-
balancer. Now the rest of cores have more available power to
burn until they get to the synchronization point (in our
example, cores 1, 3, 4 receive 2 extra tokens each from the
load-balancer, raising their local budget to 12 tokens). When
any other core (e.g., core 3 in Figure 7-b) reaches to the
barrier it also gives its 6 spare tokens to the PTB load-
balancer which allows cores 1&4 to use the 6+6 extra tokens
from cores 2&3, raising their local budget to 16. Finally,
Figure 7-c also shows core 1 spinning in the barrier and
giving its 6 spare tokens to the PTB load-balancer which
prevents the last core (C4) to be slowed down as it can use
all the spare tokens. Again, note that PTB does not explicitly
distinguish between barrier- or lock-spinning. As PTB
basically detects power unbalance among cores it will benefit
from any misprediction event (e.g., a cache miss or a
mispredicted branch), not only from spinning states.

1

1.2

1.4

1.6

1.8

2

2.2

2.4

1 21 41 61 81 101 121 141 161 181

Cycles

Po
w

er
 (W

at
ts

)

Figure 6. Per-cycle power behavior of a spinning core. Figure 5. Power Token Balancing motivation (not real numbers).

6 8
3

12
8

9
12

13
15

15
14

11
13 9

8

11

0

10

20

30

40

50

1 2 3 4
Cycle

C
M

P
 P

ow
er

 (w
)

Core 1 Core 2 Core 3 Core 4

Global Power Budget

18

6
6 6

6
6

6 6

2 2 2

6

BarrierBarrierBarrier

a) b) c)

10+6

4 4

10+6

C
1

C
2

C
3

C
4

PTB
10+2

4

10+2

10+2

C
1

C
2

C
3

C
4

PTB

4 4 4

10+18

C
1

C
2

C
3

C
4

PTB

Figure 7. Power Token Balancing example in the case of a barrier.

437437437

2) PTB Implementation

To implement the Power Token Balancing mechanism
we need a centralized structure, the PTB load-balancer, that
receives the number of spare power tokens from all cores
under their local power budget and splits them among the
cores exceeding it (with the aim of not triggering any power-
saving mechanism for the exceeding cores which would
result in a performance degradation).

Balancing is done every cycle, so tokens from previous
cycles are not stored in the balancer. We need to build the
interconnection wires to send the number of tokens from/to
the cores to/from the PTB load-balancer as depicted in
Figure 8. We will use 4 wires for sending and 4 wires for
receiving the number of tokens per core; this limits the
amount of given/received tokens but makes the mechanism
more power-efficient. Note that these wires are used to send
the amount of spare tokens, not the tokens themselves
(tokens are used as a currency to account for power). All
these wires will be placed on a different layer of that of the
interconnection network.

We have estimated the delays using Xilinx ISE for a
processor running at 3GHz without buffers as a reference to
calculate the logic delay of the circuit and eliminated the
delay caused by the pins and router delay, making the logic
delay almost equivalent to the delay of a circuit in an ASIC
implementation. For a 4-core CMP delays are: one cycle for
sending tokens, one for processing tokens and one for
sending tokens back to the cores over the power budget. For
an 8-core processor, wire delay increases to 2 cycles, so it
will take a total of 5 cycles to send and receive tokens
to/from the PTB load-balancer. For a 16-core CMP the
mechanism needs 4 cycles for receiving the tokens, 2 cycles
for processing and 4 cycles for sending the tokens to the
cores over the power budget, according to Xilinx ISE. When
a core gives away tokens it sets a more restrictive power
budget to ensure it won’t consume power until tokens reach
its destination. The power consumption of the PTB
mechanism plus the interconnection wires has been
estimated using Xilinx XPower Analyzer with the same
configuration as the delay latency, increasing the average
application power consumption by just 1%, which is also
accounted in the experimental results presented in the next
section.

Problems might arise as we increase the number of
processing cores, and thus, the PTB load-balancer
interconnection and processing latencies. However, for the
analyzed number of cores and latencies the experimental
results show significant improvements in terms of accuracy
on matching the power budget, temperature and energy, even
with a pessimistic 10-cycle delay for sending/receiving
tokens from other cores. Nevertheless, one approach to make
PTB more scalable (>32 cores) consists of clustering the
PTB load-balancer into groups of 8 or 16 cores and replicate
the structure as needed. Results in next section will show that
such a group of cores (8 or 16) is enough for PTB to
efficiently balance power and accurately match the imposed
power budget.

IV. EXPERIMENTAL RESULTS

A. Efficiency of Power Token Balancing (PTB)
This section reports simulation results for a global power

budget of 50% of the peak power consumption1 with clock
gating and a varying number of processing cores in the CMP
(2 to 16 cores). We evaluate the proposed PTB mechanism
with the previously defined power-token distribution policies
ToAll (that shares the power-tokens among all the cores over
their local power budget) and ToOne (that gives all the spare
power-tokens to the core that needs them the most). All
results are normalized to a base case where no power-control
mechanisms are used to match the global power budget.
Figure 9 (left) shows the energy consumption for different
pairs of {core number/policy} for the evaluated techniques
(enumerated in Section III.C) whereas Figure 9 (right) shows
the AoPB metric. It can be observed that, when using the
proposed PTB mechanism, area numbers go back to the
reported numbers in our previous work [2] for the single-
core scenario: average 10% of AoPB for a 16-core CMP
when the PTB+2level technique is used (although energy
numbers are not as good as in the single-core scenario). In a
16-core CMP, DVFS and DFS are unable to lower the AoPB
below 65% while PTB+2level reduces the average area to
just 8%, getting close to the ideal AoPB of zero, with only
3% more energy consumed. It can also be observed that
accuracy on matching the power budget increases (AoPB
decreases) with the number of cores, because we have more
chances of receiving tokens from other cores.

A more detailed analysis (Figures 10 and 11) shows that
there are benchmarks, like Unstructured, where energy
increases when using power saving techniques (mainly due
to sync points - see Figures 3&4). Unstructured has many
thread dependences and slowing down a core causes a great
impact on performance. On the other hand, benchmarks like

1 We only report results for a 50% power budget due to space limitations.
For less restrictive power budgets PTB also works properly.

Core 1 Core 2

Core 3 Core 4

PTB
load-balancer

Figure 8. PTB implementation diagram for a 4-core CMP.

438438438

Barnes and Ocean, that reported very high AoPB of 70% for
the naive power-distribution implementation discussed in
Section III.C (Figure 2), now offer an AoPB of just 2%
thanks to the efficient power distribution among cores
performed by PTB. However, in some benchmarks the extra
accuracy on matching the global power budget comes at the
cost of higher energy consumption than that of DVFS alone.
DVFS shows an average energy reduction of 6% whereas
PTB increases the energy in 3%. Note, however, that this

energy increase can be turned into energy savings if we relax
the accuracy constraint of PTB, as we will show in section
IV.C.

When comparing both the ToAll and ToOne power-token
distribution policies, on average, the former works better
than the later. However, benchmarks like Unstructured and
Waternsq work better when the extra power is given to a
single core rather than to all cores. In these benchmarks,
threads have an unbalanced workload and spend a significant

2Core_Toall
2Core_Toone

4Core_ToAll
4Core_ToOne

8Core_ToAll
8Core_ToOne

16Core_ToAll
16Core_ToOn

-5

-4

-3

-2

-1

0

1

2

3

4

5
DVFS
DFS
2Level
PTB+2Level

N
or

m
al

iz
ed

 E
ne

rg
y

(%
)

2Core Toall
2Core_Toone

4Core ToAll
4Core_ToOne

8Core ToAll
8Core_ToOne

16Core ToAll
16Core_ToOne

0

10

20

30

40

50

60

70

80

N
or

m
al

iz
ed

 A
oP

B
(%

)

 Figure 9. Normalized energy (left) and area over the power budget (right) for a varying number of cores and PTB policies.

barnes
cholesky

fft
ocean

radix
raytrace

tomcatv
unstruct.

waternsq
watersp

blacksc.
fluidani.

swaptions
x264

Avg.

-20

-10

0

10

20

30

40
DVFS
DFS
2Level
PTB+2Level

N
or

m
al

iz
ed

 E
ne

rg
y

(%
)

barnes
cholesky

fft
ocean

radix
raytrace

tomcatv
unstruct.

waternsq
watersp

blacksc.
fluidani.

swaptions
x264

Avg.

0

10

20

30

40

50

60

70

80

90

100

N
or

m
al

iz
ed

 A
oP

B
(%

)

Figure 10. Detailed energy (left) and AoPB (right) for a 16-core CMP with the ToAll PTB policy.

barnes
cholesky

fft
ocean

radix
raytrace

tomcatv
unstruct.

waternsq
watersp

blacksc.
fluidani.

swaptions
x264

Avg.

-20

-10

0

10

20

30

40
DVFS
DFS
2Level
PTB+2Level

N
or

m
al

iz
ed

 E
ne

rg
y

(%
)

barnes
cholesky

fft
ocean

radix
raytrace

tomcatv
unstruct.

waternsq
watersp

blacksc.
fluidani.

swaptions
x264

Avg.

0

10

20

30

40

50

60

70

80

90

100

110

N
or

m
al

iz
ed

 A
oP

B
(%

)

Figure 11. Detailed energy (left) and AoPB (right) for a 16-core CMP with the ToOne PTB policy.

barnes
cholesky

fft
ocean

radix
raytrace

tomcatv
unstruct.

waternsq
watersp

blacksc.
fluidani.

swaptions
x264

Avg.

-20

-10

0

10

20

30

40
DVFS
DFS
2Level
PTB+2Level

N
or

m
al

iz
ed

 E
ne

rg
y

(%
)

barnes
cholesky

fft
ocean

radix
raytrace

tomcatv
unstruct.

waternsq
watersp

blacksc.
fluidani.

swaptions
x264

Avg.

0

10

20

30

40

50

60

70

80

90

100

N
or

m
al

iz
ed

 A
oP

B
(%

)

439439439

fraction of their time spinning on locks. They benefit,
therefore, from giving the extra power (priority) to threads
that enter in a critical section (i.e., the ToOne policy).

B. Dynamic Policy Selector
In a barrier scenario the ToAll policy will split power

tokens from cores already waiting in the barrier among the
remaining cores, speeding them all in order to get to the
barrier as soon as possible whereas the ToOne policy will
only benefit one core, that will get faster to the barrier, but
we still have to wait for the rest of cores. On the other hand,
when a core is spinning in a lock and gets access to a critical
section, giving all the tokens to this core will benefit the
overall program execution.

Results in the previous section showed that the ToAll
policy is best suited for applications with many barriers in
the code whereas the ToOne policy works better for
applications with high lock contention. Therefore, in order to
enhance the PTB power balancing mechanism we have
included a dynamic selector for the power sharing policy
(either ToOne or ToAll). This selector will change the policy
depending on the current state of the spinning cores. If the
spinning is taking place to access a lock, the mechanism will
use the ToOne policy. If the spinning is taking place in a

barrier (or there is no spinning) the PTB mechanism will use
the ToAll policy.

Figure 12 shows how this dynamic policy selection
approach obtains the best results for the evaluated techniques
in terms of both area and energy metrics and making PTB
really close to DVFS (around 2%) in terms of performance,
as shown in Figure 13, but with the added benefit of PTB
being far more accurate on matching the imposed power
budget than DVFS or DFS approaches. Normalized energy
goes down to 2%, 1% less than the static ToAll and 3% less
than the static ToOne. Accuracy is improved in 3%
compared with the static ToAll and 5% compared with the
static ToOne policy. In terms of performance, Unstructured
is the application that is more affected by the micro-
architectural power-control mechanisms.

Note that the dynamic policy selector (for the presented
results) is assisted by actual application-specific information
although pure indirect dynamic detection of the type of
spinning is possible (and practical) via heuristics (e.g.,
monitoring the number of cores that stop spinning
simultaneously via their power token consumption, run-time
instruction analysis or techniques similar to those described
in [12]). For the sake of clarity, we only report on the first
approach which does not entail any additional energy cost
for the classification of spinning to barrier- or lock-spinning.

C. Relaxing PTB to be More Energy-Efficient
Our initially proposed PTB mechanism is optimized for

accuracy on matching the power budget. As explained
before, this kind of focus hurts performance and, therefore,
slightly increases overall energy consumption. However, if
we relax the accuracy constraint, PTB could also achieve
energy savings since power-saving mechanisms would be
applied in a less restrictive way, therefore, not affecting
performance that much. In order to analyze this new focus,
Figure 14 shows how PTB behaves when optimizing for
energy-efficiency instead of just accuracy for several relaxed
area thresholds (i.e., +10%, +20%, +30%, etc). These relaxed
thresholds are used to delay triggering a power-saving
mechanisms when the global/local power budgets are
exceeded. Note that the original PTB triggers the power-

Figure 12. Detailed energy (left) and AoPB (right) for a 16-core CMP using the dynamic policy selector.
barnes

cholesky
fft

ocean
radix

raytrace
tomcatv

unstruct.
waternsq

watersp
blacksc.

fluidani.
swaptions

x264
Avg.

-20

-10

0

10

20

30

40
DVFS
DFS
2Level
PTB+2Level

N
or

m
al

iz
ed

 E
ne

rg
y

(%
)

barnes
cholesky

fft
ocean

radix
raytrace

tomcatv
unstruct.

waternsq
watersp

blacksc.
fluidani.

swaptions
x264

Avg.

0

10

20

30

40

50

60

70

80

90

100

N
or

m
al

iz
ed

 A
oP

B
 (%

)

Figure 13. Detailed Performance for a 16-core CMP
using the dynamic policy selector.

barnes
cholesky

fft
ocean

radix
raytrace

tomcatv
unstruct.

waternsq
watersp

blacksc.
fluidani.

swaptions
x264

Avg.

-10

-5

0

5

10

15

20

P
er

fo
rm

an
ce

 S
lo

w
do

w
n

(%
)

440440440

saving mechanisms immediately after detecting the current
power budget is exceeded.

It can be seen that, for a 16-core CMP with a relaxed
AoPB metric allowed to be 20% above the power budget,
PTB obtains an average energy reduction of 4% similar to
that obtained by DVFS, however, still being more accurate
than DVFS that obtains a huge AoPB of 65%. Of course,
better energy savings can be achieved for the same 16-core
CMP if we relax more the area constraint. Furthermore,
higher energy savings could be achieved if we use PTB as a
spinlock detector and we disable the spinning cores to save
power. But the later is out of the scope of the current paper
and part of our future work.

D. The Importance of Accuracy
Finally, we will provide an example that tries to illustrate

the importance of the accuracy on matching a predefined
power budget, which is closely related to what authors try to
achieve in [19], where they increase the number of cores of a
CMP maintaining the same TDP (thermal design power).

Let us suppose that we want to increase the number of
cores in a CMP maintaining the same TDP. For a 16-core
CMP with a 100W TDP there are 6.25W per core (for
simplicity let us ignore the interconnection network). If we
set a power budget of 50% we could ideally duplicate the
number of cores in that CMP with the same TDP (up to 32
cores each one consuming an average of 3.125W). But for
this ideal case it is needed a perfect accuracy on matching
the power budget.

According to our previous results, DVFS has an error of
65% energy left over the power budget. Therefore, with a
65% error each core consumption raises to
3.125*1.65=5.15W, and for a 100W TDP we can put a
maximum of 100/5.15=19 cores inside the CMP. For a
regular 2level approach (without PTB) the error is reduced to
40% that gives us a potential average power consumption of
3.125*1.40=4.375W per core, so we can put 100/4.375=22
cores in the CMP with the same TDP. Finally, when using
the non-relaxed PTB approach the error is reduced below
10%, that gives us a potential average power consumption of
3.125*1.1=3.4375W per core, so we can put 100/3.4375=29

cores inside our CMP. If our application is parallel enough to
use these cores it can perfectly overcome the 5%
performance degradation of using the non-relaxed PTB
approach.

V. CONCLUSIONS
Design complexity and verification of microprocessors is

increasingly costly. Some companies cannot afford the
design of custom processors for their products (especially for
cost-sensitive consumer handheld devices and gadgets) and
have to rely on existing processors that may not meet their
power requirements. In other scenarios it might be useful to
increase the number of cores on a CMP maintaining the
same thermal envelopment. Furthermore, thermal envelop
design in processors cannot be done for the worst case,
because production costs are raised. Being able to set a
power budget to the processor can be helpful in these cases.

In a CMP running parallel workloads, previously
proposed power managing mechanisms fail to accurately
adapt to temporary power constraints, due to thread
dependences and synchronization points. However, power
saved just from spinlocks is not enough to match an
aggressive power budget because is too local and too low. A
global control mechanism is needed to match these design
peculiarities. In this paper we propose Power Token
Balancing (PTB), a novel mechanism that dynamically
balances power among the different cores to ensure that the
whole processor accurately matches a predefined and global
power budget. Our proposed mechanism accounts for unused
power from cores that are under the power budget (translated
into power-tokens) and passes that power to cores over the
power budget, hence, not having to slow them down to
match their local power budget constraint.

PTB is a fine-grained mechanism that ensures maximum
accuracy with minimal standard deviation from the power
budget, which is crucial if you want to optimize packaging
costs or to increase the number of cores in a CMP with the
same TDP. However, the accuracy constraint can be relaxed
in order for PTB to be more energy-efficient by means of
applying the power-saving mechanisms in a less restrictive
way, and therefore, not affecting performance that much.

Figure 14. Normalized energy (left) and area over the power budget (right) for a varying number of cores and PTB policies.
2Core_Toall

2Core_Toone
4Core_ToAll

4Core_ToOne
8Core_ToAll

8Core_ToOne
16Core_ToAll

16Core_ToOne
-5

-4

-3

-2

-1

0

1

2

3

4

5
DVFS
DFS
2Level
PTB+2Level
Restricted
PTB+2Level

N
or

m
al

iz
ed

 E
ne

rg
y

(%
)

2Core Toall
2Core_Toone

4Core ToAll
4Core_ToOne

8Core ToAll
8Core_ToOne

16Core ToAll
16Core_ToOne

0

10

20

30

40

50

60

70

80

N
or

m
al

iz
ed

 A
oP

B
(%

)

441441441

Experimental results have shown that PTB is able to
accurately match the global power budget with an AoPB of
just 8% for a 16-core CMP with a negligible energy increase
(3%) and with a more stable temperature over execution time
(due to the increased accuracy when matching the power
budget), as opposed to DVFS which fails to match the power
budget precisely, resulting in a high AoPB of around 65%.
Furthermore, when considering a relaxed PTB approach that
allows being 20% above the power budget (still far from the
65% AoPB obtained by DFVS), PTB obtains the same
energy reduction as DVFS for the 16-core CMP. Of course,
better energy savings can be achieved if the area constraint is
relaxed still more.

ACKNOWLEDGEMENTS

This work was supported by the Spanish MEC and

MICINN, as well as European Commission FEDER funds,
under Grants CSD2006-00046 and TIN2009-14475-C04.
The authors would like to thank the anonymous
reviewers for their insightful suggestions and comments. We
also want to thank Varadan Savulimedu for his support on
estimating the power consumption and interconnection delay
of the PTB mechanism.

REFERENCES

[1] Isci, C.; Buyuktosunoglu, A.; Cher, C.; Bose, P. and

Martonosi, M. An Analysis of Efficient Multi-Core
Global Power Management Policies: Maximizing
Performance for a Given Power Budget. In Proceedings
of the 39th International Symposium on
Microarchitecture, 2006.

[2] Cebrián, J.M.; Aragón, J.L.; García, J.M.; Petoumenos,
P.; and Kaxiras, S. Efficient Microarchitecture Policies
for Accurately Adapting to Power Constraints. In
Proceedings of the 23rd International Parallel and
Distributed Processing Symposium (IPDPS), Rome,
Italy, 2009.

[3] Kesharvarzi, A. Intrinsic iddq: Origins, reduction, and
applications in deep sub-micron low-power CMOSIC’s.
In Proceedings of the IEEE International Test
Conference, 1997.

[4] Flynn, M.J. and Hung P. Microprocessor Design Issues:
Thoughts on the Road Ahead. In IEEE Micro, vol. 25,
no. 3, 2005.

[5] Donald, J. and Martonosi, M. Techniques for Multicore
Thermal Management: Classification and New
Exploration. In Proceedings of the 33th International
Symposium on Computer Architecture (ISCA-33),
2006.

[6] Macken, P.; Degrauwe, M.; Paemel, V. and Oguey, H.
A voltage reduction technique for digital systems. In
Proceedings of the IEEE Int. Solid-State Circuits
Conference, 238–239, February 1990.

[7] Simunic, T.; Benini, L.; Acquaviva, A. and Glynn, P.
Dynamic Voltage Scaling and Power Management for
Portable Systems. In Proceedings of the Design
Automation Conference, 2001.

[8] Kim, W.; Gupta, M. S. et al. System Level Analysis of
Fast, Per-Core DVFS using On-Chip Switching
Regulators. In Proceedings of the 14th International
Symposium on High-Perf. Computer Architecture
(HPCA), 2008.

[9] Sasanka, R.; Hughes, C. J. and Adve, S.V. Joint Local
and Global Hardware Adaptations for Energy. In
Proceedings of the 10th International Conference on
Arch Support for Programming Languages and
Operating Systems (ASPLOS), 2002.

[10] Winter, J.A. and Albonesi, D.H. Addressing Thermal
Non-Uniformity in SMT Workloads. In ACM
Transactions on Architecture and Code Optimization,
Vol. 5, No. 1, May 2008.

[11] Cai, Q.; González, J.; Rakvic, R.; Magklis, G.;
Chaparro, P.; González, A. Meeting Points: Using
Thread Criticality to Adapt Multicore Hardware to
Parallel Regions. In Proceedings of the 17th
International Conference on Parallel Architectures and
Compilation Techniques, 2008.

[12] Li, T.; Lebeck, A.R.; Sorin, D.J. Spin Detection
Hardware for Improved Management of Multithreaded
Systems. In IEEE Transactions on Parallel and
Distributed Systems, vol 17, 2006.

[13] Li, J.; Martínez, J.F.; Huang, M.C. The Thrifty Barrier:
Energy-Aware Synchronization in Shared-Memory
Multiprocessors. In Proceedings of the 10th
International Symposium on High-Performance
Computer Architecture, 2004.

[14] Magnusson, P. S.; Christensson, M.; Eskilson, J.;
Forsgren, D.; Hallberg, G.; Hogberg, J.; Larsson, F.;
Moestedt, A. Simics: A full system simulation platform.
Computer, 35(2):50–58, 2002.

[15] Martin, M. M. K.; Sorin, D. J.; Beckmann, B. M.;
Marty, M. R.; Xu, M.; Alameldeen, A. R.; Moore, K.
E.; Hill, M. D. and Wood, D. A. Multifacet’s general
execution-driven multiprocessor simulator (GEMS)
toolset. SIGARCH Comput. Archit. News, 33(4):92–99,
2005.

[16] Thoziyoor, S.; Muralimanohar, N.; Ahn, J. H.; Jouppi,
N. P. Cacti 5.1. HP-Labs technical report HPL-2008-
20, 2008.

[17] Bhattacharjee, A. and Martonosi, M. Thread criticality
predictors for dynamic performance, power, and
resource management in chip multiprocessors. In
Proceedings of the 36th International Symposium on
Computer Architecture (ISCA), 2009.

[18] Meng, K; Joseph, R; Dick, P.D.; Shang, L. Multi-
optimization power management for chip
multiprocessors. In Proceedings of the 17th
International conference on Parallel Architectures and
Compilation Techniques (PACT), 2008.

[19] Sartori, J; Kumar, R. Distributed Peak Power
Management for Many-core Architectures. In
Proceedings of the international conference on Design,
Automation and Test in Europe, 2009.

[20] Skadron, K; Stan, M; Huang, W; Velusamy, S;
Sankaranarayanan, K and Tarjan, D. Temperature-
aware microarchitecture. In Proceedings of the
International Symposium on Computer Architecture
(ISCA), 2003.

442442442

