
Efficient Microarchitecture Policies for Accurately
Adapting to Power Constraints

Juan M. Cebrián1, Juan L. Aragón1, José M. García1, Pavlos Petoumenos2 and Stefanos Kaxiras2

1 Dept. of Computer Engineering, University of Murcia, Murcia, 30100, Spain
{jcebrian,jlaragon,jmgarcia}@ditec.um.es

2 Dept. of Electrical and Computer Engineering, University of Patras, 26500, Greece
{kaxiras,ppetoumenos}@ee.upatras.gr

Abstract

In the past years Dynamic Voltage and Frequency
Scaling (DVFS) has been an effective technique that
allowed microprocessors to match a predefined power
budget. However, as process technology shrinks,
DVFS becomes less effective (because of the
increasing leakage power) and it is getting closer to a
point where DVFS won’t be useful at all (when static
power exceeds dynamic power). In this paper we
propose the use of microarchitectural techniques to
accurately match a power constraint while maximizing
the energy efficiency of the processor. We will predict
the processor power consumption at a basic block
level, using the consumed power translated into
tokens to select between different power-saving micro-
architectural techniques. These techniques are
orthogonal to DVFS so they can be simultaneously
applied. We propose a two-level approach where
DVFS acts as a coarse-grained technique to lower the
average power while microarchitectural techniques
remove all the power spikes efficiently. Experimental
results show that the use of power-saving
microarchitectural techniques in conjunction with
DVFS is up to six times more precise, in terms of total
energy consumed (area) over the power budget, than
using DVFS alone for matching a predefined power
budget. Furthermore, in a near future DVFS will
become DFS because lowering the supply voltage will
be too expensive in terms of leakage power. At that
point, the use of power-saving microarchitectural
techniques will become even more energy efficient.

1. Introduction

Modern microprocessors are already designed to be
power efficient while increasing, or at least
maintaining, current performance levels. However,
individual core performance is saturating, and high

performance processor designs are moving to multi-
core approaches. Even if a low power processor is
designed, it will be difficult to sell if it is slower than
the previous generation, so designers have to look for
a balance between consumption, thermal constraints
and performance.

Regardless of the internal hardware implemented
on a chip, it is extremely improbable that all of its
resources will be simultaneously used due to program
dependences and/or thread’s synchronization.
Moreover, designing the thermal envelop for this
“worst case” is somewhat expensive and not very
efficient. Computer architects, instead of designing the
processor for the worst case scenario, look for the
average case, and face these “special” cases by using
both power saving and thermal management
techniques. Dynamic Thermal Management is a
mechanism that reduces the processor power
consumption (and performance) during time intervals
so it can cool down. One way to achieve this goal is to
set a power budget to the processor.

This processor’s power budget is not only useful to
control power and temperature but also when there is
an external limitation on the power consumption
independent of the microprocessor (or even the
system) that we need to satisfy, without shutting off
the whole system. There are also situations where
device power constraints are more restrictive than the
power needs of a processor at full speed. In most of the
cases we cannot afford to design a new processor to
meet whatever power constraint because is too
expensive. The problem increases when, as usual,
power constraints are transitory and after some period
of time we want all the processor’s performance back.
Imagine a computation cluster connected to one or
more UPS units to protect from power failures. If there
is a power cut, all processors will continue working at
full speed consuming all of the UPS battery quickly,
and then switching the computers off when the battery
is close to run out and, consequently, losing all the

work on fly. During the power failure (many times
they are of limited duration), if the processors are not
doing critical work, it might be more interesting to
extend the UPS battery duration at the expense of
degrading some performance, than to lose all the work
done because the battery runs out.

Another example where setting a power budget
could be useful is the case of a computing centre that
shares a power supply among all kind of electric
devices (i.e., computers, lights, air conditioning, etc.).
In a worst case scenario (e.g., in summer at mid-day
with all the computers working at full speed), if we
integrate some kind of power budget management into
the processors, during critical day hours or conditions
when the air conditioning is consuming a big part of
the total power of the computing centre, we could
decrease the power of all processors, lowering the
ambient temperature and having more power for the
air conditioning. In this way, we could design the
power capacity of the computing centre for the average
case, reducing its cost.

We need processors able to accurately adapt to a
given power budget in real time in an energy-efficient
way. One approach to make the processor power go
towards a power budget is Dynamic Voltage and
Frequency Scaling (DVFS) [6][7][14][16]. DVFS
decreases the processor voltage and frequency to
reduce its dynamic power, as dynamic power depends
on both voltage (quadratically) and frequency
(linearly). DVFS is a well known technique already
implemented in many commercial processors mainly
used by DTM techniques [8]. The major advantage of
DVFS is its precision for estimating the final power
consumption and performance degradation associated
with the voltage and frequency reduction. However,
DVFS has some important drawbacks:

 Long transition times between different power
modes.

 Long exploration and use windows (in order to
amortize DVFS overheads), making it difficult to
adapt precisely to the program behaviour.

 When activated, DVFS affects all instructions
regardless of their usefulness in the program.
Therefore, it cannot exploit situations such as
instruction slack, instruction criticality, or low
confidence on the predicted path.

 As process technology shrinks, reducing voltage
(VDD and VT) to lower dynamic power
consumption becomes impractical since leakage
exponentially depends on VT (see Section 2.1)
which will turn DVFS into DFS (Dynamic
Frequency Scaling) for deep submicron designs.

However, DFS is not so energy-efficient since it
seriously hurts performance.

In this paper we propose the use of power-saving

microarchitectural techniques to accurately match an
imposed processor power budget. Our approach will
capture and store information about the processor
power consumption, either at a cycle level (Power-
Token Throttling) or at a basic block level (Basic
Block Level Manager), in order to decide whether the
next instruction/basic block can be executed based on
its previous power consumption and how far the
processor is from the power budget. We also introduce
an efficient two-level approach that firstly applies
DVFS as a coarse-grained approach to lower the
average power and, secondly, uses microarchitectural
techniques to remove local power spikes. One of the
benefits of using microarchitectural techniques is that
they can be applied at a cycle level, only in those
cycles where the processor exceeds the power budget.
The peculiarities of each microarchitectural technique
will be detailed in Section 2.2 but, in general terms,
these fine-grained techniques:

1. Locate non-critical instructions in cycles
exceeding the power budget and delay them to
cycles under the budget that are near enough not
to make these instructions critical ones.

2. Previous studies have shown that 30% of the
overall processor power comes from wrong path
instructions [2][15]. Therefore, when the
processor is exceeding the power budget, we can
reduce the number of low-confident speculative
instructions in the pipeline.

3. When the two previous policies are not enough to
put the processor under the required power
budget, we can throttle the pipeline at different
stages in order to meet the given budget.

Experimental results show that the use of power-
saving microarchitectural techniques is more energy
efficient as well as more accurate (i.e., lower area over
the power budget, see Section 4.2 for details) than
DVFS alone for driving the processor under the
required power budget. The rest of the paper is
organized as follows. Section 2 provides some
background on power-saving techniques. Section 3
shows a first analysis of the individual techniques and
motivates the need for a hybrid approach to match the
power budget. Section 4 describes our simulation
methodology and reports the main experimental
results. Finally, Section 5 shows our concluding
remarks.

2. Background and related work

2.1. DVFS

Dynamic voltage and frequency scaling (DVFS)
was introduced in the 90’s [14], offering a great
promise to reduce power consumption in
microprocessors. Based on the fact that power
consumption depends on both voltage and frequency
(P VDD

2f), DVFS dynamically scales these terms to
save power [6][7][16]. Unfortunately, one of the major
concerns about DVFS has been the slow off-chip
voltage regulators that lack the ability to adjust to
different voltages at small time scales (0.016mV / ns
according to [7]). Modern real implementations are
limited to temporary coarse-grained adjustments
governed by runtime software (i.e., the OS).

In the recent years, researchers and designers have
moved to chip multiprocessor architectures as a way of
maintaining performance scaling while staying within
tight power constraints [1][8]. This trend, coupled
with diverse workloads found in modern systems,
motivates the need for fast, per-core DVFS control.
Kim et al. [17] very recently proposed the use of fast
on-chip regulators to achieve transition speeds of 30-
50mV / ns. This solves one of the major problems of
DVFS, but still has some limitations. As the building
process goes into deep submicron, the margin between
VDD (supply voltage) and VT (threshold voltage) is
reduced, and as this margin decreases, the processor’s
reliability is reduced (among other undesirable
effects). Moreover, the transistor’s delay (switching
speed) depends on: δ ≈ 1/ (VDD – VT)α, with α > 1.
That means that we can lower VDD for DVFS as long
as we keep the margin between VDD and VT (i.e., VT
must be lowered accordingly) so we can obtain the
desired speed increase derived from technology
scaling. However, the counterpart of reducing VT is
twofold: a) leakage power hugely increases as it
exponentially depends on VT, which makes leakage
the major source of power consumption as the process
technology scales below 45nm [3][4][5]; and b)
processor reliability is further reduced.

2.2. Microarchitectural techniques

2.2.1. Critical path determination

Data dependencies are one of the main bottlenecks
in high performance processors: dependency chains
limit the performance of the machine leaving most of
the processor structures and logic idle [11]. These

chains of dependent instructions are known as the
critical path of the code. A processor performance is
determined by how fast it can execute the critical path,
not by how fast it can execute all of the code.

If we were able to distinguish between instructions
that belong to the critical path of the program, we
could accelerate their execution to improve the
machine performance, or slow down non-critical
instructions to reduce power consumption and
temperature. In [11] it is proposed a critical path
predictor able to predict critical instructions, but the
amount of cycles a non-critical instruction can be
delayed without becoming critical is really small [13].

2.2.2. Pipeline throttling

Pipeline throttling is a technique that reduces the
amount of in-flight instructions in the pipeline to
reduce power consumption [2][10][15]. Pipeline
throttling can be applied at different stages, producing
different effects on both power and performance.

 Instruction flow control: These techniques try to
estimate the amount of ILP in the processor by
tracking the instructions traversing the pipeline.
Authors in [10] propose the decode/commit ratio
(DCR) heuristic for estimating the processor’s
current ILP. We can take advantage of this
information and the front-end can be either
stopped or slowed down for a small number of
cycles to reduce power consumption.

 Confidence estimation: Confidence estimators

try to add some additional information to branch
predictors so the processor can check how good a
prediction is and act accordingly. JRS [9] is one
of the most cost-effective confidence estimators:
it uses a direct-mapped table accessed by the
program counter where it stores how many
consecutive hits there are for a branch. When the
counter exceeds a threshold, the branch is
considered confident.

2.3. Hybrid approaches

There are several proposals that try to merge both
DVFS and microarchitectural techniques in a two-
level mechanism to benefit from both coarse and fine-
grained mechanisms. Sasanka et al. propose the use of
DVS and some microarchitectural techniques to
specifically reduce the power consumption in real time
video applications [18]. Their selected micro-
architectural techniques try to reduce the power of

functional units and the instruction window. Our
proposal is more generic and adaptive, as we do not
depend on profiling and the applications studied are
SPECint benchmarks. Moreover, they don’t use clock
gating in their proposal, and the studied benchmarks
have special properties that their selected
microarchitectural techniques can take advantage of.
Although we do not implement any specific micro-
architectural technique to reduce the consumption of
the instruction window and functional units, the use of
clock gating prevents these structures to consume
when they are underused. Winter et al. [19] also
propose the use of a two-level approach that merges
DVFS and thread migration to reduce temperature in
SMT processors.

3. Power-saving microarchitectural
techniques

Our goal is to reduce the processor power
consumption to match an imposed power budget in an
energy-efficient way. First we need to study how the
different microarchitectural techniques behave
independently, in order to design an adaptive
mechanism that takes advantage of each of their
peculiarities. As evaluation metrics, we will measure
both the fraction of cycles exceeding the power budget
over the total execution cycles as well as the induced
performance degradation for the whole SPECint2000
(see Section 4.1 for details about the processor
configuration).

3.1. Reactive techniques

Reactive techniques check the processor power
consumption every cycle. If the current power exceeds
the required budget, the processor applies a certain
microarchitectural technique to reduce its power
consumption. The major concern about reactive

techniques is that they must be applied during enough
cycles in order to achieve its low-power effect. If in a
given cycle the processor goes over the power budget,
we do not know a priori how long this situation will
last. Furthermore, reactive techniques are not able to
remove all the cycles the processor spends over the
power budget since we activate them once the
processor power consumption is over the budget,
unless we use a predictive approach (as explained in
Section 3.2).

3.1.1 Instruction criticality analysis

Instruction criticality analysis is an approach that
tries to locate non-critical instructions in cycles where
the power budget is exceeded, delaying them to cycles
under the power budget. As in [11], we use an 8K-
entry table indexed by PC. Each entry has a 6-bit
saturating counter that is incremented by 8 if the
instruction belongs to the critical path and is
decremented by 1 otherwise. This 6KB table (340
times smaller than the L2 cache) introduces a power
overhead of around 0.5% which is accounted for in
our results. From the proposed policies in [11], we
have chosen the “QOld” policy for our implementation
because of its simplicity. Each cycle, QOld policy
marks as critical the oldest instruction in the
instruction queue, unless it is ready. When the
instruction becomes ready it is marked as non-critical.

In order to gain some insight about what is
happening inside the pipeline, Figure 1 shows the
original, DVFS and critical path behaviour for several
cycles (where Ci represents cycle i). Solid boxes
represent critical instructions while the rest represent
non-critical instructions. If we set a power budget like
the one in Figure 1, DVFS will slow down all the
instructions (actually, DVFS increases cycle length) to
match the required budget at the expense of increasing
the execution time. On the other hand, by using
instruction criticality information, as shown in Figure

 C1 C2 C3 C4 C5

 C1 C2 C3 C4 C5
 (b) DVFS (c) Critical Path

Power budget

 C1 C2 C3 C4 C5
 (a) Base

Figure 1. DVFS and critical path effects on power consumption at a cycle level.

1-(c), we locate non-critical instructions, so they can
be efficiently delayed to cycles under the budget.

Our first implementation marks in the critical path
predictor table, along with the information about the
criticality of an instruction, if the last time it was
executed the power budget was exceeded. Therefore, if
the predictor detects a non-critical instruction
previously executed in a cycle over the budget, we will
delay its execution.

Figure 2 shows the result of using instruction
criticality information alone for an aggressive power
budget of 50%. We use this power budget to show the
disadvantages of the critical path technique that does
not work as expected for aggressive power budgets.
The delay cycles (x axis) represents the maximum
number of cycles a non-critical instruction can be
delayed. First of all, we must notice that, for the base
case almost half of the execution cycles are over the
power budget. Our critical predictor relies on finding
“holes” where it can delay instructions from cycles
over the budget. The more cycles a program is under
the power budget, the easier to balance instructions so
they all execute under the budget. Second, in our
current implementation, the critical path predictor has
no information about the power cost of each
instruction neither how much power over the budget
was consumed in each cycle. And even if we had that
information, it would be still needed some way of
communication between instructions in order to know
if enough instructions have been delayed to be under
the power budget. To keep it simple, this first
approach delays as many non-critical instructions as
found when the power budget is exceeded.

3.1.2 Pipeline throttling analysis

This section shows how the pipeline throttling
technique behaves individually in terms of both the
number of cycles over the power budget the technique

is able to reduce as well as the performance
degradation for the JRS and DCR approaches.

The evaluated confidence estimator is a modified
version of JRS with a 64K-entry table where each
entry contains a 2-bit saturating counter (Figure 3).
The confidence estimator has a size of 16KB with a
power overhead of around 0.3%, also accounted for in
our results. When a branch is labelled as non-
confident, we either stop or slow down the front-end of
the processor. For the DCR approach (Figure 4), we
show results when the technique is always enabled
(DCR); when we throttle the pipeline only if the power
budget is exceeded (DCR + >PB); and when we
throttle the pipeline ony if the power budget is
exceeded (>PB). When pipeline throttling is activated,
we divide both the fetch and decode bandwidth by 2 or
4 (note that we are evaluating a 4-wide issue
processor). Figures 3 and 4 show the amount of
throttling in the x axis as follows: the base case
corresponds to bar 1; bars 2 and 4 correspond to a
throttling of 1/2 and 1/4 respectively; finally, bar 0
means a “full-stop” of the fetch unit. All the
techniques are applied as long as the trigger condition
lasts (e.g., JRS labels a branch as non-confident; or
the DCR condition is met1 and the power budget is
exceeded) plus 3 cycles.

First thing we can notice in Figures 3 and 4 is that
the major reduction in the cycles over power budget
comes from cycles that belong to a wrong path, as
intended. However, none of these techniques alone is
good enough to match the required power budget of
50% unless performance is highly degraded (e.g., in
Figure 4, bars 4 and 0). Therefore, a predictive
approach is needed in order to accurately match the
required power budget in an energy-efficient way.

1 Three times more committed than decoded instructions.

Figure 2. Instruction criticality analysis approach for a power budget of 50%.

0

10

20

30

40

50

B
a
s
e 1 2 4 6 8

Delay Cycles (Critical Path)

C
y
c
le

s
 o

v
e
r

P
B

 (
%

)

Wrong Path Correct Path

0

5

10

15

1 2 4 6 8

Delay Cycles (Critical Path)

S
lo

w
d

o
w

n
 (

%
)

3.2. Predictive techniques

Predictive techniques will capture and store
information about the processor power consumption,
either at a cycle level (Power-Token Throttling) or at a
basic block level (Basic Block Level Manager), in
order to decide whether the next instruction/basic
block can be executed based on its previous power
consumption. For predictive techniques to work we
need a way to measure power consumption at a cycle
level. Our proposal uses a novel Power-Token
approach to dynamically estimate power consumption.

 The implementation of the Power-Token approach
is done by means of an 8K-entry history table (Power-
Token History Table – PTHT), accessed by PC, which
stores the power cost (in tokens) of each instruction’s
previous execution. This table introduces a power
overhead of around 0.5% which is accounted for in
our results. The power consumed by an instruction is
calculated at commit stage by adding the base power
consumption of the instruction (i.e., all the regular
accesses to structures done by that instruction) plus a
dynamic component that depends on the time it spends
on the pipeline. This dynamic component is due to the
combined RUU wakeup-matching logic power that we
divide between all the active instructions in the RUU.
Therefore, in order to work with power-token units in
a simple way, we define a power-token unit as the
joules consumed by one instruction staying in the

RUU for one cycle. In this way, the number of power-
tokens consumed by an instruction will be calculated
as the addition of its base power-tokens plus the
amount of cycles it spends in the RUU. The PTHT is
updated with the number of power-tokens consumed
when an instruction commits.

We calculated the base power-tokens of every
instruction type by running the SPECint2000
benchmark suite with the processor configuration
shown in Section 4.1. Once we had the base power for
all the possible instructions, we used a K-mean
algorithm to group instructions with similar base
power consumption. Our simulated results show that
having just 8 groups is accurate enough for the Power-
Token approach to properly work with an error lower
than 1% (compared to accounting for the actual power
consumption in joules as provided by HotLeakage).

Finally, the overall processor power consumption
can be easily estimated in a given cycle based on the
instructions that are traversing the pipeline without
using performance counters by simply accumulating
the power-tokens (as provided by the PTHT) of each
instruction being fetched.

3.2.1 Power-Token Throttling (PTT)

This novel technique estimates the power
consumption of the instructions inside the pipeline in
a given cycle by means of accounting for the power-

Figure 3. Cycles over PB and slowdown for JRS-based throttling (power budget = 50%).

Figure 4. Cycles over PB and slowdown for DCR-based throttling (power budget = 50%).

0

10

20

30

40

50

1 2 4 0

Throttling (1/x)

C
y

c
le

s
 o

v
e
r

P
B

 (
%

)

Wrong Path Correct Path
0

10

20

30

40

1 2 4 0

Throttling (1/x)

S
lo

w
d
o
w

n
 (

%
)

0

10

20

30

40

50

1 2 4 0 1 2 4 0 1 2 4 0

Throttling (1/x) Throttling (1/x) Throttling (1/x)

DCR DCR + >PB >PB

C
y

c
le

s
 o

v
e
r

P
B

 (
%

)

Wrong Path Correct Path

0

20

40

60

80

1 2 4 0 1 2 4 0 1 2 4 0

Throttling (1/x) Throttling (1/x) Throttling (1/x)

DCR DCR + >PB >PB
S

lo
w

d
o
w

n
 (

%
)

tokens they consume. When the power of the
instructions inside the processor exceeds the budget,
the fetch stage is stalled until enough committed
instructions leave the pipeline, releasing their power-
tokens, and eventually lowering the current total
power, allowing the introduction of new instructions.

We have also evaluated a modified version of the
Power-Token Throttling approach (labelled as Power-
Token Throttling CP) that uses a Critical Path
Predictor to detect critical instructions. In this way,
even if we are over the power budget, we allow these
instructions to continue their execution. This version
is less aggressive than the original PTT.

In order to gain some insight on the power
consumption behaviour of each technique, Figure 5
shows the average power consumption for the “go”
benchmark. For the sake of visibility, we only plot the
power information for a window of 120Kcycles. The
dashed horizontal line represents the required power
budget (set to 24W, which corresponds to a 50%
power budget over the peak power of 48W, see Section
4.2). The current DVFS implementation (as in [1])
calculates the average power consumption over an
exploration window of 500Kcycles, and modifies the
voltage and frequency accordingly (from a set of pairs
voltage/frequency modes; see Section 4.4) to match
the desired power budget. For the window plotted in
Figure 5-middle, the average power consumption of
the exploration window is either under the power
budget or the current working mode is the closest to
the budget, therefore DVFS does nothing to force all

cycles under the power budget. On the other hand, the
Power-Token Throttling approach (Figure 5-bottom),
accurately follows the power budget at a cycle level, as
it knows in advance how much power (in tokens) the
next instruction consumes. If we cannot afford to
execute it, we wait until a committed instruction
leaves the pipeline and there is enough power budget
left to burn in the new instruction. Spikes in the PTT
plot are due to branches that are left to enter into the
pipeline in order to discover eventual mispredictions
as soon as possible.

3.2.2. Basic Block Level Manager (BBLM)

This novel technique uses the last observed number
of power-tokens consumed by a basic block (a stream
of instructions between two branches) as well as the
power budget left in order to decide what technique
should be applied from the following: none, critical
path, confidence estimation throttling, or decode-
commit ratio throttling – from less to more aggressive.

 The power consumed by a basic block is measured
as the addition of the power-tokens of every
instruction that belongs to that basic block. This power
is stored in the branch predictor entry of the branch
that points to the start of that basic block. This
introduces 9 additional bits per entry in the branch
predictor which corresponds to a negligible 0.3%
power increase in the total processor power
consumption, again accounted for in our results. When
a branch is predicted, it is also obtained the last power

Figure 5. Detailed per-cycle power consumption for the “go” benchmark.

20

30

40

Base (go)

20

30

40

P
ow

er
 (

W
at

ts
)

 .

DVFS (go)

20

25

30

0 200 400 600 800 1000 1200

Time (Cycles x100)

PTT (go)

history for the subsequent basic block, and we estimate
how far from the power budget we will get if we
execute that basic block. Depending on how far the
estimated power is from the budget, we select a
different power saving technique. In addition, when
updating the branch predictor’s saturating counter, we
also update the power-tokens consumed by the
subsequent basic block (that corresponds the next
predicted path – we use a gshare predictor).

For the BBLM approach to decide what technique
should be applied we define two threshold values, X
and Y. Therefore, for a fraction of power over the
budget lower than X we will use the first technique
(i.e., critical path, which is the least aggressive), from
X to Y we will use the second technique (i.e.,
confidence estimation throttling), and for a power over
the budget greater than Y we will use the third
technique (i.e., decode-commit ratio throttling, which
is the most aggressive). Techniques are disabled
progressively, once we get under the power budget, in
reverse order. We performed an experimental study to
determine the best values for these thresholds (best
power budget matching with minimal performance
degradation), and discovered that for the current
processor configuration the best thresholds were X=15
and Y=65.

It is important to note that a very precise basic
block power prediction is not really relevant, as long
as the selected technique is the same for the same
basic block (which is actually the common case).

3.2.3. Two-level approach

Microarchitectural techniques do not work

efficiently when the processor spends a great number
of cycles over the power budget, as we will see in
Section 4, since there are few chances to reduce
consumption without degrading performance. On the
other hand, DVFS is extremely inaccurate when there
are power spikes, because the influence of power
spikes on the average search window power
consumption is really low. As we can see in Figure 6-
left, not all benchmarks have the same average power

consumption (compare it with “go” in Figure 5-top). It
can be noticed that “mcf” has an average power
consumption close to the maximum power
consumption (approx. 48W). If we only use
microarchitectural techniques for these benchmarks
we may not get close to the power budget, or the
performance degradation will be quite high. Moreover,
benchmarks exhibit different program phases with
different average power consumptions (as shown in
Figure 6-right). Phases that if we are able to detect we
could use in our advantage, using only
microarchitectural techniques in phases close to the
power budget and a coarse-grained approach (DVFS)
in phases far from the power budget.

Our proposal consists of a two-level approach: first
we apply DVFS to take coarse-grained decisions about
power consumption, and secondly we apply
microarchitectural techniques for fine-grained
decisions (mainly removing power spikes). This two
level approach has a twofold benefit. We increase the
DVFS accuracy for matching a power budget, while at
the same time we do not need all the DVFS power
modes to reach a power budget. Only the less
aggressive power modes are enough in our simulations
to accurately match the predefined power budget. It is
important to note that, as discussed in Section 2.1,
when the process technology goes below 65nm the
reduction on VT will be limited by both reliability and
leakage power, therefore, it is not that DVFS does not
use the extreme power modes, but having those power
modes will be infeasible.

4. Experimental results

4.1. Simulation methology

To evaluate the energy-efficiency of both DVFS
and microarchitectural techniques we have used the
SPECint2000 benchmark suite. All benchmarks were
compiled with maximum optimizations (-O4 -fast) by
the Compaq Alpha compiler and they were run using
a modified version of HotLeakage power-performance

Figure 6. Power consumption for “mcf” and “gzip” benchmarks as a function of time.

18

28

38

48

0 150 300 450

Time (Cycles x100)

P
o
w

e
r

(W
a
tt
s
)

Base (mcf)
10

20

30

40

0 400 800 1200 1600 2000 2400 2800 3200

Time (Cycles x100)

Base (gzip)

simulator [12] that includes the dynamic power model
for the evaluated microarchitectural approaches as
well as their associated power overhead. All
benchmarks were run to completion using the reduced
input data set (test). Table I shows the configuration of
the simulated architecture.

4.2. A power budget of what? (100% usage ≠
100% power consumption)

What we need to measure is whether the processor
exceeds a preset power budget, usually represented as
a percentage of the total power consumed by the
processor. The worst case scenario (i.e., the peak
consumption of a processor) would be achieved by a
program that uses all the processor resources at once.

Our base processor has a peak power consumption
of 75 Watts (73W on average). However, when a
circuit-level technique such as clock gating is enabled,
the average power consumption for the SPECint2000
falls to 25 Watts with a peak power consumption of 48
Watts. We will use that 48 Watts peak power
consumption (using clock gating “cc3”) as our
reference power consumption (i.e., 100% power
budget), which means the power consumption of the
selected processor without any power saving
technique.

Next sections show the simulation results for the
SPECint2000 benchmark suite for: a) fraction of
cycles over the power budget (Cycles over PB); b) total

power exceeded over the budget (Area over PB); and
c) normalized energy. The metric “area over the power
budget” tells us how accurate a technique is for
matching a power budget and how close we are from
the budget (as illustrated in Figure 7). We use this
metric instead of the average power since the standard
deviation of the per-cycle power consumption is quite
high. The processor has periods of high power
consumption hidden by periods of low power
consumption (branch mispredictions, cache misses,
etc.), therefore, the average power is not a good metric
for what is really happening inside the processor.

4.3. Cycles over PB and area distribution

Figure 8 shows the fraction of cycles over power
budget whereas Figure 9 shows the area over the
power budget for different budgets and benchmarks
before applying any power saving technique.
Evaluated PBs range from 95% of the original peak
power to 40%.

As we can see in Figures 8 and 9, both the amount
of cycles and the area the processor spends over the
power budget is almost negligible for high budgets
(95%-70%), due to the effects of clock gating on
power consumption, but being highly noticeable for
power budgets under 65%. As explained before, DVFS
will be unable to find power spikes for low power
budgets, as it works with the average power
consumption of its long explore windows. On the

Table I. Processor configuration.

Processor Core

Process Technology:
Frequency:

Instruction Window
Decode Width:

Issue Width:
Functional Units:

Pipeline:

Branch Predictor:

70 nanometres
5600 MHz
128 RUU, 64 LSQ
4 inst/cycle
4 inst/cycle
4 Int Alu; 2 Int Mult
4 FP Alu; 2 FP Mult
22 stages
64KB, 16 bit history
GSHARE

Memory Hierarchy

L1 I-cache:
L1 D-cache:

L2 cache:

64KB, 2-way
64KB, 2-way
2MB, 4-way, unified

Figure 7. Shadowed areas show the exceeded
power over the budget (Area over PB).

Power Budget

Power Budget

Time (Cycles)

P
o

w
er

 C
o

n
su

m
p

ti
o

n

Time (Cycles)

P
o

w
er

 C
o

n
su

m
p

ti
o

n

other hand, microarchitectural techniques will detect
these spikes and remove them whenever possible.

4.4. Efficiency on matching a power budget

This subsection evaluates the energy-efficiency of
the proposed microarchitectural techniques as well as
their accuracy for matching an imposed power budget.
In order to reduce the extension of this section we only
report results for the following techniques: DVFS,
PTT and BBLM (with and without using Critical Path
information), and the two-level approach
(DVFS+BBLM).

The evaluated DVFS approach uses the
implementation proposed in [1] and discussed in
Section 2.1. DVFS calculates the average power
consumption over a predefined amount of cycles
(search interval). If the mechanism finds out that the
average power consumption is over the budget, DVFS
changes to a pair of voltage and frequency values from
a set of predefined working modes in order to reduce
the average power. DVFS uses a search interval of
500Kcycles with a transition time between modes set
to 50 mV/ns (as in [17]), so it takes only 6 cycles to
switch from one mode to another2. The evaluated
working modes are the following:

 For DVFS: there are five modes (100% VDD,

100% f), (95% VDD, 95% f), (90% VDD, 90% f),
(90% VDD, 75% f), and (90% VDD, 65% f).

 For the limited DVFS: this version of DVFS is
used in the two-level approach. The power modes
are limited to (100% VDD, 100% f), (95% VDD,
95% f), and (90% VDD, 90% f).

 For DFS: only scales frequency as needed (VDD
remains unchanged).

The studied BBLM uses the configuration

parameters and techniques proposed in Section 3.2.2.
As explained before, the selected thresholds are X=15
and Y=65. Critical path (CP) is used as the first
technique, JRS-throttling as the second technique, and
DCR-throttling as the third one.

Figure 10 shows the normalized energy
consumption for the different techniques and power
budgets. As we can see, the two-level approach
(DVFS+BBLM) is the most energy-efficient technique
for all the studied power budgets, and especially for
the very restrictive power budgets. The rest of
microarchitectural techniques (except PTT) as well as
DFS show not so high energy degradation (between
4% and 10%). BBLM alone shows a similar energy-
efficiency as DFS up to a power budget of 50% while
reducing four times more the area over the PB.

Moreover, as we are working under an imposed
power budget, Figure 11 shows how accurate each
technique is when trying to meet the power constraint
as it plots the relative area over the power budget. It
can be observed that all microarchitectural techniques
are far more accurate than DVFS alone when adapting
to the imposed power budget. For power budgets

2 For HotLeakage VDD at 70nm is 1V, so each 5% reduction in voltage

translates into 50mV. That means it will take one ns to switch
between modes. As the processor runs at 5.6Ghz (or 5.6cycles/ns), it
will take 6 cycles to change between modes.

0

20

40

60

80

100

95 90 85 80 75 70 65 60 55 50 45 40

Power Budget (%)

C
y
c
le

s
 o

v
e
r

P
B

 (
%

)
bzip

crafty

eon

gap

gcc

gzip

mcf

parser

twolf

vortex

vpr

0

0,1

0,2

0,3

0,4

95 90 85 80 75 70 65 60 55 50 45 40

Power Budget (%)

A
re

a
 o

v
e
r

P
B

 (
J
o
u
le

s
)

bzip

crafty

eon

gap

gcc

gzip

mcf

parser

twolf

vortex

vpr

-20

-10

0

10

20

30

40

90 80 70 60 50 40

Power Budget (%)

N
o

rm
a
liz

e
d
 e

n
e
rg

y
 (

%
)

BBLM

BBLM+PTT (CP)

PTT

PTT (CP)

DVFS+BBLM

DVFS

DFS

Figure 8. Cycles over PB distribution.

Figure 9. Area over PB distribution.

Figure 10. Normalized energy consumption.

between 90% and 70%, the BBLM+PTT (CP) is the
best approach: 25% of area over PB is left after
applying this technique with a total energy increase of
only 6% (Figure 10).

When we move to more restrictive power budgets
of 60%, the two-level approach (DVFS+BBLM) is 4%
more energy-efficient than DVFS alone while the
accuracy of the former is three times better (25% of
relative area over the power budget is left by the two-
level approach whereas DVFS barely reduces the area
to a 90% of the original). For an extreme power
budget of 40%, the two-level approach gets even
better: only 10% of relative area over the power budget
is left, in contrast with the 60% that reports DVFS. In
addition, the two-level approach for this extreme
power budget is 11% more energy-efficient than
DVFS and 20% more energy-efficient than DFS.

In general terms, DVFS and DFS are coarse-
grained approaches unable to remove the huge amount
of power spikes that appear when executing typical
applications, which are even more apparent when
considering low power budgets, making coarse-
grained approaches far less accurate than
microarchitectural techniques.

5. Conclusions

In this era of power-aware microprocessors,
engineers look for general designs so that their
processors can be used in different kinds of gadgets.
These gadgets usually have different power
requirements and it is needed some way to tell the
processor the maximum power it can consume. The
challenge is even more interesting if we think about
external temporary power requirements that the
processor can either match or simply shut-off. In many
cases, the shut-off option is not even viable (e.g., for

critical systems). In addition, the thermal envelop
design in microprocessors cannot be done for the
worst case scenario, because the production price
highly increases, and the processor hardly ever
reaches those temperatures. Designers look for the
average case and develop techniques to treat the
special cases where there are temporary thermal
problems. All these challenges have a common
solution: set a temporary power budget to the
processor, limiting its power and temperature.

In the past years microprocessors matched this
power budget by using dynamic voltage and frequency
scaling (DVFS). However, with the increasing scaling
technology DVFS gets less effective (because of the
leakage power) and it is getting closer to a point where
DVFS won’t be useful at all. Moreover, DVFS is a
coarse-grained approach and its accuracy when
matching a power budget is far from appropriate. On
the other hand, we can make use of power saving
microarchitectural techniques. These techniques work
at a cycle level instead of searching windows of
thousands of cycles, so they are highly accurate.

This paper proposes the use of microarchitectural
techniques to precisely match a predefined power
budget while maximizing energy efficiency. We have
introduced a novel adaptive technique, Basic Block
Level Manager (BBLM), which uses basic block
power consumption history (translated into power-
tokens) in order to determine the best power saving
technique for the current and near future processor
power consumption. We have also proposed a two-
level approach that combines both microarchitectural
techniques and DVFS to take advantage of their best
qualities. DVFS acts as a coarse-grained technique to
lower the average power consumption while
microarchitectural techniques remove all the power
spikes efficiently. The two-level approach

Figure 11. Relative area and fraction cycles over PB for different power budgets.

0

20

40

60

80

100

90 80 70 60 50 40

Power Budget (%)

R
e
la

tiv
e
 a

re
a
 o

v
e
r

P
B

 (
%

)

0

10

20

30

40

50

60

70

90 80 70 60 50 40

Power Budget (%)

C
y
c
le

s
 o

ve
r

P
B

 (
%

)

BBLM

BBLM+PTT (CP)

PTT

PTT (CP)

DVFS+BBLM

DVFS

DFS

(BBLM+DVFS) is able to beat DVFS alone in both
energy efficiency (up to 11% more energy efficient)
and area exceeded over the power budget (up to 6
times less area).

Moreover, as processor technologies advance
towards deep submicron (<65nm), leakage power
becomes the major source of power consumption.
DVFS exponentially increases the leakage power
consumption if we reduce the threshold voltage, in
addition to seriously affecting the reliability of the
chip. That will shortly transform DVFS into DFS, and
any power reduction will come at the cost of a
significant performance degradation. In that scenario,
we have shown how microarchitectural techniques are
even more energy efficient and accurate for adapting
to a required power budget than DFS (the two-level
approach is up to 20% more energy efficient and up to
6 times less area exceeded than DFS alone).

Acknowledgements

This work has been jointly supported by the

Fundación Séneca (Agencia Regional de Ciencia y
Tecnología, Región de Murcia) under grant
05831/PI/07, and also by the Spanish MEC and
European Commission FEDER funds under grants
“Consolider Ingenio-2010 CSD2006-00046” and
“TIN2006-15516-C04-03’, as well as by the EU FP7
NoE HiPEAC IST-217068.

References

[1] Isci, C.; Buyuktosunoglu, A.; Cher, C.; Bose, P. and

Martonosi, M. An Analysis of Efficient Multi-Core
Global Power Management Policies: Maximizing
Performance for a Given Power Budget. In Proc. of the
39th Int. Symposium on Microarchitecture, 2006.

[2] Aragon, J.L.; Gonzalez, J and Gonzalez, A. Power-
aware control speculation thought selective throttling.
In Proc. of the 9th Int. Symp. on High-Performance
Computer Architecture, 2003.

[3] Kesharvarzi, A. Intrinsic iddq: Origins, reduction, and
applications in deep sub-micron low-power
CMOSIC’s. In Proc. of the IEEE International Test
Conference, 1997.

[4] Kim, N.S.; Austin, T. et al. Leakage Current: Moore’s
Law Meets Static Power. In IEEE Computer, vol.36,
issue.12 2003.

[5] Flynn, M.J. and Hung P. Microprocessor Design
Issues: Thoughts on the Road Ahead. In IEEE Micro,
vol.25, no. 3, pp. 16-31, May/Jun, 2005.

[6] Semeraro, G.; Magklis, G. et al. Energy-Efficient
Processor Design Using Multiple Clock Domains with
Dynamic Voltage and Frequency Scaling. In Proc. of

the 8th Int.Symp. on High-Performance Computer
Architecture, 2002.

[7] Wu, Q.; Juang, P.; Martonosi, M. and Clark, D. W.
Formal Online Methods for Voltage/Frequency
Control in Multiple Clock Domain Microprocessors.
In Proc. of the 11th Int. Conf. on Arch. Support for
Programming Lang. and Operating Systems
(ASPLOS-XI), 2004.

[8] Donald, J. and Martonosi, M. Techniques for
Multicore Thermal Management: Classification and
New Exploration. In Proc. of the 33th Int. Symp. on
Computer Architecture (ISCA-33), 2006.

[9] Jacobsen, E.; Rotenberg, E. and Smith, J. E..
Assigning Confidence to Conditional Branch
Predictions. In Proc.of the Int. Symp. on
Microarchitecture, December 1996.

[10] Baniasadi, A. and Moshovos, A. Instruction Flow-
Based Front-end Throttling for Power-Aware High-
Performance Processors. In Proc. of the Int. Symp. on
Low Power Elect. and Design. 2001.

[11] Tune, E.; Liang, D.; Tullsen, D.M. and Calder, B.
Dynamic Prediction of Critical Path Instructions. In
Proc. of the 7th Int. Symp. on High-Performance
Computer Arch. 2001

[12] Zhang, Y.; Paritkh, D.; et al. HotLeakage: a
temperature-aware model of subthreshold and gate
leakage for architects. Technical Report, Dept. Comp.
Science, U. Virginia, 2003.

[13] Casmira, J. and Grunwald, D. Dynamic Instruction
Scheduling Slack. In Proc. of the KoolChips
Workshop, 2000.

[14] Macken, P.; Degrauwe, M.; Paemel, V. and Oguey, H.
A voltage reduction technique for digital systems. In
IEEE Int. Solid-State Circuits Conf., pages 238–239,
February 1990.

[15] Manne, S.; Klauser, A. and Grunwald, D. Pipeline
Gating: Speculation Control For Energy Reduction. In
Proc. of the Int. Symp. on Computer Architecture,
1998.

[16] Simunic, T.; Benini, L.; Acquaviva, A. and Glynn, P.
Dynamic Voltage Scaling and Power Management for
Portable Systems. In Proc. of the Design Automation
Conference, 2001.

[17] Kim, W.; Gupta, M. S. et al. System Level Analysis
of Fast, Per-Core DVFS using On-Chip Switching
Regulators. In Proc. of the 14th Int. Symp. on High-
Perf. Computer Architecture. 2008.

[18] Sasanka, R.; Hughes, C. J. and Adve, S.V. Joint Local
and Global Hardware Adaptations for Energy. In Proc.
of the 10th Intl. Conf. on Arch Support for
Programming Languages and Operating Systems,
2002.

[19] Winter, J.A. and Albonesi, D.H. Addressing Thermal
Non-Uniformity in SMT Workloads. In ACM
Transactions on Architecture and Code Optimization,
Vol. 5, No. 1, May 2008.

