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Abstract 
 

In the past years Dynamic Voltage and Frequency 
Scaling (DVFS) has been an effective technique that 
allowed microprocessors to match a predefined power 
budget. However, as process technology shrinks, 
DVFS becomes less effective (because of the 
increasing leakage power) and it is getting closer to a 
point where DVFS won’t be useful at all (when static 
power exceeds dynamic power). In this paper we 
propose the use of microarchitectural techniques to 
accurately match a power constraint while maximizing 
the energy efficiency of the processor. We will predict 
the processor power consumption at a basic block 
level, using the consumed power translated into 
tokens to select between different power-saving micro-
architectural techniques. These techniques are 
orthogonal to DVFS so they can be simultaneously 
applied. We propose a two-level approach where 
DVFS acts as a coarse-grained technique to lower the 
average power while microarchitectural techniques 
remove all the power spikes efficiently. Experimental 
results show that the use of power-saving 
microarchitectural techniques in conjunction with 
DVFS is up to six times more precise, in terms of total 
energy consumed (area) over the power budget, than 
using DVFS alone for matching a predefined power 
budget. Furthermore, in a near future DVFS will 
become DFS because lowering the supply voltage will 
be too expensive in terms of leakage power. At that 
point, the use of power-saving microarchitectural 
techniques will become even more energy efficient. 

 

1. Introduction 
 

Modern microprocessors are already designed to be 
power efficient while increasing, or at least 
maintaining, current performance levels. However, 
individual core performance is saturating, and high 

performance processor designs are moving to multi-
core approaches. Even if a low power processor is 
designed, it will be difficult to sell if it is slower than 
the previous generation, so designers have to look for 
a balance between consumption, thermal constraints 
and performance. 

Regardless of the internal hardware implemented 
on a chip, it is extremely improbable that all of its 
resources will be simultaneously used due to program 
dependences and/or thread’s synchronization. 
Moreover, designing the thermal envelop for this 
“worst case” is somewhat expensive and not very 
efficient. Computer architects, instead of designing the 
processor for the worst case scenario, look for the 
average case, and face these “special” cases by using 
both power saving and thermal management 
techniques. Dynamic Thermal Management is a 
mechanism that reduces the processor power 
consumption (and performance) during time intervals 
so it can cool down. One way to achieve this goal is to 
set a power budget to the processor. 

This processor’s power budget is not only useful to 
control power and temperature but also when there is 
an external limitation on the power consumption 
independent of the microprocessor (or even the 
system) that we need to satisfy, without shutting off 
the whole system. There are also situations where 
device power constraints are more restrictive than the 
power needs of a processor at full speed. In most of the 
cases we cannot afford to design a new processor to 
meet whatever power constraint because is too 
expensive. The problem increases when, as usual, 
power constraints are transitory and after some period 
of time we want all the processor’s performance back. 
Imagine a computation cluster connected to one or 
more UPS units to protect from power failures. If there 
is a power cut, all processors will continue working at 
full speed consuming all of the UPS battery quickly, 
and then switching the computers off when the battery 
is close to run out and, consequently, losing all the 



work on fly. During the power failure (many times 
they are of limited duration), if the processors are not 
doing critical work, it might be more interesting to 
extend the UPS battery duration at the expense of 
degrading some performance, than to lose all the work 
done because the battery runs out. 

Another example where setting a power budget 
could be useful is the case of a computing centre that 
shares a power supply among all kind of electric 
devices (i.e., computers, lights, air conditioning, etc.). 
In a worst case scenario (e.g., in summer at mid-day 
with all the computers working at full speed), if we 
integrate some kind of power budget management into 
the processors, during critical day hours or conditions 
when the air conditioning is consuming a big part of 
the total power of the computing centre, we could 
decrease the power of all processors, lowering the 
ambient temperature and having more power for the 
air conditioning. In this way, we could design the 
power capacity of the computing centre for the average 
case, reducing its cost.  

We need processors able to accurately adapt to a 
given power budget in real time in an energy-efficient 
way. One approach to make the processor power go 
towards a power budget is Dynamic Voltage and 
Frequency Scaling (DVFS) [6][7][14][16]. DVFS 
decreases the processor voltage and frequency to 
reduce its dynamic power, as dynamic power depends 
on both voltage (quadratically) and frequency 
(linearly). DVFS is a well known technique already 
implemented in many commercial processors mainly 
used by DTM techniques [8]. The major advantage of 
DVFS is its precision for estimating the final power 
consumption and performance degradation associated 
with the voltage and frequency reduction. However, 
DVFS has some important drawbacks:  

 

 Long transition times between different power 
modes. 

 Long exploration and use windows (in order to 
amortize DVFS overheads), making it difficult to 
adapt precisely to the program behaviour. 

 When activated, DVFS affects all instructions 
regardless of their usefulness in the program. 
Therefore, it cannot exploit situations such as 
instruction slack, instruction criticality, or low 
confidence on the predicted path. 

 As process technology shrinks, reducing voltage 
(VDD and VT) to lower dynamic power 
consumption becomes impractical since leakage 
exponentially depends on VT (see Section 2.1) 
which will turn DVFS into DFS (Dynamic 
Frequency Scaling) for deep submicron designs. 

However, DFS is not so energy-efficient since it 
seriously hurts performance. 

 
In this paper we propose the use of power-saving 

microarchitectural techniques to accurately match an 
imposed processor power budget. Our approach will 
capture and store information about the processor 
power consumption, either at a cycle level (Power-
Token Throttling) or at a basic block level (Basic 
Block Level Manager), in order to decide whether the 
next instruction/basic block can be executed based on 
its previous power consumption and how far the 
processor is from the power budget. We also introduce 
an efficient two-level approach that firstly applies 
DVFS as a coarse-grained approach to lower the 
average power and, secondly, uses microarchitectural 
techniques to remove local power spikes. One of the 
benefits of using microarchitectural techniques is that 
they can be applied at a cycle level, only in those 
cycles where the processor exceeds the power budget. 
The peculiarities of each microarchitectural technique 
will be detailed in Section 2.2 but, in general terms, 
these fine-grained techniques: 

 

1. Locate non-critical instructions in cycles 
exceeding the power budget and delay them to 
cycles under the budget that are near enough not 
to make these instructions critical ones. 

2. Previous studies have shown that 30% of the 
overall processor power comes from wrong path 
instructions [2][15]. Therefore, when the 
processor is exceeding the power budget, we can 
reduce the number of low-confident speculative 
instructions in the pipeline. 

3. When the two previous policies are not enough to 
put the processor under the required power 
budget, we can throttle the pipeline at different 
stages in order to meet the given budget. 
 

Experimental results show that the use of power-
saving microarchitectural techniques is more energy 
efficient as well as more accurate (i.e., lower area over 
the power budget, see Section 4.2 for details) than 
DVFS alone for driving the processor under the 
required power budget. The rest of the paper is 
organized as follows. Section 2 provides some 
background on power-saving techniques. Section 3 
shows a first analysis of the individual techniques and 
motivates the need for a hybrid approach to match the 
power budget. Section 4 describes our simulation 
methodology and reports the main experimental 
results. Finally, Section 5 shows our concluding 
remarks.  



2. Background and related work 
 

2.1. DVFS 
 

Dynamic voltage and frequency scaling (DVFS) 
was introduced in the 90’s [14], offering a great 
promise to reduce power consumption in 
microprocessors. Based on the fact that power 
consumption depends on both voltage and frequency 
(P VDD

2f), DVFS dynamically scales these terms to 
save power [6][7][16]. Unfortunately, one of the major 
concerns about DVFS has been the slow off-chip 
voltage regulators that lack the ability to adjust to 
different voltages at small time scales (0.016mV / ns 
according to [7]). Modern real implementations are 
limited to temporary coarse-grained adjustments 
governed by runtime software (i.e., the OS).  

In the recent years, researchers and designers have 
moved to chip multiprocessor architectures as a way of 
maintaining performance scaling while staying within 
tight power constraints [1][8]. This trend, coupled 
with diverse workloads found in modern systems, 
motivates the need for fast, per-core DVFS control. 
Kim et al. [17] very recently proposed the use of fast 
on-chip regulators to achieve transition speeds of 30-
50mV / ns. This solves one of the major problems of 
DVFS, but still has some limitations. As the building 
process goes into deep submicron, the margin between 
VDD (supply voltage) and VT (threshold voltage) is 
reduced, and as this margin decreases, the processor’s 
reliability is reduced (among other undesirable 
effects). Moreover, the transistor’s delay (switching 
speed) depends on: δ ≈ 1/ (VDD – VT)α, with α > 1. 
That means that we can lower VDD for DVFS as long 
as we keep the margin between VDD and VT (i.e., VT 
must be lowered accordingly) so we can obtain the 
desired speed increase derived from technology 
scaling. However, the counterpart of reducing VT is 
twofold: a) leakage power hugely increases as it 
exponentially depends on VT, which makes leakage 
the major source of power consumption as the process 
technology scales below 45nm [3][4][5]; and b) 
processor reliability is further reduced. 

 

2.2. Microarchitectural techniques   
 
2.2.1. Critical path determination 
 

Data dependencies are one of the main bottlenecks 
in high performance processors: dependency chains 
limit the performance of the machine leaving most of 
the processor structures and logic idle [11]. These 

chains of dependent instructions are known as the 
critical path of the code. A processor performance is 
determined by how fast it can execute the critical path, 
not by how fast it can execute all of the code. 

If we were able to distinguish between instructions 
that belong to the critical path of the program, we 
could accelerate their execution to improve the 
machine performance, or slow down non-critical 
instructions to reduce power consumption and 
temperature. In [11] it is proposed a critical path 
predictor able to predict critical instructions, but the 
amount of cycles a non-critical instruction can be 
delayed without becoming critical is really small [13]. 
 
2.2.2. Pipeline throttling 
 

Pipeline throttling is a technique that reduces the 
amount of in-flight instructions in the pipeline to 
reduce power consumption [2][10][15]. Pipeline 
throttling can be applied at different stages, producing 
different effects on both power and performance.  

 

 Instruction flow control: These techniques try to 
estimate the amount of ILP in the processor by 
tracking the instructions traversing the pipeline. 
Authors in [10] propose the decode/commit ratio 
(DCR) heuristic for estimating the processor’s 
current ILP. We can take advantage of this 
information and the front-end can be either 
stopped or slowed down for a small number of 
cycles to reduce power consumption. 

 
 Confidence estimation: Confidence estimators 

try to add some additional information to branch 
predictors so the processor can check how good a 
prediction is and act accordingly. JRS [9] is one 
of the most cost-effective confidence estimators: 
it uses a direct-mapped table accessed by the 
program counter where it stores how many 
consecutive hits there are for a branch. When the 
counter exceeds a threshold, the branch is 
considered confident.  

 

2.3. Hybrid approaches    
 

There are several proposals that try to merge both 
DVFS and microarchitectural techniques in a two-
level mechanism to benefit from both coarse and fine-
grained mechanisms. Sasanka et al. propose the use of 
DVS and some microarchitectural techniques to 
specifically reduce the power consumption in real time 
video applications [18]. Their selected micro-
architectural techniques try to reduce the power of 



functional units and the instruction window. Our 
proposal is more generic and adaptive, as we do not 
depend on profiling and the applications studied are 
SPECint benchmarks. Moreover, they don’t use clock 
gating in their proposal, and the studied benchmarks 
have special properties that their selected 
microarchitectural techniques can take advantage of. 
Although we do not implement any specific micro-
architectural technique to reduce the consumption of 
the instruction window and functional units, the use of 
clock gating prevents these structures to consume 
when they are underused. Winter et al. [19] also 
propose the use of a two-level approach that merges 
DVFS and thread migration to reduce temperature in 
SMT processors. 

 
3. Power-saving microarchitectural 
techniques 
 

Our goal is to reduce the processor power 
consumption to match an imposed power budget in an 
energy-efficient way. First we need to study how the 
different microarchitectural techniques behave 
independently, in order to design an adaptive 
mechanism that takes advantage of each of their 
peculiarities. As evaluation metrics, we will measure 
both the fraction of cycles exceeding the power budget 
over the total execution cycles as well as the induced 
performance degradation for the whole SPECint2000 
(see Section 4.1 for details about the processor 
configuration).  

 

3.1. Reactive techniques 
 

Reactive techniques check the processor power 
consumption every cycle. If the current power exceeds 
the required budget, the processor applies a certain 
microarchitectural technique to reduce its power 
consumption. The major concern about reactive 

techniques is that they must be applied during enough 
cycles in order to achieve its low-power effect. If in a 
given cycle the processor goes over the power budget, 
we do not know a priori how long this situation will 
last. Furthermore, reactive techniques are not able to 
remove all the cycles the processor spends over the 
power budget since we activate them once the 
processor power consumption is over the budget, 
unless we use a predictive approach (as explained in 
Section 3.2). 

 
3.1.1 Instruction criticality analysis  
 

Instruction criticality analysis is an approach that 
tries to locate non-critical instructions in cycles where 
the power budget is exceeded, delaying them to cycles 
under the power budget. As in [11], we use an 8K-
entry table indexed by PC. Each entry has a 6-bit 
saturating counter that is incremented by 8 if the 
instruction belongs to the critical path and is 
decremented by 1 otherwise. This 6KB table (340 
times smaller than the L2 cache) introduces a power 
overhead of around 0.5% which is accounted for in 
our results. From the proposed policies in [11], we 
have chosen the “QOld” policy for our implementation 
because of its simplicity. Each cycle, QOld policy 
marks as critical the oldest instruction in the 
instruction queue, unless it is ready. When the 
instruction becomes ready it is marked as non-critical. 

In order to gain some insight about what is 
happening inside the pipeline, Figure 1 shows the 
original, DVFS and critical path behaviour for several 
cycles (where Ci represents cycle i). Solid boxes 
represent critical instructions while the rest represent 
non-critical instructions. If we set a power budget like 
the one in Figure 1, DVFS will slow down all the 
instructions (actually, DVFS increases cycle length) to 
match the required budget at the expense of increasing 
the execution time. On the other hand, by using 
instruction criticality information, as shown in Figure 

 

 

    C1     C2       C3       C4       C5 
 

 C1   C2   C3   C4  C5 
 (b) DVFS (c) Critical Path 

Power budget 

 

   C1  C2   C3   C4  C5 
 (a) Base 

Figure 1. DVFS and critical path effects on power consumption at a cycle level. 



1-(c), we locate non-critical instructions, so they can 
be efficiently delayed to cycles under the budget.  

Our first implementation marks in the critical path 
predictor table, along with the information about the 
criticality of an instruction, if the last time it was 
executed the power budget was exceeded. Therefore, if 
the predictor detects a non-critical instruction 
previously executed in a cycle over the budget, we will 
delay its execution.  

Figure 2 shows the result of using instruction 
criticality information alone for an aggressive power 
budget of 50%. We use this power budget to show the 
disadvantages of the critical path technique that does 
not work as expected for aggressive power budgets. 
The delay cycles (x axis) represents the maximum 
number of cycles a non-critical instruction can be 
delayed. First of all, we must notice that, for the base 
case almost half of the execution cycles are over the 
power budget. Our critical predictor relies on finding 
“holes” where it can delay instructions from cycles 
over the budget. The more cycles a program is under 
the power budget, the easier to balance instructions so 
they all execute under the budget. Second, in our 
current implementation, the critical path predictor has 
no information about the power cost of each 
instruction neither how much power over the budget 
was consumed in each cycle. And even if we had that 
information, it would be still needed some way of 
communication between instructions in order to know 
if enough instructions have been delayed to be under 
the power budget. To keep it simple, this first 
approach delays as many non-critical instructions as 
found when the power budget is exceeded.  

 
3.1.2 Pipeline throttling analysis 
 

This section shows how the pipeline throttling 
technique behaves individually in terms of both the 
number of cycles over the power budget the technique 

is able to reduce as well as the performance 
degradation for the JRS and DCR approaches.  

The evaluated confidence estimator is a modified 
version of JRS with a 64K-entry table where each 
entry contains a 2-bit saturating counter (Figure 3). 
The confidence estimator has a size of 16KB with a 
power overhead of around 0.3%, also accounted for in 
our results. When a branch is labelled as non-
confident, we either stop or slow down the front-end of 
the processor. For the DCR approach (Figure 4), we 
show results when the technique is always enabled 
(DCR); when we throttle the pipeline only if the power 
budget is exceeded (DCR + >PB); and when we 
throttle the pipeline ony if the power budget is 
exceeded (>PB). When pipeline throttling is activated, 
we divide both the fetch and decode bandwidth by 2 or 
4 (note that we are evaluating a 4-wide issue 
processor). Figures 3 and 4 show the amount of 
throttling in the x axis as follows: the base case 
corresponds to bar 1; bars 2 and 4 correspond to a 
throttling of 1/2 and 1/4 respectively; finally, bar 0 
means a “full-stop” of the fetch unit. All the 
techniques are applied as long as the trigger condition 
lasts (e.g., JRS labels a branch as non-confident; or 
the DCR condition is met1 and the power budget is 
exceeded) plus 3 cycles. 

First thing we can notice in Figures 3 and 4 is that 
the major reduction in the cycles over power budget 
comes from cycles that belong to a wrong path, as 
intended. However, none of these techniques alone is 
good enough to match the required power budget of 
50% unless performance is highly degraded (e.g., in 
Figure 4, bars 4 and 0). Therefore, a predictive 
approach is needed in order to accurately match the 
required power budget in an energy-efficient way. 

 

                                                        
1 Three times more committed than decoded instructions. 

Figure 2. Instruction criticality analysis approach for a power budget of 50%. 
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3.2. Predictive techniques  
 

Predictive techniques will capture and store 
information about the processor power consumption, 
either at a cycle level (Power-Token Throttling) or at a 
basic block level (Basic Block Level Manager), in 
order to decide whether the next instruction/basic 
block can be executed based on its previous power 
consumption. For predictive techniques to work we 
need a way to measure power consumption at a cycle 
level. Our proposal uses a novel Power-Token 
approach to dynamically estimate power consumption.  

 The implementation of the Power-Token approach 
is done by means of an 8K-entry history table (Power-
Token History Table – PTHT), accessed by PC, which 
stores the power cost (in tokens) of each instruction’s 
previous execution. This table introduces a power 
overhead of around 0.5% which is accounted for in 
our results. The power consumed by an instruction is 
calculated at commit stage by adding the base power 
consumption of the instruction (i.e., all the regular 
accesses to structures done by that instruction) plus a 
dynamic component that depends on the time it spends 
on the pipeline. This dynamic component is due to the 
combined RUU wakeup-matching logic power that we 
divide between all the active instructions in the RUU. 
Therefore, in order to work with power-token units in 
a simple way, we define a power-token unit as the 
joules consumed by one instruction staying in the 

RUU for one cycle. In this way, the number of power-
tokens consumed by an instruction will be calculated 
as the addition of its base power-tokens plus the 
amount of cycles it spends in the RUU. The PTHT is 
updated with the number of power-tokens consumed 
when an instruction commits.  

We calculated the base power-tokens of every 
instruction type by running the SPECint2000 
benchmark suite with the processor configuration 
shown in Section 4.1. Once we had the base power for 
all the possible instructions, we used a K-mean 
algorithm to group instructions with similar base 
power consumption. Our simulated results show that 
having just 8 groups is accurate enough for the Power-
Token approach to properly work with an error lower 
than 1% (compared to accounting for the actual power 
consumption in joules as provided by HotLeakage).  

Finally, the overall processor power consumption 
can be easily estimated in a given cycle based on the 
instructions that are traversing the pipeline without 
using performance counters by simply accumulating 
the power-tokens (as provided by the PTHT) of each 
instruction being fetched.  

 
3.2.1 Power-Token Throttling (PTT)   
 

This novel technique estimates the power 
consumption of the instructions inside the pipeline in 
a given cycle by means of accounting for the power-

Figure 3. Cycles over PB and slowdown for JRS-based throttling (power budget = 50%). 
 

Figure 4. Cycles over PB and slowdown for DCR-based throttling (power budget = 50%). 
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tokens they consume. When the power of the 
instructions inside the processor exceeds the budget, 
the fetch stage is stalled until enough committed 
instructions leave the pipeline, releasing their power-
tokens, and eventually lowering the current total 
power, allowing the introduction of new instructions.  

We have also evaluated a modified version of the 
Power-Token Throttling approach (labelled as Power-
Token Throttling CP) that uses a Critical Path 
Predictor to detect critical instructions. In this way, 
even if we are over the power budget, we allow these 
instructions to continue their execution. This version 
is less aggressive than the original PTT.  

In order to gain some insight on the power 
consumption behaviour of each technique, Figure 5 
shows the average power consumption for the “go” 
benchmark. For the sake of visibility, we only plot the 
power information for a window of 120Kcycles. The 
dashed horizontal line represents the required power 
budget (set to 24W, which corresponds to a 50% 
power budget over the peak power of 48W, see Section 
4.2). The current DVFS implementation (as in [1]) 
calculates the average power consumption over an 
exploration window of 500Kcycles, and modifies the 
voltage and frequency accordingly (from a set of pairs 
voltage/frequency modes; see Section 4.4) to match 
the desired power budget. For the window plotted in 
Figure 5-middle, the average power consumption of 
the exploration window is either under the power 
budget or the current working mode is the closest to 
the budget, therefore DVFS does nothing to force all 

cycles under the power budget. On the other hand, the 
Power-Token Throttling approach (Figure 5-bottom), 
accurately follows the power budget at a cycle level, as 
it knows in advance how much power (in tokens) the 
next instruction consumes. If we cannot afford to 
execute it, we wait until a committed instruction 
leaves the pipeline and there is enough power budget 
left to burn in the new instruction. Spikes in the PTT 
plot are due to branches that are left to enter into the 
pipeline in order to discover eventual mispredictions 
as soon as possible. 
 
3.2.2. Basic Block Level Manager (BBLM) 
 

This novel technique uses the last observed number 
of power-tokens consumed by a basic block (a stream 
of instructions between two branches) as well as the 
power budget left in order to decide what technique 
should be applied from the following: none, critical 
path, confidence estimation throttling, or decode-
commit ratio throttling – from less to more aggressive. 

 The power consumed by a basic block is measured 
as the addition of the power-tokens of every 
instruction that belongs to that basic block. This power 
is stored in the branch predictor entry of the branch 
that points to the start of that basic block. This 
introduces 9 additional bits per entry in the branch 
predictor which corresponds to a negligible 0.3% 
power increase in the total processor power 
consumption, again accounted for in our results. When 
a branch is predicted, it is also obtained the last power 

Figure 5. Detailed per-cycle power consumption for the “go” benchmark. 
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history for the subsequent basic block, and we estimate 
how far from the power budget we will get if we 
execute that basic block. Depending on how far the 
estimated power is from the budget, we select a 
different power saving technique. In addition, when 
updating the branch predictor’s saturating counter, we 
also update the power-tokens consumed by the 
subsequent basic block (that corresponds the next 
predicted path – we use a gshare predictor). 

For the BBLM approach to decide what technique 
should be applied we define two threshold values, X 
and Y. Therefore, for a fraction of power over the 
budget lower than X we will use the first technique 
(i.e., critical path, which is the least aggressive), from 
X to Y we will use the second technique (i.e., 
confidence estimation throttling), and for a power over 
the budget greater than Y we will use the third 
technique (i.e., decode-commit ratio throttling, which 
is the most aggressive). Techniques are disabled 
progressively, once we get under the power budget, in 
reverse order. We performed an experimental study to 
determine the best values for these thresholds (best 
power budget matching with minimal performance 
degradation), and discovered that for the current 
processor configuration the best thresholds were X=15 
and Y=65. 

It is important to note that a very precise basic 
block power prediction is not really relevant, as long 
as the selected technique is the same for the same 
basic block (which is actually the common case).  

 
3.2.3. Two-level approach 

 
Microarchitectural techniques do not work 

efficiently when the processor spends a great number 
of cycles over the power budget, as we will see in 
Section 4, since there are few chances to reduce 
consumption without degrading performance. On the 
other hand, DVFS is extremely inaccurate when there 
are power spikes, because the influence of power 
spikes on the average search window power 
consumption is really low. As we can see in Figure 6-
left, not all benchmarks have the same average power 

consumption (compare it with “go” in Figure 5-top). It 
can be noticed that “mcf” has an average power 
consumption close to the maximum power 
consumption (approx. 48W). If we only use 
microarchitectural techniques for these benchmarks 
we may not get close to the power budget, or the 
performance degradation will be quite high. Moreover, 
benchmarks exhibit different program phases with 
different average power consumptions (as shown in 
Figure 6-right). Phases that if we are able to detect we 
could use in our advantage, using only 
microarchitectural techniques in phases close to the 
power budget and a coarse-grained approach (DVFS) 
in phases far from the power budget.  

Our proposal consists of a two-level approach: first 
we apply DVFS to take coarse-grained decisions about 
power consumption, and secondly we apply 
microarchitectural techniques for fine-grained 
decisions (mainly removing power spikes). This two 
level approach has a twofold benefit. We increase the 
DVFS accuracy for matching a power budget, while at 
the same time we do not need all the DVFS power 
modes to reach a power budget. Only the less 
aggressive power modes are enough in our simulations 
to accurately match the predefined power budget. It is 
important to note that, as discussed in Section 2.1, 
when the process technology goes below 65nm the 
reduction on VT will be limited by both reliability and 
leakage power, therefore, it is not that DVFS does not 
use the extreme power modes, but having those power 
modes will be infeasible. 

 

4. Experimental results 
 

4.1. Simulation methology 
 

To evaluate the energy-efficiency of both DVFS 
and microarchitectural techniques we have used the 
SPECint2000 benchmark suite. All benchmarks were 
compiled with maximum optimizations (-O4 -fast) by 
the Compaq Alpha compiler and they were run using 
a modified version of HotLeakage power-performance  

Figure 6. Power consumption for “mcf” and “gzip” benchmarks as a function of time. 
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simulator [12] that includes the dynamic power model 
for the evaluated microarchitectural approaches as 
well as their associated power overhead. All 
benchmarks were run to completion using the reduced 
input data set (test). Table I shows the configuration of 
the simulated architecture.  

 
4.2. A power budget of what? (100% usage ≠ 
100% power consumption) 
 

What we need to measure is whether the processor 
exceeds a preset power budget, usually represented as 
a percentage of the total power consumed by the 
processor. The worst case scenario (i.e., the peak 
consumption of a processor) would be achieved by a 
program that uses all the processor resources at once. 

Our base processor has a peak power consumption 
of 75 Watts (73W on average). However, when a 
circuit-level technique such as clock gating is enabled, 
the average power consumption for the SPECint2000 
falls to 25 Watts with a peak power consumption of 48 
Watts. We will use that 48 Watts peak power 
consumption (using clock gating “cc3”) as our 
reference power consumption (i.e., 100% power 
budget), which means the power consumption of the 
selected processor without any power saving 
technique. 

Next sections show the simulation results for the 
SPECint2000 benchmark suite for: a) fraction of 
cycles over the power budget (Cycles over PB); b) total 

power exceeded over the budget (Area over PB); and 
c) normalized energy. The metric “area over the power 
budget” tells us how accurate a technique is for 
matching a power budget and how close we are from 
the budget (as illustrated in Figure 7). We use this 
metric instead of the average power since the standard 
deviation of the per-cycle power consumption is quite 
high. The processor has periods of high power 
consumption hidden by periods of low power 
consumption (branch mispredictions, cache misses, 
etc.), therefore, the average power is not a good metric 
for what is really happening inside the processor.  

 

4.3. Cycles over PB and area distribution 
 

Figure 8 shows the fraction of cycles over power 
budget whereas Figure 9 shows the area over the 
power budget for different budgets and benchmarks 
before applying any power saving technique. 
Evaluated PBs range from 95% of the original peak 
power to 40%.  

As we can see in Figures 8 and 9, both the amount 
of cycles and the area the processor spends over the 
power budget is almost negligible for high budgets 
(95%-70%), due to the effects of clock gating on 
power consumption, but being highly noticeable for 
power budgets under 65%. As explained before, DVFS 
will be unable to find power spikes for low power 
budgets, as it works with the average power 
consumption of its long explore windows. On the 

Table I. Processor configuration. 
 

Processor Core 

Process Technology: 
Frequency: 

Instruction Window  
Decode Width:  

Issue Width: 
Functional Units:  

 
Pipeline:  

Branch Predictor: 

70 nanometres 
5600 MHz 
128 RUU, 64 LSQ 
4 inst/cycle 
4 inst/cycle 
4 Int Alu; 2 Int Mult 
4 FP Alu; 2 FP Mult 
22 stages 
64KB, 16 bit history  
GSHARE 

Memory Hierarchy 

L1 I-cache:  
L1 D-cache:  

L2 cache: 

64KB, 2-way  
64KB, 2-way 
2MB, 4-way, unified 

 

 

Figure 7. Shadowed areas show the exceeded 
power over the budget (Area over PB). 
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other hand, microarchitectural techniques will detect 
these spikes and remove them whenever possible.  
 

4.4. Efficiency on matching a power budget 
 

This subsection evaluates the energy-efficiency of 
the proposed microarchitectural techniques as well as 
their accuracy for matching an imposed power budget. 
In order to reduce the extension of this section we only 
report results for the following techniques: DVFS, 
PTT and BBLM (with and without using Critical Path 
information), and the two-level approach 
(DVFS+BBLM). 

The evaluated DVFS approach uses the 
implementation proposed in [1] and discussed in 
Section 2.1. DVFS calculates the average power 
consumption over a predefined amount of cycles 
(search interval). If the mechanism finds out that the 
average power consumption is over the budget, DVFS 
changes to a pair of voltage and frequency values from 
a set of predefined working modes in order to reduce 
the average power. DVFS uses a search interval of 
500Kcycles with a transition time between modes set 
to 50 mV/ns (as in [17]), so it takes only 6 cycles to 
switch from one mode to another2. The evaluated 
working modes are the following: 

 
 For DVFS: there are five modes (100% VDD, 

100% f), (95% VDD, 95% f), (90% VDD, 90% f), 
(90% VDD, 75% f), and (90% VDD, 65% f).  

 For the limited DVFS: this version of DVFS is 
used in the two-level approach. The power modes 
are limited to (100% VDD, 100% f), (95% VDD, 
95% f), and (90% VDD, 90% f).  

 For DFS: only scales frequency as needed (VDD 
remains unchanged). 

 
The studied BBLM uses the configuration 

parameters and techniques proposed in Section 3.2.2. 
As explained before, the selected thresholds are X=15 
and Y=65. Critical path (CP) is used as the first 
technique, JRS-throttling as the second technique, and 
DCR-throttling as the third one.  

Figure 10 shows the normalized energy 
consumption for the different techniques and power 
budgets. As we can see, the two-level approach 
(DVFS+BBLM) is the most energy-efficient technique 
for all the studied power budgets, and especially for 
the very restrictive power budgets. The rest of 
microarchitectural techniques (except PTT) as well as 
DFS show not so high energy degradation (between 
4% and 10%). BBLM alone shows a similar energy-
efficiency as DFS up to a power budget of 50% while 
reducing four times more the area over the PB. 

Moreover, as we are working under an imposed 
power budget, Figure 11 shows how accurate each 
technique is when trying to meet the power constraint 
as it plots the relative area over the power budget. It 
can be observed that all microarchitectural techniques 
are far more accurate than DVFS alone when adapting 
to the imposed power budget. For power budgets 

                                                        
2 For HotLeakage VDD at 70nm is 1V, so each 5% reduction in voltage 

translates into 50mV. That means it will take one ns to switch 
between modes. As the processor runs at 5.6Ghz (or  5.6cycles/ns), it 
will take 6 cycles to change between modes. 
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Figure 8. Cycles over PB distribution.  
 

Figure 9. Area over PB distribution.  

Figure 10. Normalized energy consumption.  
 



between 90% and 70%, the BBLM+PTT (CP) is the 
best approach: 25% of area over PB is left after 
applying this technique with a total energy increase of 
only 6% (Figure 10). 

When we move to more restrictive power budgets 
of 60%, the two-level approach (DVFS+BBLM) is 4% 
more energy-efficient than DVFS alone while the 
accuracy of the former is three times better (25% of 
relative area over the power budget is left by the two-
level approach whereas DVFS barely reduces the area 
to a 90% of the original). For an extreme power 
budget of 40%, the two-level approach gets even 
better: only 10% of relative area over the power budget 
is left, in contrast with the 60% that reports DVFS. In 
addition, the two-level approach for this extreme 
power budget is 11% more energy-efficient than 
DVFS and 20% more energy-efficient than DFS.  

In general terms, DVFS and DFS are coarse-
grained approaches unable to remove the huge amount 
of power spikes that appear when executing typical 
applications, which are even more apparent when 
considering low power budgets, making coarse-
grained approaches far less accurate than 
microarchitectural techniques.  

 

5. Conclusions 
 

In this era of power-aware microprocessors, 
engineers look for general designs so that their 
processors can be used in different kinds of gadgets. 
These gadgets usually have different power 
requirements and it is needed some way to tell the 
processor the maximum power it can consume. The 
challenge is even more interesting if we think about 
external temporary power requirements that the 
processor can either match or simply shut-off. In many 
cases, the shut-off option is not even viable (e.g., for 

critical systems). In addition, the thermal envelop 
design in microprocessors cannot be done for the 
worst case scenario, because the production price 
highly increases, and the processor hardly ever 
reaches those temperatures. Designers look for the 
average case and develop techniques to treat the 
special cases where there are temporary thermal 
problems. All these challenges have a common 
solution: set a temporary power budget to the 
processor, limiting its power and temperature. 

In the past years microprocessors matched this 
power budget by using dynamic voltage and frequency 
scaling (DVFS). However, with the increasing scaling 
technology DVFS gets less effective (because of the 
leakage power) and it is getting closer to a point where 
DVFS won’t be useful at all. Moreover, DVFS is a 
coarse-grained approach and its accuracy when 
matching a power budget is far from appropriate. On 
the other hand, we can make use of power saving 
microarchitectural techniques. These techniques work 
at a cycle level instead of searching windows of 
thousands of cycles, so they are highly accurate.  

This paper proposes the use of microarchitectural 
techniques to precisely match a predefined power 
budget while maximizing energy efficiency. We have 
introduced a novel adaptive technique, Basic Block 
Level Manager (BBLM), which uses basic block 
power consumption history (translated into power-
tokens) in order to determine the best power saving 
technique for the current and near future processor 
power consumption. We have also proposed a two-
level approach that combines both microarchitectural 
techniques and DVFS to take advantage of their best 
qualities. DVFS acts as a coarse-grained technique to 
lower the average power consumption while 
microarchitectural techniques remove all the power 
spikes efficiently. The two-level approach 

Figure 11. Relative area and fraction cycles over PB for different power budgets.  
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(BBLM+DVFS) is able to beat DVFS alone in both 
energy efficiency (up to 11% more energy efficient) 
and area exceeded over the power budget (up to 6 
times less area). 

Moreover, as processor technologies advance 
towards deep submicron (<65nm), leakage power 
becomes the major source of power consumption. 
DVFS exponentially increases the leakage power 
consumption if we reduce the threshold voltage, in 
addition to seriously affecting the reliability of the 
chip. That will shortly transform DVFS into DFS, and 
any power reduction will come at the cost of a 
significant performance degradation. In that scenario, 
we have shown how microarchitectural techniques are 
even more energy efficient and accurate for adapting 
to a required power budget than DFS (the two-level 
approach is up to 20% more energy efficient and up to 
6 times less area exceeded than DFS alone). 
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