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Abstract—Sequential and parallel applications use most of the
data as private in a multicore system. Recent proposals made
use of this observation to reduce the area of the coherence
directories or the memory access latency. The driving force of
these proposals is the classification of private/shared memory
data. The effectiveness of these proposals depends on the number
of detected private data. The existing proposals perform the
private/shared classification at page granularity, leading to a
noticeable amount of miss-classified memory blocks.

We propose a mechanism that works on block granularity
using the translation lookaside buffer (TLB) to make accurate
detection of private data, which increases the effectiveness of
proposals relying on a private/shared classification. Simulation
results show that the block-grain approach obtains 17.0% more
accessed private miss data than the page-grain approach, which
translates to an improvement in system performance by 6.02%
compared to a page-grain approach.

Index Terms—directory-based cache coherence, private/shared
classification, system performance

I. INTRODUCTION

Shared memory multiprocessors with hardware support for
cache coherence offer an easy-to-program shared memory
model and are ubiquitous in general purpose systems. One
of the main challenges of shared memory multiprocessors is
scalability. Recent work builds on the observation that there is
no need for equal treatment of all memory data accesses. The
private and read-only shared data can be treated differently to
achieve better scalability and performance [1]–[11].

In order to optimize private memory accesses, efficient and
accurate classification of data as private or shared is required.
Data can be classified as private if it is accessed by a single
core and as shared if it is accessed by more than one core.
There are many approaches in the literature regarding data
classification performed at different levels: compiler [6], [12],
operating system [5], and hardware [13]–[17].

Hardware-based approaches are more accurate as they can
gather complete and fine grain information about data sharing.
Classification techniques in hardware can be done at the
directory level [14]–[16] or at the translation lookaside buffer
(TLB) level [17]–[19]. The advantage of the TLB-based classi-
fication techniques is that the private/shared nature of the data
is readily available at the time of the cache access, as every
memory request generated by the processor has to access the
TLB to find the translation of the virtual address to the physical
address, which enables most optimization techniques [1], [5].

Directory-based classification obtains the private/shared nature
only when the directory is accessed and after a cache miss,
thus preventing the use of most optimizations.

The main disadvantage of current TLB-based approaches
is the detection of private and shared data at page-level
granularity, as if a page is considered as shared, all the blocks
belonging to the page are also considered as shared. Hence,
there is a noticeable loss of classification opportunities, or
miss-classification. On the other hand, if classification could
be done at a finer granularity, e.g., at block level, this miss-
classification of data can be reduced and the optimization
techniques will count with more private data.

This work proposes a TLB-based mechanism that operates
at block granularity and it can address the missing opportuni-
ties of page-grain approaches, thus improving the accuracy of
the classification. The proposed classification extends the TLB
entries with information about accessed blocks and private
blocks within each page in the TLB. An efficient communica-
tion protocol is responsible for updating this information at run
time. We explore several techniques to reduce the broadcast
overhead.

The proposed block-level approaches are evaluated for a
16-core tiled CMP architecture for 15 parallel workloads,
and without loss of generality, we employ our classification
technique to reduce the directory bookkeeping by not tracking
private blocks [5]. The increased 17.0% of private misses
which helps to avoid 63.0% entries in the directory caches
compared to a directory that tracks all accessed blocks and
43.9% of the entries compared to page-grain approach. A
less occupied directory generates fewer invalidation requests,
which consequently reduces the 12.6% L1 cache misses.
Finally, the overall improvement in execution time is 6.0%.

The outline of the paper is as follows. TLB-based classi-
fication mechanisms are analyzed in Section II. Section III
describes the proposed block-grain techniques to improve the
accuracy of the classification. The simulation environment is
detailed in Section IV and performance results are shown in
Section V. Section VI covers the related work and Section VII
offers the conclusions of this work.

II. BACKGROUND

This work presents new proposals for improving TLB-
based private/shared data classification and it applies them



to the coherence deactivation technique. This section offers a
background for the classification and optimization approaches
employed in order to make the paper self-content.

A. TLB-based classification techniques

TLB-based classification techniques dynamically detect data
as private, read-only, or shared based on the information stored
at the TLBs [17], [18]. These techniques rely on querying
the other TLBs in the system about their use of the data.
The communication among TLBs is done through TLB-to-
TLB requests and responses that use the same interconnection
network as the memory accesses. On every TLB miss, a
broadcast message is sent to all the other TLBs in the system
and they reply with information about their usage of the page
and, additionally, with the page translation (if they hold it),
which accelerates the page table walk process [20]–[22].

Obtaining the page translation for remote TLBs leverages
low-latency core-to-core communication of current chip mul-
tiprocessors, which is lower than page table accesses. As page
table walk happens parallel to TLB-to-TLB communication,
address translation can be achieved from the page table if none
of the core TLB holds the page. On new access to a memory
page by a core, the page may change from private to shared.
In this situation, a recovery mechanism has to be triggered, to
inform the system about the new nature of the blocks in the
page, and perform the appropriate actions depending on the
optimization applied, as described in next section.

B. Coherence Deactivation

Directory-based cache coherence is the most scalable al-
ternative to the cache coherence problem. Directory-based
protocols employ directory caches that track all memory
blocks stored in the private caches, such that they can keep
the coherence of such blocks on memory write. In the case
of directory cache evictions, invalidation requests are sent to
the private caches holding memory blocks for the evicted
address, since the directory will not be able to track those
blocks anymore. These invalidation requests generate misses
known as directory coverage misses [23], which may degrade
the system performance.

Cuesta et al. propose to deactivate cache coherence for
private blocks [5] and later for read-only blocks [24]. The
mechanism consists in storing only those blocks in the direc-
tory which need coherence management. The nature of the
block must be detected before the cache miss takes place, to
deactivate its coherence maintenance. Since coherence deacti-
vation bypasses the coherence protocol, a hardware recovery
mechanism is required when a page becomes coherent, to
avoid inconsistencies. Blocks that transition from private to
shared must be either flushed from the cache (flushing-based
recovery) or updated in the directory cache [5]. Once the
recovery mechanism is executed, the directory cache is in a
coherent state according to the new page classification, and
coherence is maintained as established by the cache coherence
protocol.

III. TLB-BASED BLOCK-GRAIN CLASSIFICATION

This section describes our proposed fine-grain mechanism to
detect the private/shared nature of the memory blocks accessed
by each core. The mechanism extends the TLB entries with
per-block information which is kept updated using coherence
messages exchanged by the TLBs in the system.

A. The concepts

We detect and classify a memory block as private if it
is not being accessed currently by any other core. Block
is considered as an accessed block if the core has recently
accessed the block and virtual-to-physical page translation of
that block is still present in the core’s TLB. When a core
accesses a memory block for which its private/shared nature
is not known, the core will query the other cores in the system
to know if the block is being accessed by the other cores. If
the answer is positive, then the block is classified as shared.
Otherwise, the block is classified as private. A block that is
classified as private may become shared when another core
accesses it in the future. A recovery mechanism ensures that
the status of the corresponding block is restored, and after that,
both cores can access them as a shared block.

B. Tracking the information

The information about accessed blocks can be stored along
with the TLB translation in order to be retrieved when cores
ask for the private or shared nature of a block. An Access bit
vector, where each bit represents one block in the page, stores
access information for each block. A bit set to one indicates
that the corresponding block has been accessed by this core.
A bit set to zero indicates that it has not been accessed. The
information about private or shared is also stored in order to
avoid queries for every memory access. This information is
stored again per block, using a Private bit vector. A bit set to
one indicates that the corresponding block is private and a bit
set to zero indicates that the block is shared.

Fig. 1. TLB entry with extra fields

Figure 1 shows the structure of the TLB entries with its
most relevant fields: the Virtual Page Number (VPN) and the
Physical Page Number (PPN), and the two bit vectors with
access and private information for the blocks belonging to
the corresponding page. When a block has been accessed the
information about the Private bit gives the classication of the
block. However, when a block has not been accessed, the
Private bit is used to provide information on future accesses to
avoid extra queries. Table I shows the meaning of the different
combinations of the Access bit and the Private bit. In the
remainder of the document, we will represent these two values
as a pair (Access, Private). When the block is found in the state
(1,*), the block has already been classified and no extra actions
are necessary. When the block is in the state (0,1) it is known



that the core is the only one in the system with this status for
the block the status of the same block in other cores is in
(0,0). Therefore, (0,1) can silently transition to (1,1) without
communicating with other TLBs. Only in the case the block
is in (0,0) state, or the page is not found in the TLB, a query
to the other TLBs in the system has to be performed.

TABLE I
ACCESS AND PRIVATE INFORMATION AND MEANING

Access Private Meaning
1 1 The block has been accessed by the core. The block

is private. Only one core can have this block in this
state.

1 0 The block has been accessed by the core. The block
is shared.

0 1 The block has not been accessed by the core. No
other core has accessed it and the core has permis-
sion to access it in private mode without needing to
ask. Only one core can have this block in this state.

0 0 The block has not been accessed by the core. On
access, it is necessary to check if the other core is
accessing it as private.

C. The classification protocol

The TLB-to-TLB communication protocol proposed to clas-
sify blocks into private and shared uses the same interconnec-
tion network as the memory accesses. The next sections detail
how the protocol is initiated, how other TLBs reply to the
request, and how the private/shared information is gathered.

1) Issuing TLB-to-TLB requests: TLB-to-TLB communica-
tion protocol is initiated in two situations: i) there is a TLB
miss or ii) there is a TLB classification miss [case (0,0)]. The
communication protocol is initiated by broadcasting TLB-to-
TLB requests to all other TLBs in the system. The TLB-to-
TLB request carries the virtual address of the block (which
includes the address of the page) that generated the TLB-
to-TLB request and the type of request (translation miss or
classification miss). This information helps to discover when
to transition to shared and when to stay private. The access
to the block is stalled until the classification for the block
is determined, which happens when all responses from other
TLBs are collected.

2) Receiving a remote TLB-to-TLB request: The TLB-to-
TLB request is received by each of the TLBs in the system.
The TLBs receiving the request have to perform two actions:
1) Issue a TLB response indicating if they use the requested
block (the response also carries the address translation if found
in order to accelerate the virtual-to-physical translation [17],
[20]) and 2) Update the Private bit of the requested block. In
the case of a TLB request due to a TLB miss, the requester
TLB does not have private/shared information about any of
the blocks belonging to the page. In this case, the information
about the use of blocks is sent for all blocks in the page in a bit
vector field along with the response message. This provides a
preliminary classification of blocks that have not been accessed
yet (see Table I). If the TLB is not currently issuing a TLB
request, the information sent in the reply corresponds to the
Access bit vector in absence of the TLB entry, or a Nack in
presence of the TLB entry. If a TLB request has been initiated,

TABLE II
RECEIVING REMOTE TLB-TO-TLB REQUESTS

State TLB requests Send New State
A P LP LB RB Use P
- - 0 * * 0 -
- - 1 0 * 0 0 when LP resolves
- - 1 1 0 1 1 when LP resolves
- - 1 1 1 1 0 when LP resolves
0 * * 0 * 0 0
0 * 1 1 0 1 1 when LP resolves
0 * 1 1 1 1 0
1 0 * * * 1 0
1 1 * * 0 1 1
1 1 * * 1 1 0 (Recovery)

then the block that initiated the request is set to one in the bit
vector, since the core is currently accessing the block.

There are two main cases to consider regarding the update
of the Private bit vector depending on the TLB has initiated
a TLB request or not. If the TLB has not initiated a TLB
request (and there is an entry for the requested page in
the TLB), all blocks that have not been accessed are set to
potentially shared (0,0), thus offering private permission to
the requester TLB. The blocks that have been accessed do
not modify the Private bit, except for the requested block. If
the requested block is in the state (1,1), then it is considered
private, but another TLB is requesting it. In this case, the block
transitions to (1,0), that is, shared, and a recovery mechanism
(see Section III-E) is initiated. Until the recovery mechanism
does not finish, the TLB response cannot be sent, to avoid race
conditions (when a TLB is considering a block as private and
another TLB is considering it as shared). When the TLB has
initiated a request for the page, it is important to know the
block that generated the request, since if a remote request is
received for this block, then the block has to be set as shared,
even if all cores respond that they are not using this block.
Table II summarizes the previous behavior for each block
on the page. The leftmost information (state and requests)
refers to the information known when receiving a remote TLB
request and the information on the right (send) represents the
information sent back in the reply and how the Private bit
vector transitions. The first two columns represent the Access
bit of a block in the TLB (A) and the Private bit of a block
in the TLB (P). A dash (-) represents that the block is not
found in the TLB and a star (*) indicates that the value of
that field is not relevant. The next three columns represent
if the local TLB has initiated a TLB-to-TLB request for the
page in question (LP ), if that local request is for the block
in question (LB) and if the remote request is for the block in
question (RB). The next column represents what it is sent in
the reply regarding that block and the last column represents
the value for the Private bit after the request is processed.

3) Collecting all TLB responses: After receiving all TLB
responses, the private/shared nature of the block is calculated.
An OR operation of all bit vectors received is performed to
find the use by remote cores, and then a NOT operation will
activate the not used blocks. The result is stored in the Private
bit vector. Note that if there is a concurrent TLB request in
this node, the information of the Private bit vector is updated



as indicated in the last column of Table II.

D. Protocol state transitions

This section explains the different states and transitions
for a block, depicted in Figure 2. Blocks start in state Not
Present (-,-) when their page has not been requested yet by
the core and are reset to that state when the page is evicted
from the TLB. If a core accesses the block then, a TLB miss
happens and a request is sent to the other TLBs. The accessed
block transitions to state Requested (1,-) while the other blocks
belonging to the same page move to the Requested state (0,-).
After receiving all TLB responses, the accessed block (1,-)
transitions either to private (1,1) or shared (1,0), while other
blocks belonging to the same page move to potentially shared
(0,0) or potentially private (0,1). If while performing the TLB
miss in state Requested (1,-), a remote request for the accessed
block is received, the state changes to Local&Remote request
(1,-) forcing the block to be shared (1,0) after collecting all
replies. This way it guarantees coherence between TLBs when
more than one TLBs request happens at the same time. The
invariant here is that a block can be in (1,1) state in only one
TLB. A similar situation happens for blocks that are not the
accessed ones. If in Requested (0,-) state, a remote request
for that block comes, the state will be (0,0) when all replies
are collected. The invariant here is that a block can be in
(0,1) state in only one TLB. When local access for a block
in the state (0,1) is received, the block is silently transitioned
to state private (1,1). The reason is that this is the only TLB
in the system holding potential privacy for the block (0,1).
On the other hand, if on (0,1) a remote request is received,
the state changes to potentially shared (0,0) without the need
of doing recovery since the block has not been accessed yet.
If a block in the state (0,0) is locally accessed by the core,
a TLB-to-TLB request has to be issued because of the TLB
classification miss. The request informs the other TLBs about
the access of the block and gets the actual classification for
the block. The state changes temporally to Requested (1,-). It
will receive only Acks —if used— or Nacks —if not used—
from other TLBs, since only one block is requested in a TLB
classification miss. Once it receives all replies it will become
shared (1,0) if any Ack is received or private (1,1) if only
Nacks are received.

E. Recovery mechanism and TLB evictions

Blocks classified as private (1,1) are not tracked by the di-
rectory cache, since they do not require coherence maintenance
while they are private. Thus, cache misses for private blocks
override the coherence protocol. When a private block (1,1)
changes to a shared state (1,0), a recovery action is needed to
ensure that the directory cache keeps the proper track of the
block. We opt for evicting the private block from the cache
and writing it back if the block is dirty, such that the directory
information is consistent and that the last modifications on the
block are not lost. Once this recovery finishes, the reply will
be sent to the requester TLB, to classify the block as shared. It
is important to note that recovery mechanism of block grain is

much simpler and faster compared to a page-grain approach as
block grain recovery evict the requested block only and page
grain evicts all blocks in a page. This is shown in Section V.

In the case a TLB entry is evicted or flushed due to either
lack of TLB capacity or a TLB shootdown, the information
about the private or shared of a block is lost. Furthermore,
the core will be considered as not accessing currently any
block within the evicted page, and the blocks in the page may
be classified as private from that point on by another core.
Therefore, in order to keep the coherence of the data, all blocks
in the evicted page have to be also evicted from cache. This
is an iterative process that only affects the blocks previously
accessed by the core (1,*). This process also takes more time
than in a page-grain approach, since a page-grain approach
requires the lookup and eviction of each block in the page as
the access information is not present.

F. Reducing TLB classification misses

The disadvantage of a block-grain classification with respect
to a page-grain classification is the extra TLB traffic generated
due to TLB classification misses. In order to reduce this
extra traffic we propose the following two optimizations that
exploit spatial locality and make a better use of the available
information.

1) Spatial locality optimization: The previously explained
classification protocol does not consider spatial locality in
the accesses. If the block is found in state (0,0) a TLB
classification miss happens and TLB requests are issued. In
order to minimize TLB classification misses, we propose an
optimization that takes advantage of the spatial locality. On the
receipt of a remote TLB request, the TLB does not give away
all potentially private states for the block in the requested page.
The requester gets potentially private blocks ranging from the
requested one to the first block already accessed by the local
core (not included) in ascending address order. It is a high
probability of accessing a block after accessing the previous
one by a core (spatial locality). This way, blocks marked as
potentially private (0,1) by a TLB that are not expected to be
accessed by the requester core are kept as potentially private.

2) Access permission prefetch optimization: The key idea
behind this optimization is to avoid having blocks in (0,0)
state when they will be classified as shared. In this case, it
is preferable to have the block in (1,0) state, even if it has
not been accessed before. When the core issues the access
for the block, then the TLB classification miss is avoided,
and the access continues as shared. The previous approaches
only send a bit vector indicating the use of the block in the
TLB response, and the block is classified as private or shared
according to this vector. The Access bit vector is not modified
by the TLB responses. This optimization proposes to send
the Use bit vector along with the Access bit vector (the one
sent in the basic block-grain approach). The Use bit vector
is employed to update the Private bit vector, as previously
described, with an OR and a NOT operation. The Access bit
vector will be also ORed with the vectors collected from all
responses. If a block is classified as shared, and we know that



Fig. 2. Protocol state transition diagram

TABLE III
BASELINE SYSTEM CONFIGURATION

Memory configuration
Processor 2.20GHz, 16-core in order CPU
Cache hierarchy Non-inclusive
Split instr. and data L1 caches 64KB, 4-way (256 sets)
L1 cache hit time 1 (tag) and 2 (tag+data) cycles
Shared unified L2 cache 1MB/tile, 8-way (2048 sets)
L2 cache hit time 2 (tag) and 6 (tag+data) cycles
Directory cache per core 512 sets, 4 ways, 1 cycle
Memory access time 160 cycles
Split instr. and data TLB 128 sets, 4 ways, 1 cycle
Page size 4KB (64 blocks)

Network configuration
Topology 2-dimensional mesh (4x4)
Flit size 16 bytes
Routing technique Deterministic X-Y
Routing, switch, and link time 2, 2, and 2 cycles
Data and control message size 5 flits and 1 flit

any of the remote cores are using it (the OR result is 1 for
that block), then we set the Access bit for that block to 1. The
state will be (1,0), and future access will not generate a TLB
classification miss (0,0).

G. Dealing with synonyms

Our mechanism works at the TLB level where the infor-
mation about the page translation and other permission bits
for the page reside. Synonyms, that is, two different virtual
addresses pointing to the same physical page, could be miss-
classified as private by the described mechanism. However,
the operating system is aware of synonyms and solutions to
this problem have been already proposed [25] when using an
operating-system classification. The operating system can be
aware of synonyms. Memory pages containing synonyms are
therefore treated as shared by default. When a page containing
synonyms is accessed for the first time, the TLB vectors are
filled with the status (1,0) and it will remain with that status
until page eviction.

IV. SIMULATION ENVIRONMENT

The proposed fine-grained block approaches are imple-
mented with a full-system simulation using Virtutech Sim-

ics [26] and Wisconsin GEMS toolset [27]. The simulated
architecture is a 16-tile CMP architecture with directory-based
cache coherence. Table III shows the configuration for the
simulated system. The proposed schemes are evaluated with
15 parallel workloads from the SPLASH-2 [28] and PAR-
SEC [29] benchmark suites. Barnes (8192 bodies,4 time steps),
Cholesky (tk15.O), FFT (64K complex doubles), FMM (16K
particles), LU (512512 matrix), LU-NC (512x512 matrix),
Ocean (258x258, contiguous partitions), Radiosity (room, -ae
5000.0-en 0.050 -bf 0.10), Radix (524288 integers), Volrend
(head), and Water-Sp (512 molecules) belong to SPLASH.
Blackscholes (simmedium), Fluidanimate (simsmall), Swap-
tions (simsmall) and x264 (simsmall) are from PARSEC.

V. RESULTS

This section shows a quantitative comparison of our block-
grain classification approach, comparing it to a TLB-based
classification approach that works on the page level (Page)
and to a baseline system that does not employ any clas-
sification (Base). For the block-grain approaches we show
the effect of each of the optimizations: Block represents the
basic approach without optimization, Block+SL includes the
spatial locality optimization, and Block+SL+APP adds on top
the access permission prefetch optimization. In particular, we
show how our proposals classify more accesses as private,
and how the overhead of the block-based classification is
kept low thanks to our optimizations. Then, we evaluate the
impact of the classification when the coherence deactivation
approach is employed. The increased number of private misses
translates into fewer blocks tracked by the directory caches. A
less occupied directory generates fewer invalidation requests,
which consequently reduces the L1 cache misses. Finally, we
show the overall improvement in execution time.

A. Private accesses

The main aim of the block-grain proposal is to detect more
private blocks by removing the miss-classification of blocks
in page-grain approaches. Figure 3 shows the percentage of



L1 accesses for private blocks (hits and misses) in a page-
grain scheme and the proposed block-grain schemes: Block,
Block+SL and Block+SL+APP. Results show that Page, Block,
Block+SL, and Block+SL+APP detected, on average, 22.4%,
31.1%, 33.1% and 33.3% private L1 hits respectively and
0.1%, 0.2%, 0.3% and 0.3% private L1 misses, respectively.
Our block-grain approaches remove the miss-classification of
page level approaches and access on average 2.5 times more
private blocks that miss in L1 than the page-grain approach.
The Block, Block+SL, and Block+SL+APP accessed, on av-
erage 10.0%, 17.0% and 16.0% more private miss blocks than
the page level scheme. This more accurate classification of
private blocks helps to reduce the amount of records used in
the directory cache.

Fig. 3. Private hit and private miss accesses in percentage

B. TLB traffic overhead

Our block-grain approach increases the number of TLB
requests issued with respect to a page-grain approach, as when
the block state is potentially shared (0,0) a TLB classification
miss happens. We analyze in this section the overhead of the
TLB classification misses over the TLB misses that happen
in our baseline configuration when the page translation is
not found. Figure 4 shows this overhead, differentiating the
number of TLB-to-TLB requests because of TLB misses
(normalized with respect to Page) and because of TLB clas-
sification misses. On average, the overhead of the number
of TLB requests in Block, Block+SL, and Block+SL+APP
is 3.1%, 2.9%, and 1.1% respectively compared to the page-
grain approach. Block+SL+APP reduces the number of TLB
requests due to TLB classification misses thanks to the access
permission prefetch optimization. The overall overhead in TLB
requests is not as critical as the time resolution for this request
is lower in block-grain approaches as we discuss in the next
section. LU and Cholesky are the applications showing more
TLB request overhead.

C. Coherence recovery latency

An advantage of the block-grain approaches is that the
recovery mechanism entails the eviction of a single block
rather than all blocks belonging to the page, as happens in the
page-grain approach. Block-grain approaches have a shorter
recovery mechanism and hence require less latency to resolve
TLB misses compared to page-grain approach. This low TLB
miss latency results in reductions in execution time. Figure 5
shows the latency of the recovery mechanism both in the
page-grain approach and in the block-grain approaches. The

Fig. 4. TLB miss broadcast overhead in Block grain

Fig. 5. The latency of the recovery mechanism in clock cycles

page requires on average 97.7 clock cycles for the recovery
operation. On the other hand, block-grain approaches require
considerably less time: 24.8 cycles on average for Block, 24.1
cycles on average for Block+SL and 23.9 cycles on average
for Block+SL+APP.

D. Average directory entries required

The main metric to measure the benefit of our block-grain
approaches on the coherence deactivation technique is the
number of directory records required to keep track of the
cached blocks. Figure 6 shows the normalized number of di-
rectory entries required with respect to Base, where all cached
blocks are tracked by the directory. When employing our fine-
grain approach the required directory entries fall dramatically.
Block avoids the storage of 51.0% of the entries, Block+SL
avoids the storage of 51.9% of the entries and Block+SL+APP
avoids the storage of 63.1% of the entries. Additionally,
when compared to the page-grain scheme, our block-grain
schemes reduce the number of required entries by 25.3%,
26.7%, and 43.9%, respectively, for the Block, Block+SL, and
Block+SL+APP. Blackscholes just require 5.0% of the entries
in the directory cache as being a highly scalable benchmark
it has more private blocks. Ocean requires only 19.0% entries
in directory compared to the page-grain approach.

Fig. 6. Average directory entries required (per cycle)



E. L1 cache misses

Thanks to the reduction in the directory cache requirements
which cause fewer evictions in the directory cache and less
coverage misses, and thanks to having less flushed blocks
from the L1 cache, a reduction in L1 cache misses is found
in block-grain schemes. Figure 7 shows the L1 cache miss
ratio normalized with reference to Base. Cache misses clas-
sify in 3C (Compulsory, Conflict, Capacity), Coherence miss
(because of invalidation due to other core write), Coverage
miss (because of invalidation due to eviction from the di-
rectory cache), and Flushing miss (because of the recovery
mechanism or TLB evictions). Block reduces L1 cache-miss
of 54.9% of the entries, Block+SL avoids the L1 cache-miss
of 57.9% of the entries and Block+SL+APP reduce L1cache-
miss of the 58.0%. Additionally, when compared to Page,
our block-grain schemes reduce the L1 cache-miss by 9.4%,
12.5%, and 12.6%, respectively, for the Block, Block+SL,
and Block+SL+APP. Page has on average 19.0% of coverage
misses compared to the total amount of misses while Block
has on average 6.7% of coverage misses compared to the total
amount of misses of the page-grain approach. x264 does not
reduce the cache miss rate as it does not increase the number
of classified private-miss accesses.

Fig. 7. Normalized L1 cache miss rate with respect to baseline

F. Normalized network traffic

Figure 8 shows the overall impact on network traffic after
the TLB communication overhead and the reduction in mes-
sages happens because of fewer invalidation messages from the
directory cache and a lower L1 cache miss ratio. Results are
normalized with respect to Base, and each bar differentiates the
traffic based on cache request, cache response control, cache
response data, TLB request, TLB response control, and TLB
response data. Block, Block+SL, and Block+SL+APP reduce
the network traffic by 33.0%, 38.0%, and 48.0% respectively
compared to the baseline setup. Block and Block+SL increases
network traffic 7.5%, 2.6% compared to Page as having more
TLB communication overhead. Block+SL+APP reduces 7%
network traffic compared to Page with the help of reduction
in TLB broadcast. Watersp reduces around 92.0% traffic as it
has a 95.0% reduction in L1 cache misses with respect to the
baseline cache protocol. Cholesky increases traffic 3.5% as it
has a number of TLB broadcast overhead.

G. Execution time

Given all the previous analysis (lower L1 cache miss rate, a
larger number of private misses, less network traffic, and less

Fig. 8. Normalized network traffic under coherence deactivation

Fig. 9. Execution time for coherence deactivation

directory occupancy) we can expect reductions in execution
time with the block-grain approaches. Figure 9 shows the ex-
ecution time for Base (first bar) with 100% coverage directory,
Base 1/8 (8 times less entries in the directory - second bar),
Page 1/8 (third bar), Block 1/8 (fourth bar), Block+SL 1/8
(fifth bar), and Block+SL+APP 1/8 (sixth bar) normalized
with respect to Base, which does not detect private blocks.The
directory cache employed for both Page and Block in this
study has been reduced to 1/8 of its original size, in order to
stress the advantages of the classification approaches. Block,
Block+SL and Block+SL+APP reduce the execution time by
7.8%, 10.3% and, 12.2% considering 8 times smaller directory
cache when compared to Base. Furthermore, when compared
to Page, they reduce the execution time by 1.4%, 4.0%, and
6.0%, respectively.

H. Memory overhead

Our block-grain approaches trade off non-scalable directory
entries with scalable TLB bit vectors. Therefore, as the amount
of cores grows in the system, more memory will be saved com-
pared to a baseline approach. For the configuration employed
in this work, the memory pages (4KB) and memory blocks
(64B). Since, each TLB entry includes two bit vectors and
there are a total of TLB 1K entries per core, the overhead
is 16KB per core. On the other hand, block-grain techniques
allow us to reduce the directory size. The directory is a non-
scalable structure, as many implementations employ a bit vec-
tor that grows linearly with the number of cores. A directory
with the same number of entries as the private caches in this
work requires 2K entries per core. Each entry accounts for a
tag, state bits, and the non-scalable bit vector (6 bytes). The
directory requires 12KB. We can improve performance with
one-eighth of this size, that is 10.5KB storage savings. As the
number of cores increases, the directory size increases too. For
example, a similar directory for just 64 cores requires 4 (tag)
+ 8 (bit vector) bytes per entry, that is a directory of 24KB.
Reducing it to one eighth would mean to save overall storage



requirements of 21KB compared to the baseline configuration.
Most of the operating system have a standard page size of
4KB as it provides more granular control. However, in some
cases large pages can be supported. Large pages would require
larger bit vectors in the TLB. To compensate this effect, or
even to reduce further the size of the TLB bit vectors, the
implementation could use one bit to represent a group of
consecutive blocks (coarse grain representation). For example,
using 64 bits in the bit vector and considering 64KB pages
(1024 blocks), each bit would represent 16 blocks that would
be classified as private or shared all together.

VI. RELATED WORK

There have been recently several research works aimed at
classifying data between private and shared to employ the
classification for optimizing cache coherence protocols [30].
Classification of data can be done at either fine grain (cache
block or even data access) or coarse grain (memory page), and
it should be as adaptive as possible [31].

A. Fine-grain approaches

Fine grain approaches include compiler- and directory-based
approaches. In a compiler-based approach [6], [12] it is hard
to know at the time of compilation what will be the sharing
status of a variable at run time, mostly if the status is detected
in a certain period of time. Our fine-grain proposal works at
run time which gives a more accurate classification.

Directory-based techniques work at block level but the
classification is detected after a cache miss, disabling the
use of coherence deactivation techniques. In SWEL [14]
the L1 cache stores non-coherent blocks and the L2 cache
stores coherent blocks. POPS [32] optimizes the protocol
by combining private and shared memory blocks on various
L2 cache slices in the NUCA architecture. Valls et al. [33]
designed a two-level directory where the first level is small
and stores shared data cache and the second level is large
and stores private data. The reason behind this is that most
hits occur for shared records. Multigrain [16] is a directory-
based mechanism that allocates a single record temporarily
to a private region rather than allocating a record for each
private block. It adjusts the area of the region at run time, thus
saving directory storage. Our block-grain approach can support
coherence deactivation and any other optimization technique
that requires the classification to be known before the cache
miss. Additionally, it does not entails any modification to the
directory structure.

B. Coarse-grain approaches

Coarse grain approaches perform a classification of memory
pages with the help of the page table and/or the TLB [5],
[9], [17], [34]. Cuesta et al. [5] uses the page table to detect
the nature of the memory pages and deactivate coherence
for blocks in private pages. Ros et al. [17] improve the
classification accuracy thanks to TLB-to-TLB communication
and a late discovery of TLB evictions. TokenTLB [18] is
a token-based coherence mechanism [35], that reduces TLB

communication. With a predictions of the use of pages [19] the
accuracy of classification can be improved, as TLB evictions
can be detected earlier. The forced-sharing predictor [34] helps
to reduce extra classification traffic introduced when a block is
private to different cores for a small period of time. Some of
these optimization are orthogonal to our work, but we increase
classification accuracy thanks to a fine-grain classification.

Recently, Caheny et al. [10] have proposed a hardware-
software co-design proposal using a parallel programming
model to deactivate the cache coherence protocol, which helps
to reduce the directory area and energy consumption with the
help of extra hardware. Studies at sub-page granularity have
also been performed recently [36], by using an on-chip page
table to find address translation. Our proposals on the other
hand obtain the accuracy of block-grain classification.

Finally, a real time prototype of private/shared data clas-
sification has been recently implemented on LEON SPARC
multiprocessor [37] using a page-grain approach.

VII. CONCLUSIONS AND FUTURE WORK

Categorizing memory accesses into private and shared helps
to achieve scalability and efficiency in a multicore system. We
present a novel approach to categorize data as private or shared
that works at a finer granularity than existing approaches
using the TLB structures. The proposed scheme detects, on
average, more accessed private miss blocks 17.0% than pre-
vious approaches and results in performance improvement of
6.0% compared to a page-grain approach. Additionally, our
block-grain approach trades off non-scalable directory entries
for scalable bit vectors at the TLB. Our future work aims
to eliminate the non-scalable directory structure using only
scalable TLB bit vectors.
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