
Journal of VLSI Signal Processing 41, 209–223, 2005
c© 2005 Springer Science + Business Media, Inc. Manufactured in The Netherlands.

Reducing 3D Fast Wavelet Transform Execution Time Using Blocking
and the Streaming SIMD Extensions∗

GREGORIO BERNABÉ AND JOSÉ M. GARCÍA
Universidad de Murcia, Dpto. Ingenierı́a y Tecnologı́a de Computadores, 30071 Murcia, Spain

JOSÉ GONZÁLEZ
Intel Barcelona Research Center, Intel Labs, Barcelona, 08034 Barcelona, Spain

Received February 13, 2003; Revised December 29, 2003; Accepted July 30, 2004

Abstract. The video compression algorithms based on the 3D wavelet transform obtain excellent compression
rates at the expense of huge memory requirements, that drastically affects the execution time of such applications. Its
objective is to allow the real-time video compression based on the 3D fast wavelet transform. We show the hardware
and software interaction for this multimedia application on a general-purpose processor. First, we mitigate the
memory problem by exploiting the memory hierarchy of the processor using several techniques. As for instance,
we implement and evaluate the blocking technique. We present two blocking approaches in particular: cube and
rectangular, both of which differ in the way the original working set is divided. We also put forward the reuse of
previous computations in order to decrease the number of memory accesses and floating point operations. Afterwards,
we present several optimizations that cannot be applied by the compiler due to the characteristics of the algorithm.
On the one hand, the Streaming SIMD Extensions (SSE) are used for some of the dimensions of the sequence (y
and time), to reduce the number of floating point instructions, exploiting Data Level Parallelism. Then, we apply
loop unrolling and data prefetching to specific parts of the code. On the other hand, the algorithm is vectorized by
columns, allowing the use of SIMD instructions for the y dimension. Results show speedups of 5x in the execution
time over a version compiled with the maximum optimizations of the Intel C/C++ compiler, maintaining the
compression ratio and the video quality (PSNR) of the original encoder based on the 3D wavelet transform. Our
experiments also show that, allowing the compiler to perform some of these optimizations (i.e. automatic code
vectorization), causes performance slowdown, demonstrating the effectiveness of our optimizations.

Keywords: 3D wavelet transform, video compression, blocking, reuse, Streaming SIMD extensions, vectorization

1. Introduction

In the last few years there has been a considerable
increase in the volume of medical images and video
generated in hospitals. Medical multimedia informa-
tion is different from other multimedia data because of

∗Special Issue on Media and Communication Applications on Gen-
eral Purpose Processors: Hardware and Software Issues/Journal of
VLSI Signal Processing Systems/Dr. Eric Debes, (Lead) Guest Edi-
tor. Contact Author: Gregorio Bernabé.

its particular properties. There are legal and strict reg-
ulations applied to medical multimedia information,
since the health of a patient depends on the correct-
ness and the accuracy of this information. Moreover,
the integrity, confidentiality and security of medical
data is crucial to protect it from accidental or mali-
cious alteration during interchange and storage. An-
other critical property is that any information on a
patient must be available immediately, whenever or
wherever, it is required and especially in cases of
emergency.

210 Bernabé, Garcı́a and González

Most of a patient’s medical history must be kept and
stored as legislation requires all healthcare information
to be preserved for a certain period of time (typically
5–10 years) before it can be deleted. Thus, hospitals
have to deal with very high storage requirements. On
the other hand, tele-diagnosis is becoming a popular
technique among hospitals. A doctor may ask for the
advice of a colleague who works in another hospital,
and even another country, by means of real-time trans-
mission of medical images and video. Due to the huge
amount of transmitted data, high-bandwidth networks
are needed to maintain the quality of the video and
allow for accurate diagnosis. In both cases (storage
and transmission), compression techniques are used
to drastically reduce the amount of information needed
to be handled. Finally, the quality of the compressed
data must be good enough to allow for correct diagnos-
tic when it is reconstructed.

Lately, wavelet transform [1] has been used to ac-
quire the previous features, summarized in the three
main areas below:

(a) High-quality compression of the medical video.
(b) Real-time compression and decompression of the

medical video.
(c) Real-time transmission of the medical video.

The last problem is outside of the scope of this pa-
per. To find a solution to the first topic, the appli-
cation of the wavelet transform has been developed
drastically on the last few years. The wavelet trans-
form has been applied mainly to image compression.
Several coders have been developed using 2D wavelet
transform [2–4]. Moreover, the last image compression
standard, JPEG-2000 [5,6], is also based on the 2D dis-
crete wavelet transform with a dyadic mother wavelet
transform.

The 2D wavelet transform has also been used for
compressing video [7]. However, three dimensional
(3D) compression techniques seem to offer better re-
sults than two dimensional (2D) compression tech-
niques that operate in each frame independently. Mu-
raki introduced the idea of using 3D wavelet transform
to approximate efficiently 3D volumetric data [8, 9].
Since one of the three spatial dimensions can be con-
sidered similar to time, a 3D subband coding using the
zerotree method (EZW) was presented to code video
sequences [10] and posteriorly improved with an em-
bedded wavelet video coder using 3D set partitioning
in hierarchical trees (SPIHT) [11]. Today, the stan-

dard MPEG-4 [12, 13] supports an ad-hoc tool for en-
coding textures and still images based on a wavelet
algorithm.

In previous works [14, 15], we have presented the
implementation of a lossy encoder for medical video
based on the 3D Fast Wavelet Transform (FWT). This
encoder achieves both high compression ratios and ex-
cellent quality, so that medical doctors can not find
longer differences between the original and the recon-
structed video.

With regard to the second problem, one of the main
drawbacks of using the 3D wavelet transform to code
and decode medical video is its excessive execution
time. Since three dimensions are exploited to obtain
high compression rates, the working set becomes huge
and the algorithm becomes limited by memory (mem-
ory bound).

In this article, we show the hardware and software
interaction for a multimedia application on a general-
purpose processor. The manuscript presents a number
of approaches to speed up the 3D wavelet transform by
reducing memory bandwidth and exploiting Data Level
Parallelism and Instruction Level Parallelism without
producing a degradation of the video quality and pre-
serving the compression ratio of the original encoder.
Therefore, we present a memory conscious 3D FWT
that exploits the memory hierarchy by means of block-
ing algorithms, reducing the final execution time. We
propose and evaluate several blocking approaches that
differ in the way that the original working set is divided.
We also propose the reuse of some computations to
save floating point (FP) operations as well as memory
accesses.

Moreover, we attempt to take efficient advantage
of the Streaming SIMD Extensions [16] by using the
new Intel C/C++ Compiler [17]. We also employ oth-
ers classic methods like data prefetching and loop un-
rolling. Finally, we examine the source code to exploit
the temporal and spatial locality in the memory cache.
A method to enhance the locality of the memory hierar-
chy, based on the compute of the wavelet transform in
the x and y dimensions is presented, taking into account
that the mother wavelet function is the Daubechie’s of
four coefficients (Daub-4).

Results show that the rectangular overlapped ap-
proach with the different optimizations provide the best
execution times among all tested algorithms, achieving
for optimal block size (512 × 64 × 16) a speedup of
5 over the non-blocking non-overlapped wavelet trans-
form. Therefore, the final proposed approach maintains

Reducing 3D Fast Wavelet Transform Execution Time 211

both the high compression ratio and the excellent video
quality of the original encoder [15].

This article is a major revision of two papers pub-
lished in [18] and [19]. The rest of this article is orga-
nized as follows. The background is presented in Sec-
tion 2. Section 3 describes several approaches to reduce
the execution times in the 3D-FWT algorithm in which
we will present the main details of each method. In
Section 4, we show several techniques using the new
Intel C/C++ Compiler and the Streaming SIMD Ex-
tensions to reduce the execution times of the rectangu-
lar overlapped approach, presented in the previous sec-
tion. Experimental Results on some test medical video
are analyzed in Section 5. Finally, Section 6 summa-
rizes the work and concludes the paper.

2. Background

In this section, we review the framework on top of
which our enhancements have been built. We will first
present the general techniques needed to compress
medical video and the ways for measuring it. We will
then review the theory behind wavelets and finally,
introduce the blocking techniques along with the ad-
vanced multimedia extensions.

2.1. Medical Video

There are two ways for compressing medical video:
lossy and lossless compression techniques. Higher
compression ratios can currently be obtained by means
of lossy compression techniques, but radiologist are
very reluctant to use them, as they might potentially
introduce compression artifacts to ensure complicating
diagnosis. Doctors normally prefer to use lossless com-
pression techniques (JPEG-LS [20]) so that the quality
is preserved.

However, lossless compression achieves compres-
sion ratios significantly lower than those achieved by
lossy techniques. Therefore, following the legal rules
and keeping medical video for ten years may become
prohibitive for most hospitals due to the storage re-
quirements. In addition, the constant increase of net-
work traffic may the use of tele-diagnosis difficult if im-
ages are not sufficiently compressed. All of this makes
the research on lossy compression techniques particu-
larly interesting, especially, if oriented so as to exploit
the behavior of the medical video, usually encoded in
gray scale, using just 1 byte per pixel, offering very
small interframe variations.

In addition, we need to measure the quality of recon-
structed video. A numerical evaluation of the quality is
achieved by computing the peak signal-to-noise ratio
(PSNR) in the reconstructed video.

The PSNR, of an image, is defined as follows

PSNR = 10 log10
f 2
max

α2
(1)

where fmax stands for the highest possible value of
pixel, that is 255 for images that use 8-bits to represent
a pixel (e.g. gray-scale images), whereas α2 stands for
the Mean Square Error (MSE).

The PSNR of a reconstructed video has been calcu-
lated by computing the arithmetic mean of the PSNR
for all of frames of the video. We use PSNR as it is the
most simple way of comparing the performance among
different schemes.

In addition to the PSNR value, the reconstructed
video must be evaluated by doctors. Therefore, it is
common practice to visually test the quality of the re-
constructed video.

2.2. The Wavelet Transform Foundations

The basic idea behind the wavelet transform is to rep-
resent any arbitrary function f as a weighted sum of
functions; referred to as wavelets. Each wavelet is ob-
tained from a mother wavelet function by conveniently
scaling and translating it. The result is equivalent to
decomposing f into different scale levels (or layers),
where each level is then further decomposed with a
resolution adapted to that level.

In multiresolution analysis, two functions exist: the
mother wavelet and its associated scaling function.
Therefore, the wavelet transform can be implemented
by quadrature mirror filters (QMF), G = g(n) and
H = h(n) nεZ . H corresponds to a low-pass filter
and G is a high-pass filter. The reconstruction fil-
ters have impulse response h∗(n) = h(1 − n), and
g∗(n) = g(1 − n). For a more detailed analysis of the
relationship between wavelets and QMF see [21].

The filters H and G correspond to one step in the
wavelet decomposition. Given a discrete signal, s, with
a length of 2n , at each stage of the wavelet transforma-
tion, the G and H filters are applied to the signal and
the filter output downsampled by two, generating two
bands: G and H . The process is then repeated on the H
band to generate the next level of decomposition and
so on. It is important to note that the wavelet decom-

212 Bernabé, Garcı́a and González

position of a set of discrete samples has exactly the
same number of samples as in the original, due to the
orthogonality of wavelets. This procedure is referred
to as the 1D Fast Wavelet Transform (1D-FWT).

The inverse wavelet transform can be obtained in a
way similar to that of the forward transform, by simply
reversing the above procedure following. However, the
order of the g’s and h’s has to be reversed.

It is not difficult to generalize the one-dimensional
wavelet transform to the multi-dimensional case [21].
The wavelet representation of an image, f (x, y), can be
obtained with a pyramid algorithm. It can be achieved
by first applying the 1D-FWT to each row of the image
and then to each column. That is, the G and H filters are
applied to the image in both the horizontal and vertical
directions. The process is repeated several times as in
the one-dimensional case. This procedure is referred to
as the 2D Fast Wavelet Transform (2D-FWT).

As in 2D, we can generalize the one-dimensional
wavelet transform for the three-dimensional case. In-
stead of one image, there is now a sequence of images.
Thus a new dimension has emerged, time (t). The 3D-
FWT can be computed by successively applying the
1D wavelet transform to the value of the pixels in each
dimension.

It is common in wavelet compression to recursively
transform the average signal. The number of transfor-
mations performed in each dimension depends on sev-
eral factors, for example the amount of compression
desired, the size of the original video and the mother
wavelet function. In general, the higher the desired
compression ratio, the more times the transform is per-
formed. Note that applying the wavelet transform too
many times, may have a significant impact on quality.
Hence, this parameter must be chosen carefully.

In this paper, we have considered Daubechies W4

(Daub-4) [1] as the mother wavelet function. We have
chosen this function because some previous works have
proved its effectiveness [14, 15].

2.3. Blocking and Streaming SIMD Extensions
(SSE)

Blocking is a well-known optimization technique for
improving the effectiveness of memory hierarchies
[22–24]. Instead of operating on entire rows, columns
or frames of the working set, blocking algorithms op-
erate on working subsets or blocks, so that data loaded
into the faster levels of the memory hierarchy is reused.

Blocking has been shown to be useful for many algo-
rithms in linear algebra like BLAS [25], LAPACK [26]
and most recently, ATLAS [27]. Blocking has also been
used for the computation of the 2D and 3D wavelet
transform, splitting the image or video in several blocks
and then perform the transform on tiles such as the stan-
dard image compression JPEG-2000 [5] which uses a
line based wavelet transform [28] or the reduced mem-
ory versions of the embedded wavelet video coder us-
ing 3D set partitioning in hierarchical trees (SPIHT)
[29] and the 3D scan-based wavelet transform [30].
SPIHT avoids the blocking artifacts in the block bounds
at the expense of some extra processing of pixels over-
lapped of the following blocks whereas the 3D scan
method allows the computation of the temporal wavelet
decomposition duplicating the input frames by a sym-
metrical extension. Our technique uses the overlapped
approach as we will present in the next section.

The introduction of Multimedia Extensions
(MMXTM1 Technology) [31] and the Streaming SIMD
Extensions (SSE) [32] available on modern processors,
provide a technology designed to accelerate multi-
media and communications software, able to reduce
the execution time of the applications. Ranganathan
et al. [33] show the Sun VIS media ISA extensions
provide an additional 1.1 to 4.2 performance im-
provement over several image and video processing
applications. Nachtergaele et al. [34], proposed a
software implementation of the MPEG-4 based on the
integer wavelet transform using Multimedia Exten-
sions. Conte et al. [35] evaluated several applications
obtaining substantial speed-ups with MMX/SSE code.

The Pentium III processor introduced the 128-
bit streaming SIMD extensions [36], which support
floating-point operations on 4 single-precision floating-
point numbers, implemented through of eight 128-bit
data registers, called xmm0, xmm1, . . . , xmm7.

Two options are available when carrying out these
extensions: by means of an adequate compiler (au-
tomatic vectorization) or by hand. The Intel C/C++
Compiler for Linux (v5.0.1) [17], follows the standard
approach to the vectorization of inner loops [37]. First
of all, statements in a loop are reordered according
to a topological sort of the acyclic condensation of
the data dependence graph for this loop. Statements
involved in a data dependence cycle are then either
recognized as certain idioms that can be vectorized
or distributed out into a loop that will remain serial.
Finally, vectorizable loops are translated into SIMD
instructions.

Reducing 3D Fast Wavelet Transform Execution Time 213

However, automatic vectorization is still difficult to
achieve due to the high restrictions imposed by compil-
ers and the nature of the algorithm of the wavelet trans-
form. Instead, and as will be shown in Section 4, we
have manually vectorized the code, as it was simple and
more effective than giving hints to help the compiler.

3. Blocking the Wavelet Transform

Our previous Wavelet-based encoder obtained ex-
cellent results both in compression rate and quality
(PSNR), as observed in [14,15]. Results were obtained
with the 3D-FWT working on video sequences of 64
frames of 512 × 512 pixels (16 MBytes of working set).
This huge working set limits the performance of such
algorithm making it unfeasible for real-time video com-
pression and transmission. Initial results showed that
this algorithm is completely memory bound, therefore,
blocking techniques could be an interesting approach
to reduce its memory requirements and consequently
the execution time.

The aim behind blocking algorithms, is to exploit
the locality exhibited by memory references by means
of partitioning the initial working set in limited chunks
that fit into the different levels of the memory hierarchy.
In this way, two positive effects appear: on the one hand,
memory accesses are accelerated, since data is actually
at the higher levels of the memory hierarchy (closer to
the processor core). On the other hand, traffic between
the main memory and the processor chip is drastically
reduced, obtaining better use of the bandwidth provided
by the baseline computer system.

However, applying blocking algorithms to video
coders is a challenge; not only the memory hierarchy
must be exploited by means of an optimum data par-
titioning but quality must also be preserved. Note that
partitioning the working set into independent blocks
may lead to unexpected reductions to the quality of the
resulting video due to artifacts in the block bounds.

In this section, we present two different approaches
to the blocking version of the 3D-FWT transform: cube
and rectangular, both of which differ in the way the
original working set is divided.

3.1. Cube Approach

In this first approach, we propose to divide the original
sequence. For example, a video sequence of 64 frames
of 512 × 512 pixels is split into several subcubes as we
can see in Fig. 1 and the wavelet transform is indepen-

256

256

16

16

Time

Y

X

256 256

Figure 1. Cube approach.

dently applied to each of these subcubes. With regards
to the size of these subcubes, X and Y axis are the
same size (different block sizes have been evaluated),
whereas the number of frames in the time dimension is
fixed to 16, the minimum number of frames needed to
apply the transform twice.

However, this approach has two disadvantages. In
the first instance, as the compression ratio increases, the
Peak Signal to Noise Ratio (PSNR) drops significantly;
in the second, an increasing degree of visibility in the
discontinuity of the reconstruction at adjacent subcubes
boundaries is detected because artifacts effects appear.
This is due to the way the computation is performed
in the FWT, since for a particular pixel, the value of
its coefficient after the transform is correlated with the
original values of its neighboring pixels.

To illustrate this problem, Fig. 2 shows how the
wavelet transform is applied for an unidimensional sig-
nal of 8 pixels using the Daubechie’s of four coefficients
as a mother function (Daub-4). This signal is divided
into two blocks of 4 pixels where the FWT is com-
puted independently. The resulting coefficient for the
first pixel depends on the second, third, fourth and itself,
all belonging to the same block. However, the second

Figure 2. Algorithm of 1D-FWT with Daub-4.

214 Bernabé, Garcı́a and González

pixel depends on the third, fourth, fifth and the sixth
pixel (the last two pixels belong to a different block
unavailable in this original partitioning). The same hap-
pens to the rest of the pixels. Since additional pixels are
needed to compute the transform in any dimension, two
different alternatives can be considered to provide this
information. Non-Overlapped approaches utilize pix-
els from the same block (for instance replicating last
pixels, or using first pixels). Overlapped approaches
use pixels from the following block. Although the lat-
ter does not seem to exploit memory locality, it provides
better compression and better quality results as we will
demonstrate later on.

Furthermore, the 3D-FWT implies the computation
of the 1D-FWT in the time dimension. When following
the aforementioned approach, information from addi-
tional frames is needed, and can be obtained from the
block itself or from the following blocks. The amount of
frames depends on the number of steps of wavelet trans-
form. Taking as an example the W4 mother wavelet,
applying the wavelet transform just once needs two
more frames, six frames are necessary for two wavelet
transforms, and fourteen frames are needed for three
wavelet transforms.

Thus, choosing between the overlapped and non-
overlapped approaches for the 3D-wavelet transform
is one of the main decisions that must be taken to
achieve a good trade-off between execution time and
quality. Whereas the non-overlapped approach seems
more memory efficient, since computations are carried
out using the working set of the block, the quality of the
reconstructed video is clearly affected by the artifacts
that appear in the block bounds. This is because the
coefficients of the block bounds are computed without
taking into account their neighbors.

Subsequently, to avoid the artifacts caused by dis-
continuities in any reconstruction between adjacent
coding subcubes, the X, Y and time axis are overlapped.
We refer to this cube modified approach as cube over-
lapped. Since the FWT is applied twice, six rows, six
columns and six frames must be overlapped (e.g. for
subcubes of 256 rows-columns of 16 frames, subcubes
of 262 rows-columns of 22 frames are now needed).

3.2. Rectangular Approach

The 3D-FWT algorithm is programmed in C and
frames are thus stored in the memory according to row
order. For the space locality of memory references to
be better exploited, it might be interesting to analyze

256

256

512

16

16

Time

Y

X

Figure 3. Rectangular approach.

a different data distribution. In this section, we present
the rectangular partitioning; where the original cube is
divided into several rectangles, as we can observe in
Fig. 3.

The overlapped wavelet transform as in the cube ap-
proach can be applied to avoid the artifacts and the de-
crease of PSNR, however, only Y and time dimensions
are overlapped. For example, a video sequence of 64
frames of 512 × 512 pixels can be divided into 8 rect-
angles of 16 frames of 512 × 256 or 32 rectangles of
16 frames of 512 × 128 pixels. After overlapping, rect-
angles of 22 frames of 512 × 262 pixels or 22 frames
of 512 × 134 pixels are obtained.

4. Optimizing the Rectangular
Overlapped Approach

In this section, several enhancements to the original
blocking algorithms are illustrated, with the aim of
reducing both the number of FP instructions and the
pressure on the memory subsystem.

4.1. Reuse Operations

In the latter approach, we found another contribution
of this work: the reuse of some computations to reduce
the number of floating point operations and memory ac-
cesses. When the overlapped wavelet transform is used,
operations are repeated across different blocks. For ex-
ample, for the previous video sequence, if divided into
8 rectangles of 16 frames of 512 × 256 pixels, 6 rows
and 6 frames must be overlapped in the first rectangle.
When the first wavelet transform is applied to the Y di-
mension, 130 low and 130 high rows are obtained. The
last two low and high rows are the first ones in the next
rectangle, so they should not be computed again in the
following block. As seen in Fig. 4, some computations

Reducing 3D Fast Wavelet Transform Execution Time 215

512

512

512

512

256

256

6 rows

256

6 rows

6 rows

262

512

512

512

256

262

512

L1..L128

L129, L130
H1..H128

H129, H130

LL

HH

HL

LH

First Wavelet
 Transform

LL

HH

HL

LH

512

256

262

512

L1..L128

L129, L130
H1..H128

H129, H130

L129, L130

H129, H130

Figure 4. Reuse in rectangular approach.

carried out for the first block are reused for the second
block. For instance, if we divide into several rectangles
of 16 frames of 512 × 32 or 512 × 16 pixels, 12 and
25% of the operations will be reused respectively in the
Y dimension.

4.2. SSE Extensions for the Wavelet Transform

The SSE extensions are used to exploit fine-grained
parallelism by vectorizing loops that perform a single
operation on multiple elements in a data set. There-
fore, we can apply the SSE in our wavelet overlapped
transform algorithm for an unidimensional signal (1D-
FWT) of n pixels with the Daub-4 as the mother wavelet
function.

As we can be observed in Fig. 2, the value of each re-
sulting wavelet coefficient depends on four pixels, and
8 floating point multiplications and 6 floating points ad-
ditions are needed to obtain the low and high pass for
each pixel. For 4 coefficients, 32 floating point mul-
tiplications and 24 floating points additions are then
necessary.

Figure 5 shows the computation of the first four low-
pass resulting wavelet coefficients. We refer to this opti-
mization as SSE vectorization by hand. First, four SSE
registers (xmm0, xmm1, xmm2 and xmm3) are ini-
tialized with the Daub-4 coefficients. Second, the pix-
els are loaded in groups of four into the SSE registers
(xmm4, xmm5, xmm6 and xmm7). Finally 4 floating
point multiplications and 3 floating point additions, are
performed among the SSE registers to obtain the same
wavelet coefficients as in the algorithm of 1D-FWT

overlapped with Daub-4. We can obtain the high-pass
wavelet coefficients in the same way; with 4 floating
point multiplications and 3 more floating point addi-
tions. Therefore, the total number of floating point in-
structions has been reduced from 56 to 15 instructions.2

4.3. Loop Unrolling and Prefetching Data

Loop unrolling is usually applied by the compiler if
there is a clear room for improvement. However, due
to the nature of the Wavelet algorithm (3 nested loops
for the time dimension) and the compiler constraints,
we have had to unroll the time dimension manually.
In this dimension, if the wavelet transform is applied
twice, the first iteration will be applied over 22 frames
and the second iteration over 10 frames (for blocks of
16 frames).

Therefore, the loop is unrolled for the time dimen-
sion, because when using the SSE, the loop is only
executed three times in the first iteration (4 low-pass
and 4 high-pass coefficients are calculated in each time)
and once more in the second.

Another feasible optimization is data prefetching
which improves the performance due to accelerated
data delivery. In this way, data prefetching can, in part,
hide the memory latency. If we predict which memory
page our program will request next, we can fetch that
page into cache (if it is not already in cache) before
the program asks for it. In our wavelet transform al-
gorithms, it is necessary to reference a lot of data and
we can predict what are the next data in order to drop
down the latency.

216 Bernabé, Garcı́a and González

C0 C0 C0C0

C1 C1 C1C1

_mm_set_ps(C0, C0, C0, C0)

_mm_set_ps(C1, C1, C1, C1)

_mm_set_ps(C2, C2, C2, C2)

_mm_set_ps(C3, C3, C3, C3)

XMM0

XMM1

XMM2

XMM3

C2 C2 C2C2

C3 C3 C3C3

_mm_set_ps(p[6], p[4], p[2], p[0])

_mm_set_ps(p[7], p[5], p[3], p[1])

_mm_set_ps(p[8], p[6], p[4], p[2])

XMM4

XMM5

XMM6

XMM7

p[2] p[8]

p[3]

p[0] p[4] p[6]

p[1] p[5] p[7]

p[2]

p[3]

p[4] p[6]

p[5] p[7] p[9] _mm_set_ps(p[9], p[7], p[5], p[3])

C0*p[0] C0*p[2] C0*p[4] C0*p[6]

mulps xmm3, xmm7

mulps xmm1, xmm5

mulps xmm2, xmm6

XMM0

XMM1

XMM2

XMM3

C1*p[1] C1*p[3] C1*p[5] C1*p[7]

C2*p[2] C2*p[6] C2*p[8]

C3*p[3] C3*p[9]

C2*p[4]

C3*p[5] C3*p[7]

mulps xmm0, xmm4

C0*p[0] + C0*p[2] + C0*p[4] + C0*p[6] +
C1*p[3] C1*p[5] C1*p[7]C1*p[1]

C2*p[6]C2*p[4]C2*p[2] C2*p[8]

C0*p[0] + C0*p[2] + C0*p[4] + C0*p[6] +
C1*p[3] + C1*p[5] + C1*p[7] +C1*p[1] +

XMM0

XMM0

C3*p[3] C3*p[5] C3*p[7] C3*p[9]
C2*p[6] +C2*p[4] +C2*p[2] + C2*p[8] +

C0*p[0] + C0*p[2] + C0*p[4] + C0*p[6] +
C1*p[3] + C1*p[5] + C1*p[7] +C1*p[1] +XMM0 addps xmm0, xmm3

addps xmm0, xmm1

addps xmm0, xmm2

b) Load pixels in group of 4 into the SSE registers.

a) Initialize SSE registers with Daub−4 coefficients.

c) Floating point multiplications among SSE registers.

d) Floating point additions among SSE registers.

Figure 5. Phases for the computation of the first four low-pass wavelet coefficients with the SSE registers.

4.4. Columns Vectorization

In the 3D-FWT, the wavelet is applied in the x , y and
time dimensions. In previous subsections, we analyzed
the time dimension and applied the SSE vectorization
by hand, loop unrolling and data prefetching. In the
x dimension, the wavelet transform is applied succes-
sively for all rows of each frame. As the video sequence
is stored in the memory according to a row order, spa-
tial locality is exploited when the transform is applied
in this dimension. The main problem with memory ap-
pears when the transform is applied in the y dimension.

Pixels from successive rows are needed to compute the
coefficients of each column of the y dimension, caus-
ing many cache misses even for the blocking version
of the algorithm (for this version, L1 data cache still
presents a high number of misses).

In this section, we give “columns vectorization”, as
an effective way to apply the transform in the y dimen-
sion, exploiting the locality of references and the fact
that the transform was already applied in the x dimen-
sion.

As the wavelet transform is applied by rows in the
x dimension, to compute the first coefficient in the y

Reducing 3D Fast Wavelet Transform Execution Time 217

C
ol

um
n

0

C
ol

um
n

1

C
ol

um
n

2

C
ol

um
n

3

C
ol

um
n

4

C
ol

um
n

5

C
ol

um
n

6

C
ol

um
n

7

C
ol

um
n

8

C
ol

um
n

9

C
ol

um
n

10

C
ol

um
n

11

Row 0

Row 1

Row 2

Row 3

Row 4

Row 5

2nd row by columns

1st row by columns .

.

Figure 6. Columns vectorization.

dimension, only the resulting wavelet coefficients of
the first four rows are needed, since each coefficient of
the Daub-4 mother function depends on four pixels, as
we can observe in Fig. 2. To compute a new row in the
y dimension, two more rows of wavelet coefficients in
the x dimension are needed.

Figure 6 is an example of a piece of frame of 6 rows
by 12 columns. Once the wavelet transform is applied
for the four first rows in the x dimension, it can be ap-
plied to the first row in the y dimension (i.e. in order to
compute a coefficient, values obtained for rows 0,1,2,3
are needed). Furthermore, this computation is carried
out using SSE extensions (4 coefficients fit in a XMM
register). The second row in the y dimension depends
on rows 2, 3, 4 and 5. Therefore, only two new rows in
the x dimension are necessary.

5. Experimental Results

5.1. Workbench Environment

The evaluation has been carried out on a 1 GHz-Intel
Pentium-III processor with 512 Mbytes of RAM. The
main properties of the memory hierarchy are summa-
rized in Table 1. The operating system used was Linux

Table 1. Description of the memory hierarchy.

TLBs L1 instr TLB, 4K page, 4-way, 32 entries
L1 data TLB, 4K page, 4-way, 64 entries

Level 1 L1 instr cache, 16 KB, 4-way, 32 byte line
L1 data cache, 16 KB, 4-way, 32 byte line

Level 2 L2 unified cache, 256 KB, 8-way, 32 byte line

Level 3 512 Mbytes DRAM

2.2.14. The programs have been written in the C pro-
gramming language.

Performance has been measured using the monitor-
ing counters available in the P6 processor family. The
Intel Pentium-series processors include a 64-bit cy-
cle counter and two 40-bit event counters with a list
of events and additional semantics dependent on the
particular processor. We have used a library, Rabbit
(v.2.0.1) [38], to read and manipulate Intel processor
hardware event counters in C under the Linux operating
system.

We compared execution time consumed by the 3D-
wavelet transform for the different blocking approaches
proposed in Section 3, with the original 3D-FWT lossy
compression method [14], and the different optimiza-
tions presented in section 4 on a heart video medical
sequence of 64 frames of 512 × 512 pixels coded in
gray scale (8 bits per pixel).

5.2. Evaluating the Execution Time

Figure 7 shows the execution time obtained with two
levels of the fast wavelet transform to compute 64
frames of 512 × 512 pixels and for the different block-
ing approaches: cube non-overlapped, cube overlapped
and rectangular overlapped (Rectangular) compiled
with the gcc/gnu compiler. Intel C/C++ represents the
same blocking rectangular approach compiled with the
Intel Compiler [17]. SSE includes SSE vectorization
by hand as well as loop unrolling and data prefetching,
all of them for the time dimension. Finally, Columns
includes Columns Vectorization and the SSE vector-
ization by hand in the computation of wavelet co-
efficients for the y dimension. Results are presented

218 Bernabé, Garcı́a and González

2

3

4

5

6

7

8

9

10

11

12

16 32 64 128 256 512

Block size

T
im

e
(s

ec
s)

Non-blocking non-
overlapped
Non-blocking
overlapped
Cube non overlapped

Cube overlapped

Rectangular

Intel C/C++

SSE

Columns

Figure 7. Execution time for the different approaches for the Heart
video sequence.

according to different block sizes, from 16 × 16 × 16
to 512 × 512 × 16 in the cube approaches and from
512 × 16 × 16 to 512 × 512 × 16 in the other ap-
proaches and optimizations. We have also included the
execution time without blocking for reference, using
the non-overlapped and the overlapped wavelet trans-
form, plotted as dotted lines, taking the same execution
time for all configurations because there are not divi-
sions into different blocks.

First of all, we can observe that blocking ap-
proaches clearly reduce the execution time of the
original algorithm for all configurations. The opti-
mal block size in the cube non-overlapped approach
(64 × 64 × 16) obtains a speedup of 2.71 over the
original non-overlapped wavelet transform, whereas
overlapped blocking approaches, cube (optimal block
size 32 × 32 × 16) and rectangular (optimal block size
512 × 64 × 16), provide a speedup of 1.77 and 2.42
respectively, compared to the non-overlapped wavelet
transform.

As we expected, the rectangular approach obtains the
best results among the different blocking approaches.
This behavior is due to the better exploitation of the
locality of its memory accesses and the reuse of floating
point operations. This reuse improves the execution
time over an average of 6% for all configurations.

Higher execution times on overlapped blocking ap-
proaches compared to the non-overlapped ones are
caused by the increase of the working set of blocks
since data from the following blocks must be incor-
porated. However, these overlapped approaches obtain
much better quality, which makes them more attractive
to be used.

For instance, in the rectangular approach, the
optimal configuration is 512 × 64 × 16, obtaining
a speedup of 1.48 over the 64 × 64 × 16 in the
cube overlapped approach. In some configurations
(16 × 16 × 16, 32 × 32 × 16 and 64×64×16), the cube
non-overlapped approach obtains faster times than the
rectangular approach. However this approach presents
artifacts and a decrease of the PSNR (from 37 to 33) in
the reconstructed video, that it then discards to obtain
a higher quality compression of the medical video.

In summary, overlapped approaches maintain the
compression rate and quality of the video whereas
the non-overlapped approach produces an unaccept-
able degree of visibility in the reconstructed video.

As for the blocking overlapped approaches, the rect-
angular approach better exploits the memory hierar-
chy than the cube and consequently the execution time
is significantly reduced. Rectangular or cube blocking
achieve execution times 12% (512×64×16) and 33%
(32 × 32 × 16) faster than blocks of 512 × 512 × 16.

5.3. Analyzing the Effects of Further Optimizations

Furthermore, it can be observed that each new opti-
mization clearly reduces the execution time of previous
approaches for all configurations. The optimal block
size (512 × 64 × 16) is maintained in all approaches.
For this block size, the version just compiled with the
Intel C/C++ obtains a speedup of 1.18 to that the
one compiled with gnu/gcc. From this point on, we
will refer to the Intel C/C++ version as the baseline,
since it represents our previous proposal, re-compiled
with a better compiler. Combining SSE extensions with
prefetching and loop unrolling, obtain a speedup of
1.31 for the baseline and a speedup of 1.54 for the
Columns vectorization. It is important to note that all
of these optimizations in the algorithm, maintain the
same compression rate and quality as the rectangular
overlapped approach confirming the potential of these
methods.

The results in Intel C/C++ are obtained with the
−tpp6 options which generates a code optimized for
Pentium III processors and the advantages of the new
compiler, improving the original execution time. In ad-
dition, we have enabled the automatic vectorization
with the −x K and −ax K options, generating a code
specialized for Streaming SIMD extensions. Although
the execution times are better than those of the origi-
nal rectangular overlapped approach (i.e. that compiled
with gnu/gcc), they are worse than without automatic

Reducing 3D Fast Wavelet Transform Execution Time 219

vectorization for the Intel C/C++ compiler. The rea-
son for the decrease in performance experienced with
automatic vectorization is that the vectorization of the
Wavelet Transform is tricky, i.e. it has to be carefully
applied to the computations that could obtain benefit
from it. Remember that there are three nested loops and
that, for instance, vectorizing the innermost loop does
not provide any benefit. Thus, manually vectorizing the
code, as proposed in this work is, so far, the best op-
tion for achieving benefits when SIMD extensions are
applied in the Wavelet Transform.

In SSE optimizations, to achieve performance bene-
fits there are three different ways: first, the utilization
of SSE extensions for the time dimension, second, the
effect of loop unrolling to increase Instruction Level
Parallelism, and third, the effect of data prefetching.
At the same time as the four wavelet coefficients are
being calculated, pixels needed for the next coefficients
are being prefetched.

Finally, with Columns optimization, execution times
are significantly reduced for all configurations. This
optimization allows the real-time video compression
and transmission (24 frames per second) for all but
the block sizes 512 × 512 × 16 and 512 × 256 × 16.
The configurations from block sizes 512 × 16 × 16 to
512×128×16 obtain 25.7, 26.6, 27.4 and 25.0 frames
per second respectively. This is due to better exploita-
tion of the temporal and spatial locality of the cache
memory by the columns vectorization. We also man-
ually vectorized the computations of the y dimension
without the Column optimization (i.e coefficients in the
y dimension are computed after the wavelet has been
completed in the x dimension). This optimization does
not provide any performance benefit thus, to obtain im-
provement from SSE extensions in the y dimension, the
code reordering that we propose in this work must be
carried out.

5.4. Analyzing the Memory Cache Behavior

To gain some insight into the speedups obtained by the
previous approaches, Figs. 8 and 9 present the memory
cache behavior for the heart video sequence. This be-
havior is measured using Data Cache Unit (DCU) Lines
In and L2 Lines In events of the performance counters,
which represent the number of lines allocated in the L1
Data Cache and the L2 cache respectively (i.e. the num-
ber of accesses that miss in each cache respectively).
The block size is presented as a number of times the
size of each cache.

5

15

25

35

45

55

65

75

8 16 32 64 128 256
Block size (relative to the L1 Data cache size)

D
C

U
 L

in
es

 In
 x

 1
06

Cube Overlapped
Columns
Rectangular
Intel C/C++
SSE

Figure 8. DCU lines in for heart video sequence.

7

8

9

10

11

12

13

14

15

16

17

18

19

20

0,5 1 2 4 8 16
Block size (relative to the L2 cache

size)

L
2

L
in

es
 In

 x
 1

06

Cube overlapped
Columns
Rectangular
Intel C/C++
SSE

Figure 9. L2 lines in for heart video sequence.

The trend of the curve illustrating the rectangular
overlapped approach, is quite simple; the smaller the
block, the lesser the misses in the L1 Data and L2
Cache, until a certain block size. The other approaches
also produce very similar curves; a blocking factor of
32 the size of the L1 Data or two times the L2 Cache
size, are the best configurations, that is, to say an opti-
mal block size of 512 × 64 × 16. Smaller block sizes
do not improve the misses because when the block
size decrease, the overlapped wavelet transform needs
a higher number of pixels in the following blocks im-
plying an overhead of data in the L1 Data and L2 Cache.
In Figs. 10 and 11, we can observe that the DCU Lines
In and L2 Lines In belonging to the rectangular over-
lapped approach divided by axis for the first iteration
of the wavelet transform. In both cases, the time and y
axis show the same behavior of all the misses in the L1

220 Bernabé, Garcı́a and González

2,00

3,00

4,00

5,00

6,00

7,00

8,00

9,00

10,00

8 16 32 64 128 256

Block size (relative to the L1 Data cache size)

D
C

U
 L

in
es

 In
 x

 1
06

Time
Y
X

Figure 10. DCU lines in divided by axis of the rectangular over-
lapped approach.

0,00

1,00

2,00

3,00

4,00

5,00

6,00

7,00

0,5 1 2 4 8 16

Block size (relative to the L2 cache size)

L
2

L
in

es
 In

 x
 1

06

Time
Y
X

Figure 11. L2 lines in divided by axis of the rectangular overlapped
approach.

Data and L2 Cache, while in the x axis, the smaller the
block, the higher misses in the L1 Data and L2 Cache
by the overhead of the overlapped wavelet transform
in the smaller blocks. This confirms that smaller block
sizes that fit into the caches, reduce the number of L1
and L2 misses until a configuration where the overhead
of pixels of the following blocks become very impor-
tant, implying a higher number of misses in L1 Data
and L2 Cache than higher block size configurations.

It can be observed that the rectangular approach allo-
cates a lesser number of L1 and L2 lines than the cube
overlapped approach justifying the decrease in the ex-
ecution time in the blocking approaches. Remember
that data is stored by rows, since the rectangular ap-
proach retains more coefficients in a row than the cube

250

450

650

850

1050

1250

1450

1650

1850

16 32 64 128 256 512
Block size

F
P

 In
st

ru
ct

io
n

s
E

xe
cu

te
d

 x
 1

06

Cube Overlapped
Rectangular
Intel C/C++
SSE
Columns

Figure 12. Floating point operations executed for the Heart video
sequence.

approach; spatial locality is better exploited and the
number of compulsory misses is drastically reduced.

The Intel C/C++ approach also allocates less L1 and
L2 lines than the rectangular overlapped approach for
all configurations, justifying the decrease in the execu-
tion time. With respect to SSE vectorization by hand,
we observe that in most configurations, this approach
produces less L1 and L2 misses than the Intel C/C++
but the difference is not very significant. Note that the
main benefit provided by SSE optimizations come from
the reduction in the number of Floating Point Instruc-
tions, as we can observe in Fig. 12, due to manual
vectorization. Applying SSE extensions does not re-
duce the overall number of FP operations, which only
depends on the algorithm, but it does reduce the num-
ber of FP instructions, since operations are performed
in parallel in single SIMD instructions. Thus, what we
are exploiting is Data Level Parallelism. Furthermore,
the benefit provided by data prefetching cannot be mea-
sured in the number of L1 or L2 misses, as prefetching
instructions do cause cache misses. However data is
prefetched enough in advance so that misses do not
cause dependent instructions to wait on the processor.

Finally, in the Columns approach, there is a signif-
icant increase in the number of lines allocated in L1
and L2 caches compared with previous approaches.
Although the columns vectorization better exploits the
spatial and temporal locality for the calculation of the
x and y dimension. This increase in L1 and L2 misses
is due to an implementation issue. When columns vec-
torization is applied, two rows are generated for the
y dimension, a low-pass and a high-pass. High pass
coefficients must be saved in another space different
to the frame itself so as not to delete the original

Reducing 3D Fast Wavelet Transform Execution Time 221

pixels, already required for the rest of the x compu-
tations. This increases the number of memory lines
used for the transform (the original ones, plus those
needed for the temporal location of high-pass coef-
ficients). Also, because of data movements back and
forth to temporal locations, locality is not so ex-
ploited, affecting the end performance of memory
operations.

However, taking into account this problem of the
memory instructions, the execution time have been
drastically reduced for all configurations. This reduc-
tion is due to two reasons. First, since this optimiza-
tion is built on top of the previous ones (the original
blocking, prefetching and so on), the original 3D-FWT
is not as memory bound even with the latter’s mem-
ory “inefficiency”. Second, since the algorithm is not
memory bound and following the Amdahl Law, any
optimization in the computation side has a great im-
pact on performance. Note that with the Columns ap-
proach, the number of FP instructions executed have
dropped spectacularly, 71, 53, 48 and 34% regard-
ing to Cube Overlapped, Rectangular compiled with
gnu/gcc, rectangular compiled with Intel C/C++ and
SSE vectorization by hand respectively, as we can see
in Fig. 12. This reduction in the number of instruc-
tions occurs again by exploiting Data Level Parallelism,
achieved by manually vectorizing computation in the y
dimension.

Finally, it can be observed that the behavior of FP
instructions executed in the Cube Overlapped approach
is very different to that of the other approaches in the
configurations. This is due to the division of the origi-
nal sequence into subcubes implying an increase in FP
instructions executed when the block sizes drop down,
because the overlapped wavelet transform needs rows,
columns and frames of the following blocks imply-
ing the compute of a higher number of operations in
the smaller blocks. Therefore, it is very important the
reuse of floating point operations introduced by the
rectangular approach, which decreases the number of
FP instructions executed for all configurations from 2
to 20%. This reuse also helps maintain a similar number
of FP operations for all configurations.

6. Conclusions

In this work, we have focused on reducing the execution
time of the 3D-Fast Wavelet Transform when it is ap-
plied to code medical video. We have presented six pro-

posals. First, we have developed and evaluated several
blocking algorithms to exploit the memory hierarchy.
Second, we have proposed the reuse of computations
to decrease the number of floating point operations and
memory accesses. Third, we have proposed and evalu-
ated the automatic and SSE vectorization by hand, that
exploits Data Level Parallelism by collapsing FP oper-
ations on single SIMD instructions. We have showed
that the native compiler, Intel C/C++, is not able to
obtain performance benefits through automatic opti-
mizations and we have proposed several modifications
on the algorithm that provide significant benefits by
vectorizing computations in the y and time dimensions.
Fifth, we have manually unrolled the time dimension
loop and inserted prefetching instructions, both to re-
duce the impact of cache misses and exploit Instruction
Level Parallelism. Sixth, we have proposed and evalu-
ated the columns vectorization in the y dimension, in
order to reduce the floating point instructions and the
memory accesses exploiting the spatial and temporal
locality of the memory hierarchy.

Results have showed that the columns vectorization
approach, which includes the different optimizations,
has obtained the best results, achieving a speedup of 5
for optimal block size (512 × 64 × 16) over the non-
blocking non-overlapped wavelet transform, 2.68 over
the optimal (64 × 64 × 16) cube overlapped approach,
1.81 over the rectangular overlapped wavelet transform
(compiled with gnu/gcc), 1.54 compared to the rect-
angular overlapped wavelet transform compiled with
the Intel C/C++ compiler and 1.17 with respect to
SSE vectorization by hand. Furthermore, all the ap-
proaches presented maintain the video quality and the
compression ratio of the original encoder. Finally, the
execution time achieved via the columns vectorization
approach allows for real-time video compression and
transmission.

Furthermore, the presented techniques could be gen-
eralized to other multimedia applications based on the
computation of a transform such as JPEG-2000 [5],
MPEG-2 [39] (based on the DCT transform) or MPEG-
4 [12, 13] on general-purpose processors. All trans-
forms follow a common computation model. There-
fore, the memory bandwidth requirement could be re-
duced through exploiting the memory hierarchy, the
Data Level Parallelism could be exploited by the mul-
timedia extensions available in all current general-
purpose processors and others classic methods like data
prefetching and loop unrolling could exploit the In-
struction Level Parallelism.

222 Bernabé, Garcı́a and González

Acknowledgments

We thank the anonymous reviewers for their valuable
comments that have helped us to improve the quality
of the paper. This work has been funded in part by the
Spanish Ministry of Science and Technology and the
Feder European Funds under grant TIC 2003-08154-
C06-03.

Notes

1. MMXTM is a trademark of Intel Corporation or its subsidiaries in
the United States and other countries.

2. Each instruction contains operations that are executed in parallel.

References

1. I. Daubechies, “Ten Lectures on Wavelets,” Society for Industrial
and Applied Mathematics, 1992.

2. M. Antonini and M. Barlaud, “Image Coding Using Wavelet
Transform,” IEEE Transactions on Image Processing, vol. 1,
no. 2, 1992, pp. 205–220.

3. A.S. Lewis and G. Knowles, “Image Compression Using the 2-d
Wavelet Transform,” IEEE Transactions on Image Processing,
vol. 1, no. 2, 1992, pp. 244–256.

4. J.M. Shapiro, “Embedded Image Coding Using Zerotrees of
Wavelets Coefficients,” IEEE Transcations on Signal Process-
ing, vol. 41, no. 12, 1993, pp. 3445–3462.

5. M.W. Marcellin, M.J. Gormish, A. Bilgin, and M.P. Boliek, “An
Overview of jpeg-2000,” in Proceedings of Data Compression
Conference, March 2000.

6. D. Santa-Cruz and T. Ebrahimi, “A Study of jpeg 2000 Still Im-
age Coding Versus Others Standards” in Proc. of the X European
Signal Processing Conference, September 2000.

7. M.L. Hilton, B.D. Jawerth, and A. Sengupta, “Compressing Still
and Moving Images with Wavelets,” Multimedia Systems, vol. 2,
no. 3, 1994.

8. S. Muraki, “Approximation and Rendering of Volume Data
Using Wavelet Transforms,” in Proceedings of Visualization,
October 1992, pp. 21–28.

9. S. Muraki, “Multiscale Volume Representation by a Aog
Wavelet,” IEEE Transactions on Visualization and Computer
Graphics, vol. 1, no. 2, 1995, pp. 109–116.

10. Y. Chen and W.A. Pearlman, “Three-Dimensional Subband Cod-
ing of Video Using the Zero-Tree Method,” in Proc. of SPIE-
Visual Communications and Image Processing, March 1996,
pp. 1302–1310.

11. B.-J. Kim and W.A. Pearlman, “An Embedded Wavelet Video
Coder Using Three-Dimensional Set Partitioning in Hierarchical
Trees (spiht),” in Proceedings of Data Compression Conference,
1997.

12. S. Battista, F. Casalino, and C. Lande, “Mpeg-4: A Multimedia
Standard for the Third Millenium, part 1,” IEEE Multimedia,
vol. 6, no. 4, 1999, pp. 74–83.

13. S. Battista, F. Casalino, and C. Lande, “Mpeg-4: A Multimedia
Standard for the Third Millenium, part 2,” IEEE Multimedia,
vol. 7, no. 1, 2000, pp. 76–84.

14. G. Bernabé, J. González, J.M. Garcı́a, and J. Duato, “A New
Lossy 3-d Wavelet Transform for High-Quality Compression of
Medical Video,” in Proc. of IEEE EMBS International Confer-
ence on Information Technology Applications in Biomedicine,
November 2000, pp. 226–231.

15. G. Bernabé, J. González, J.M. Garcı́a, and J. Duato, “Enhancing
the Entropy Encoder of a 3d-fwt for High-Quality Compression
of Medical Video,” in Proc. of IEEE International Symposium
for Intelligent Signal Processing and Communication Systems,
November 2001.

16. A. Bik, M. Girkar, P. Grey, and X. Tian, “Efficient Exploitation
of Parallelism on Pentium iii and Pentium iv Processor-Based
systems,” Available at http://developer.intel.com/.

17. I. Corporation, “Intel C/C++ Compiler for Linux,” Available at
http://www.intel.com/software/products/compiler/c50/linux.

18. G. Bernabé, J. González, J.M. Garcı́a, and J. Duato, “Memory
Conscious 3d Wavelet Transform,” in Proceedings of the 28th
Euromicro Conference. Multimedia and Telecommunications,
September 2002.

19. G. Bernabé, J.M. Garcı́a, and J. González, “Reducing 3d Wavelet
Transform Execution Time Through the Streaming Simd Exten-
sions,” in Proceedings of the 11th Euromicro Conference on Par-
allel Distributed and Network based Processing, February 2003.

20. I.J.W. (JPEG/JBIG). Fcd 14495, lossless and near-lossless cod-
ing of continuous tone still images (jpeg-ls).

21. S. Mallat, “A Theory for Multiresolution Signal Descomposi-
tion: The Wavelet Representation,” IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, vol. 11, no. 7, 1989,
pp. 674–693.

22. N. Ahmed, N. Mateev, and K. Pingali, “Tiling Imperfectly-
Nested Loop Nests,” in Proceedings of Supercomputing,
November 2000.

23. M.S. Lam, E.E. Rothberg, and M.E. Wolf, “The Cache Perfo-
mance and Optimizations of Blocked Algorithms,” Fourth Inter-
national Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS IV), April 1991.

24. A.W. Lim, S.-W. Liao, and M.S. Lam, “Blocking and Array
Contraction Across Arbitrarily Nested Loops Using Affine Pati-
tioning,” in Proceedings of the 8th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, June 2001.

25. J. Dongarra, J.D. Croz, I.S. Duff, and S. Hammarling, “A Set of
Level 3 Basic Linear Algebra Subprogram,” ACM Trans. Math.
Soft, vol. 14, 1988, pp. 1–17.

26. E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra,
J.D. Croz, A. Greenbaum, S. Hammarling, A.M. Kenney, and
D. Sorensen, “Lapack: A Portable Linear Algebra Library
for High-Performance Computers,” Tech. Report CS-90-105,
(LAPACK Working Note #20), Univ. Of Tennessee, Knoxville,
1990.

27. R.C. Whaley, A. Petitet, and J.J. Dongarra, “Automated Empir-
ical Optimizations of Software and the Atlas Project,” Parallel
Computing, vol. 27, nos. 1–2, 2001, pp. 3–35.

28. C. Chrysafis and A. Ortega, “Line Based Reduced Memory
Wavelet Image Compression,” IEEE Transactions on Image Pro-
cessing, vol. 9, March 2000, pp. 378–389.

29. Y. Kim and W.A. Pearlman, “Stripe-Based Spiht Lossy Com-
pression of Volumetric Medical Images for Low Memory Usage
and Uniform Reconstruction Quality,” in Proceedings of Inter-
national Conference on Acoustics, Speech and Signal Process-
ing, 2000.

Reducing 3D Fast Wavelet Transform Execution Time 223

30. C. Parisot, M. Antonini, and M. Barlaud, “3d Scan-Based
wavelet Transform and Quality Control for Video Coding,”
EURASIP Journal on Applied Signal Processing, 1, January
2003.

31. O. Lempel, A. Peleg, and U. Weiser, “Intel’s mmx Technology—
A New Instruction Set,” in Proceedings of 42nd IEEE Computer
Society International Conference, 1997.

32. I. Corporation, “Ia-32 Intel Architecture Software Developer’s
Manual,” Available at http://developer.intel.com/.

33. P. Ranganathan, S. Adve, and N.P. Jouppi, “Performance of Im-
age and Video Processing with General-Purpose Processors and
Media isa Extensions,” in ternational Symposium on Computer
Architecture, May 1999.

34. L. Nachtergaele, G. Lafruit, J. Bormans, and I. Bolsens, “Fast
Software Implementation of the mpeg-4 Reversible Integer
Wavelet Transform on Pentium mmx, Sharc adsp and Trime-
dia tm1000,” in Proceedings of Packet Video, 2000.

35. G. Conte, S. Tommesani, and F. Zanichelli, “The Long and Wind-
ing Road to High-Perfomance Image Processing with mmx/sse,”
in Proceedings of the Fifth IEEE International Workshop on
Computer Architectures for Machine Perception, 2000.

36. S. Thakkar and T. Huff, “Internet Streaming simd Extensions,”
IEEE Computer, vol. 32, 1999, pp. 26–34.

37. M.J. Wolfe, High Perfomance Compilers for Parallel Computer.
Addison-Wesley Publishing Company, 1996.

38. D. Heller, Rabbit: A perfomance counters library for intel/amd
processors and linux. Available at http://www.scl.ameslab.gov/
Projects/Rabbit/.

39. T. Sikora, MPEG Digital Video Coding Standars, McGraw Hill
Company, 1997.

Gregorio Bernabé was born in Antibes (Alpes Maritimos, France)
on 21 November 1974. He received the M.S. in Computer Science
from the University of Murcia (Spain) in 1997. In 1998, he joined
the Computer Engineering Department of the University of Murcia,
where he is an Assistant Professor as well as a Ph. D. candidate.
His current research interests include video compression using the
Wavelet Transform, and the development of optimizations to improve
the performance of the video compression algorithms based on the
3D wavelet transform.
gbernabe@ditec.um.es

Jose M. Garcia was born in Valencia, Spain on 9 January, 1962.
He received the MS and the PhD degrees in electrical engineering
from the Technical University of Valencia (Valencia, Spain), in 1987
and 1991, respectively. In 1987 he joined the Computer Science De-
partment at the University of Castilla-La Mancha at the Campus of
Albacete (Spain). From 1987 to 1993, he was an Assistant Professor
of Computer Architecture. In 1994 he became an Associate Pro-
fessor at the University of Murcia (Spain). From 1995 to 1997 he
served as Vice-Dean of the School of Computer Science. At present,
he is the Director of the Computer Engineering Department, and
also the Head of the Research Group on Parallel Computing and
Architecture. He has developed several courses on Computer Struc-
ture, Peripheral Devices, Computer Architecture and Multicomputer
Design. His current research interests include Multiprocessors Sys-
tems, Interconnection Networks, File Systems, Grid Computing and
its Application in Multimedia Systems. He has published over 45
refereed papers in different Journals and Conferences in these fields.
Dr. Garcia is a member of several international associations as IEEE
Computer Society, ACM, USENIX, and also a member of some
European associations (Euromicro and ATI).
jmgarcia@ditec.um.es

Pepe Gonzalez received the M.S. and Ph.D. degrees from the
Universitat Politecnica de Catalunya (UPC). In January 2000, he
joined the Computer Engineering Department of the University of
Murcia, Spain, and became an Associate Professor in June 2001. In
March 2002, he joined the Intel Barcelona Research Center, where he
is a Senior Researcher. Currently, Pepe is working in new paradigms
for the IA-32 family, in particular, Thermal-and Power-Aware clus-
tered microarchitectures.
pepe.gonzalez@intel.com

