
CUDA and OpenCL Implementations of 3D Fast
Wavelet Transform
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Abstract— We present in this paper several implementations
of the 3D Fast Wavelet Transform (3D-FWT) on CUDA and
OpenCL running on a new Fermi Tesla architecture. We evaluate
these proposals and make a comparison with others optimal
executed on multicores CPU and Nvidia Tesla C870. Speedups
of the CUDA version on Fermi architecture are the best results,
improving the execution times on CPU, ranging from 5.3x to
7.4x for different image sizes, and up to 81 times faster when
communications are neglected. Meanwhile, OpenCL obtains solid
gains which range from 2x factors on small frame sizes to 3x
factors on larger ones.

I. I NTRODUCTION

Efforts to exploit the Graphics Processing Unit (GPU)
for non-graphical applications have been underway by using
high-level shading languages such as DirectX, OpenGL and
Cg. These early efforts that used graphics APIs for General
Purpose computing were known as GPGPU programs.

Nvidia was first to launch a solution to exploit the GPU
computational power beyond a traditional graphics processor
and simplify the programming. CUDA [1] is Nvidia’s solution
as a simple block-based API for programming. How could it
be otherwise, its main competitor AMD introduced its own
product called Stream Computing [2].

Both companies have also developed hardware products
aimed specifically at the scientific General Purpose GPU
(GPGPU) computing market: The Tesla products [3] are from
NVIDIA, and Firestream [2] is AMD’s product line. Between
Stream Computing and CUDA, we chose the latter to program
the GPU for being more popular and complete. Moreover,
it provides more mechanisms to optimize general-purpose
applications.

More recently, Open Computing Language (OpenCL) is a
framework [4] that emerges and attempt to unify those two
models. It provides parallel computing using task-based and
data-based parallelism. It is an open standard. Up to now, it
has been adopted by Intel, AMD, Nvidia and ARM. It allows
you to program several architectures dependent upon each of
the previous manufacturers and hence not specialized for any
particular compute device.

Novel scientific applications are good candidates to take the
opportunity offered by CUDA and OpenCL for accelerating
codes on GPUs, the release of the Tesla GPU based on Fermi
architecture offers a new stage on the development of GPGPU,
and the 3D Fast Wavelet Transform (3D-FWT) represents a
solid opportunity in the video processing field.

In previous works [5][6], we contributed with a CUDA
implementation for the 2D-FWT running more than 20 times
faster than a sequential C version on a CPU, and more than
twice faster than optimized OpenMP and Pthreads versions
implemented on multicore CPUs. We extend our analysis to
the 3D-FWT scenario, different alternatives and programming
techniques have been introduced for an efficient parallelization
of the 3D Fast Wavelet Transform on multicore CPUs and
manycore GPUs. OpenMP and Pthreads were used on the CPU
to expose task parallelism, CUDA was selected for exploiting
data parallelism on the Tesla C870 with an explicit memory
handling, where GPU speed-up extends between 3x and 15x
depending on problem size.

In this paper, we present several implementations of the 3D-
FWT on CUDA and OpenCL. A comparison between both
them and our previous results is carried out.

The rest of the paper is organized as follows. Section II
presents the foundations of the 3D-FWT. Section III focuses
on the specifics of the GPU programming with CUDA and
outlines the GPU implementation. Section IV describes pecu-
liarities of the GPU implementation on OpenCL. Section V
analyzes performance and Section VI concludes.

II. T HE WAVELET TRANSFORMFOUNDATIONS

The wavelet transform can be implemented by quadrature
mirror filters (QMF), G = g(n) and H = h(n) nǫZ. H
corresponds to a low-pass filter, and G is a high-pass filter. For
a more detailed analysis of the relationship between wavelets
and QMF see [7].

The filters H and G correspond to one step in the wavelet
decomposition. Given a discrete signal,s, with a length of2n,
at each stage of the wavelet transformation the G and H filters
are applied to the signal, and the filter output downsampled
by two, thus generating two bands, G and H. The process
is then repeated on the H band to generate the next level of
decomposition, and so on. This procedure is referred to as the
1D Fast Wavelet Transform (1D-FWT).

It is not difficult to generalize the one-dimensional wavelet
transform to the multi-dimensional case [7]. The wavelet
representation of an image,f(x, y), can be obtained with a
pyramid algorithm. It can be achieved by first applying the
1D-FWT to each row of the image and then to each column,
that is, the G and H filters are applied to the image in both
the horizontal and vertical directions. The process is repeated



several times, as in the one-dimensional case. This procedure
is referred to as the 2D Fast Wavelet Transform (2D-FWT).

As in 2D, we can generalize the one-dimensional wavelet
transform for the three-dimensional case. Instead of one image,
there is now a sequence of images. Thus, a new dimension
has emerged, the time(t). The 3D-FWT can be computed by
successively applying the 1D wavelet transform to the value
of the pixels in each dimension.

Based on previous work [8], we consider Daubechie’s
W4 mother wavelet [9] as an appropriate baseline function.
This selection determines the access pattern to memory for
the entire 3D-FWT process. Let us assume an input video
sequence consisting of a number of frames (3rd dimension),
each composed of a certain number of rows and columns
(1st and 2nd dimension). The 1D-FWT is performed across
all frames for each row and column, that is, we apply the
1D-FWT rows × cols times in the third dimension. The first
1D-FWT instance requires four elements to calculate the first
output element for the reference video and the detailed video,
with these elements being the first pixel belonging to the first
four frames. The second output element for the reference and
detailed video are calculated using the first pixel of the third,
fourth, fifth and sixth video frames. We continue this way until
the entire reference and detailed video are calculated, andthese
data are the input used for the next stage.

The 2D-FWT is performedframes times, i.e., once per
frame. This transform is performed by first applying the
1D-FWT on each row (horizontal filtering) of the image,
followed by the 1D-FWT on each column (vertical filtering).
The fact thatvertical filtering computes each column entirely
before advancing to the next column, forces the cache lines
belonging to the first rows to be replaced before the algorithm
moves on to the next column. Meerwald et al. [10] propose
two techniques to overcome this problem: row extension and
aggregation or tiling.

Other studies [11][12], have also reported remarkable im-
provements when applying thetiling technique over the 2D-
FWT algorithm. Our experience implementing on a CPU the
sequential 2D-FWT algorithm revealed a reduction of almost
an order of magnitude in the overall execution time with re-
spect to a baseline version. This process can straightforwardly
be applied to the 3D case. In our previous work [6], we report
solid gains on execution times as well, which range from 2-
3x factors on small frame sizes to 5-7x factors on larger ones.
From now on, only the tiled 3D-FWT version is taken for
parallelization purposes, either on CPU or GPU.

III. C OMPUTE UNIFIED DEVICE ARCHITECTURE

The Compute Unified Device Architecture (CUDA) [1] is
a programming interface and set of supported hardware to
enable general purpose computation on Nvidia GPUs. The pro-
gramming interface is ANSI C extended by several keywords
and constructs which derive into a set of C language library
functions as a specific compiler generates the executable code
for the GPU. Since CUDA is particularly designed for generic
computing, it can leverage special hardware features not

visible to more traditional graphics-based GPU programming,
such as small cache memories, explicit massive parallelism
and lightweight context switch between threads.

All the latest Nvidia developments on graphics hardware
are compliant with CUDA: For low-end users and gamers, we
have the GeForce series; for high-end users and professionals,
the Quadro series; for general-purpose computing, the Tesla
boards.

Focusing on Tesla, the C870, D870 and S870 models are
respectively endowed with one, two and four computing nodes
using a 1U rack-mount chassis. They are all based on the
G80 GPU, upgraded with the GT200 GPU to release the
Tesla C1060 and S1070 models. Our base architecture [6],
the Tesla C870, contains 128 cores and 1.5 GB of video
memory to deliver a peak performance of 518 GFLOPS (single
precision), a peak on-board memory bandwidth of 76.8 GB/s
and a peak main memory bandwidth of 4 GB/s under its PCIe
x16 interface.

The Fermi architecture is the most significant leap forward
in GPU architecture since the original G80. Fermi implements
IEEE 754-2008 and significantly increased double-precision
performance. It added error-correcting code (ECC) memory
protection for large-scale GPU computing, 64-bit unified
addressing, cached memory hierarchy, and instructions forC,
C++, Fortran, OpenCL, DirectCompute and other languages.

The Tesla C2050 contains 448 cores and 3 GB of video
memory to deliver a peak performance of 1.03 TFLOPS
(simple precision) and 515 GFLOPS (double precision), a peak
on-board memory bandwidth of 144 GB/s and a peak main
memory bandwidth of 8 GB/s under its PCIe x16 interface of
second generation.

The G80 and the Fermi parallel architectures are a SIMD
(Single Instruction Multiple Data) processors. In C870 and
C2050, cores are organized into 16 and 14 multiprocessors,
each having a large set of 8192 and 32768 registers, respec-
tively. The first generation of Tesla GPU has a 16 KB shared
memory very close to registers in speed (both 32 bits wide),
and constant and texture caches of a few kilobytes. On the
Fermi Tesla, the shared memory can be configured from 16KB
to 48 KB. In both architectures, each multiprocessor can runa
variable number of threads, and the local resources are divided
among them. In any given cycle, each core in a multiprocessor
executes the same instruction on different data based on its
threadId, and communication between multiprocessors is
performed through global memory.

At the highest level, a program is decomposed into kernels
mapped to the hardware by a grid composed of blocks of
threads scheduled in warps. No inter-block communication or
specific schedule-ordering mechanism for blocks or threads
is provided, which guarantees each thread block to run on
any multiprocessor, even from different devices, at any time.
Threads belonging to the same block must all share the
registers and the shared memory on a given multiprocessor.
This tradeoff between parallelism and thread resources must
be wisely solved by the programmer to maximize execution
efficiency on a certain architecture given its limitations.These



TABLE I

MAJOR HARDWARE AND SOFTWARE LIMITATIONS WITHCUDA. CONSTRAINTS ARE

LISTED FOR THEG80 AND FERMI GPUS.

Hardware feature C870 C2050
Multiprocessors (MP) 16 14
Processors / MP 8 32
32-bit registers / MP 8192 32768
Shared Memory / MP 16 KB 16 KB/48 KB
L1 Cache / MP No 48 KB/16 KB
L2 Cache No Yes – 768 KB
Software limitation C870 C2050
Threads / Warp 32 32
Thread Blocks / MP 8 8
Threads / Block 512 1024
Threads / MP 768 1536

limitations are listed in Table I for the cases of the Tesla C870
and C2050.

A. Implementation of 3D-FWT on CUDA

Our 3D-FWT implementation in CUDA consists of the
following three major steps:

1) Thehost(CPU) allocates in memory the first four video
frames coming from a .pgm file.

2) The first four images are transferred from main memory
into video memory. The 1D-FWT is then applied to the
first four frames over the third dimension to obtain a
couple of frames for the detailed and reference videos.
The grid is composed ofrows × cols/128 blocks.

3) The 2D-FWT is applied to the frame belonging to the
detailed video, and subsequently, to the reference video.
Results are then transferred back to main memory.

The whole procedure is repeated for all remaining input
frames, taking two additional frames on each new iteration.
On each new iteration, two frames are copied, either at the
beginning or at the second half depending on the iteration
number. In particular, the first iteration copies frames number
0, 1, 2 and 3 to obtain the first detailed and reference video
frames, the second iteration involves frames 2, 3, 4 and 5 to
obtain the second detailed and reference video frames, and so
on. Note that frames 4 and 5 occupy the memory formerly
assigned to frames 0 and 1, which requires an interleaved
access to frames in the second iteration. Conflicts on shared
memory banks and coalescing on global memory accesses has
been solved.

IV. OPEN COMPUTING LANGUAGE IMPLEMENTATION OF

3D-FWT

Open Computing Language (OpenCL) is an open royalty-
free standard for general purpose parallel programming across
CPUs, GPUs and other processors, giving software developers
portable and efficient access to the power of these heteroge-
neous processing platforms.

OpenCL includes a host C API for for controlling and
interacting with GPU devices, a C language for writing device
kernels and an abstract device model that maps very well to
NVidia and ATI hardware. There are some differences between
CUDA and OpenCL in terminology, as we can observe in
table II. Therefore, we use simple source to source translation

TABLE II

DIFFERENCES IN TERMINOLOGY BETWEENCUDA AND OPENCL

CUDA Terminology OpenCL Terminology
GPU Device
Multiprocessor Compute Unit
Scalar core Processing element
Global memory Global memory
Shared (per-block) memory Local memory
Local memory (automatic, or local) Private memory
kernel program
block work-group
thread work item

TABLE III

SUMMARY OF EXECUTION TIMES (MSECS.) FOR THE3D-FWT ON EACH PLATFORM,

WITH THE GPU GAINS BETWEEN PARENTHESIS.

Frame size
Code version 512x512 1Kx1K 2Kx2K
CPU optimal 156.09 655.33 2843.43
CUDA C870 57.65 (2.7x) 216.66 (3.0x) 843.11 (3.4x)
CUDA C2050 29.21 (5.3x) 100.61 (6.5x) 381.58 (7.4x)
OpenCL C2050 87.12 (1.8x) 276.39 (2.4x) 1011.47 (2.8x)

to convert the kernels of the implementation of 3D-FWT on
CUDA to OpenCL.

Setting up the GPU for kernel execution differs substantially
between CUDA and OpenCL. Their APIs for context creation
and data copying are different, and different conventions are
followed for mapping the kernel onto the GPUs processing
elements. These differences could affect the length of time
needed to code and debug a GPU application, but here we
mainly focus on runtime performance differences.

V. PERFORMANCE ANALYSIS

Table III summarizes the optimal execution times we have
obtained on each hardware platform at the end of our paral-
lelization effort when the 3D-FWT is applied to a video of
64 frames of different sizes. Input data were recovered from
files in PGM format, where a single component (grayscale)
was used. I/O time to read grayscale images from file was not
considered. A similar programming effort and hardware cost
was invested on each platform.

We have included our optimal tiled 3D-FWT implementa-
tion designed with OpenMP and Pthreads [6]. This version
is executed on an Intel Core 2 Quad Q6700 CPU (see Table
III, upper side). Also, the best parallelization strategy on a
GPU using CUDA has been used to obtain the results in
C870 and C2050. The original CUDA version implemented
has been adjusted to the Fermi architecture with the memory
optimizations needed. The size of the shared memory has
been configured to 16 KB and 48 KB without influence in
the results. The OpenCL implementation has been obtained
from the CUDA version, translating line to line and following
the same model (last row of Table III).

First of all, results with Fermi Tesla clearly improve their
obtained with our original C870 as might be expected. As the
size of images increase, the difference between the original
Tesla and the last one is bigger. The average gap between them
is about 2x for the different image sizes, which confirms the
potential of the Fermi architecture. The increase in the number
of processors and cached memory hierarchy introduced are



TABLE IV

OPENCL AND CUDA EXECUTION TIMES (IN MSECS.) FOR OUR OPTIMAL TILED

3D-FWT IMPLEMENTATION ON AN INPUT VIDEO CONTAINING 64 FRAMES OF

INCREASING SIZES. THE COMMUNICATION COST IS REMOVED IN THE LAST ROW.

Frame size
3D-FWT stage – OpenCL C2050 512x512 1Kx1K 2Kx2K
1. CPU to GPU transfer 25.19 86.38 325.52
2. 1D-FWT on frames 3.53 6.64 11.73
3. 1D-FWT on rows 3.85 5.89 6.97
4. 1D-FWT on cols 3.80 9.82 29.29
5. GPU to CPU transfer 50.75 167.66 637.96
Computational time (2-4) 11.18 22.35 47.99
GPU/CPU speed-up 14.0x 29.3x 59.3x

Frame size
3D-FWT stage – CUDA C2050 512x512 1Kx1K 2Kx2K
1. CPU to GPU transfer 11.62 45.6 181.63
2. 1D-FWT on frames 2.11 4.18 7.73
3. 1D-FWT on rows 2.37 2.39 2.39
4. 1D-FWT on cols 2.29 6.86 25.15
5. GPU to CPU transfer 10.82 41.58 164.68
Computational time (2-4) 6.77 13.43 35.27
GPU/CPU speed-up 23.1x 48.8x 80.6x

responsible for most of the achieved improvement. The pro-
gramming effort to obtain the results in the C2050 has been
minimal, but it was hoped a greater improvement because there
are two generations of GPUs between both Tesla architectures
and the number of processors is 3.5 times in the Fermi GPU
than in the C870.

The OpenCL implementation obtains better results than the
optimal CPU. Speedups are considerable and present a good
scalability. The GPU speed-up factor extends into 2.8x factor
in the most favorable case. However, these outcomes are very
far from those collected through GPUs Tesla with CUDA. In
fact, results are below our initial speedups with CUDA on the
Tesla C870. This is due to the semantic gap between OpenCL
and compute devices because it is vendor independent and
hence not specialized for any particular compute device.

A. GPU profiling

For both optimal GPU versions with OpenCL and CUDA,
we may split its execution time into constituent steps for
completing a quick profiling process. Table IV reveals this
breakdown, where we can see that each 1D-FWT phase is
lower in CUDA option than in the OpenCL implementation.
This is because of the additional layer introduced by OpenCL.
The major difference extends into 1.7x factor for the computa-
tional time revealing an important and substantial discrepancy
in favor of CUDA. If we eliminate the communication time
in each configuration, accelerations obtained with CUDA are
very considerable and important. Likewise, speedups obtained
by OpenCL are highly competitive.

With regard to the communication time, this one predomi-
nates clearly over calculations in both implementations. This
is a consequence of the nature of a 3D-FWT algorithm, which
lacks of arithmetic intensity but handles big data volumes.
Now, the gap between CUDA and OpenCL is very important
and speedups go up 4.7x favorable to CUDA. Thus, it is still
unclear that OpenCL can achieve the same performance as
other programming frameworks that are designed for particular
compute devices.

VI. SUMMARY AND CONCLUSIONS

In this work, we have presented and evaluated several
methods to implement the 3D Fast Wavelet Transform on
CUDA and OpenCL on a new Fermi architecture. We have
compared these implementations with others optimal executed
on multicores CPU and Tesla C870 GPU. The implementation
on CUDA achieves better speedups, ranging from 5.3x to
7.4x for different image sizes. If we discard the cost of
communications between CPU and GPU, profits rise to a
factor of 80.6x for larger image. OpenCL presents gains up to
2.8x with regard the best implementation on CPU. However,
these outcomes are even lower than those obtained with Tesla
C870. OpenCL is hardly competitive with CUDA in terms of
performance because the first one has and environment setup
overhead that is large and should be minimize. Moreover, the
difference in the communication time between CUDA and
OpenCL is very significant, because the last one has been
designed for general compute devices.
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