Efficient Self-Invalidation/Self-Downgrade for
Critical Sections with Relaxed Semantics

Alberto Ros, Carl Leonardsson, Christos Sakalis, and Stefanos Kaxiras, Member, IEEE

Abstract—Cache coherence protocols based on self-invalidation allow simpler hardware implementation compared to traditional
write-invalidation protocols, by relying on data-race-free semantics and applying self-invalidation on synchronization points. Their
simplicity lies in the absence of invalidation traffic. This eliminates the need to track readers in a directory, and reduces the number of
transient protocol states. Similarly, the use of self-downgrade on synchronization eliminates directory indirection, and hence the need
to track writers in a directory. These protocols, effectively without a directory, have the potential to reduce area, energy consumption,
and complexity, without sacrificing performance — provided, that self-invalidation and self-downgrade are performed prudently.

In this work we examine how self-invalidation and self-downgrade are performed in relation to atomicity and ordering. We show that
self-invalidation and self-downgrade do not need to be applied conservatively, as so far implemented. Our key observation is that,
often, critical sections which are not ordered in time, are intended to provide only atomicity and not thread synchronization. We thus
propose a new type of self-invalidation, forward self-invalidation (FSI), which invalidates solely data that are going to be accessed
inside a critical section. Based on the same reasoning, we propose a new type of self-downgrade, forward self-downgrade (FSD), also
restricted to writes in critical sections. Finally, we define the semantics of locks using FSI and FSD, which resemble the semantics of
relaxed atomic operations in C++.

Our evaluation for 64-core multiprocessors shows significant improvements using the proposed FSI and FSD —where applicable— in
Splash-3 and PARSEC benchmarks, over a directory-based protocol (17.1% in execution time and 33.9% in energy consumption) and
also over a state-of-the-art self-invalidation/self-downgrade protocol (7.6% in execution time and 9.1% in energy consumption), while

still retaining the design simplicity of the protocol.

Index Terms—Cache coherence; memory consistency; self-invalidation; self-downgrade; critical section; atomicity

1 INTRODUCTION AND MOTIVATION

ECENTLY, a number of proposals aim to simplify coher-
Rence by relying on data-race-free (DRF) semantics and
on self-invalidation to eliminate invalidation traffic and the
need to track readers at the directory [1], [2], [3], [4], [5], [6],
[71, [8], [9], [10], [11], [12], [13], [14], [15]. With the addition
of self-downgrade, the directory can be eliminated [5] and
virtual cache coherence becomes feasible at low cost, with-
out reverse translation [7].

The motivation for simplifying coherence has been es-
tablished by many [1], [2], [3], [4], [5], [8], [16]. Significant
savings in area and energy consumption without sacrific-
ing performance, have been demonstrated in many recent
papers [2], [3], [4], [3], [6], [7], [8], [11], [12], [13], [14], [15].
Additional benefits regarding ease-of-verification, scalabil-
ity, time-to-market, etc., ensue as a result of simplifying
rather than complicating such fundamental architectural
constructs as coherence. And recently, a Software-DSM sys-
tem that employs self-invalidation and self-downgrade has
been developed showing high scalability [17].

In these coherence protocols, writes to memory are not
explicitly signaled to sharers, and the written value will
be visible to the sharers when they self-invalidate their
local copy. It is straightforward to show that data races

o Alberto Ros is with the Department of Electrical and Computer Engineer-
ing, Universidad de Murcia, Spain.
E-mail: aros@ditec.um.es

e Carl Leonardsson, Christos Sakalis, and Stefanos Kaxiras are with the
Department of Information Technology, Uppsala University, Sweden.
E-mails: Carl.Leonardsson@it.uu.se, chrissakalis@gmail.com, and
stefanos.kaxiras@it.uu.se

throw such protocols in disarray, producing non-sequential-
consistent executions [1], [5]. Most of these proposals [1],
(2], [3], [4], [5], [6], [71, [8], [9], [10], [11], [12], [13], [14], [15]
offer sequential consistency for data-race-free (SC for DRF)
programs [18]. Although, conceptually, one could eliminate
the requirement for DRF by self-invalidating after every use
of data, this would defeat the purpose of caching.

Data-race-free semantics require that conflicting accesses
(e.g., a read and a write to the same address from differ-
ent cores) must be separated by synchronization (perhaps
transitive over a set of threads) [18], [19]. Self-invalidation
is therefore initiated on synchronization. Conservatively
exposing all synchronization to the hardware, causes in-
discriminate self-invalidation on locks, barrier, and wait
constructs. This is the approach taken by proposals such
as SARC coherence [4], VIPS-M [5], RC3 [12], and DeN-
ovoSync [11].

In this paper, we show that self-invalidation does not
need to be applied conservatively, as commonly done. In-
stead, we propose a general approach to reduce the cost of
self-invalidation. Our key observation is that lock/unlock
synchronization (i.e., ensuring atomic execution of a criti-
cal section which respect to other critical sections —weak
atomicity [20]—) is often not intended to constitute DRF
synchronization for its surrounding code (Section 3). The exe-
cution of such critical sections is therefore unordered in time
and cannot successfully separate conflicting accesses that
straddle critical sections. This indicates that self-invalidation
in a critical section should be restricted only to the data
accessed inside it, and should not affect any data accessed

prior to its execution.

Contribution 1: Besides the well known backward self-
invalidation (which invalidates data accessed in the past),
we propose an additional type of self-invalidation, forward
self-invalidation (FSI), which invalidates data that we are
going to access in the future. FSI is activated when entering
a critical section (i.e., a lock acquire —lock—), disabled
when exiting (i.e., lock release —unlock—), and does not
affect unrelated data. Informally, it is intended for critical
sections whose execution does not provide to the program
information on thread-ordering (Section 4).

Our first contribution is independent of the downgrade
approach of the protocol. More specifically, FSI works both
in protocols with a directory for the writers (e.g., DeN-
ovo [3], SARC [4] and RC3 [12]) or with self-downgrade
(e.g., Ashby et al. [2] and VIPS-M [5]). In the first case, we
assume the existence of a directory that indirects read misses
to the last writer. In the second case, which eliminates the
directory altogether, writes are explicitly put in the shared
cache without the need of a read request from another core.
Our second contribution is specific to the latter.

Contribution 2: We propose forward self-downgrade
(FSD), similar in spirit to forward self-invalidation, to se-
lectively downgrade data modified inside critical sections
(Section 5).

Using similar reasoning as with self-invalidation, we
examine the relation of self-downgrade to synchronization.
In a critical section —again, providing no information on
thread ordering— only data modified between the lock and
unlock operations should be made globally visible when
exiting the critical section; not necessarily data that were
modified prior to the critical section. Conservative, back-
ward, self-downgrade on synchronization reduces write co-
alescing and increases network traffic and synchronization
overhead.

Contribution 3: We define the semantics of locks
using FSI/FSD versus conservative self-invalidation/self-
downgrade, which describe the guarantees for atomicity and
ordering that are provided by critical sections protected by
locks. This semantics resemble relaxed atomic operations in
C++ [21], with the main difference that each critical section
can contain multiple instructions, complex control flow, and
multiple memory accesses (Section 7).

We do not advocate the use of FSI and FSD ubiqui-
tously but rather as a selective optimization. In particular,
for our approach to guarantee SC for DRF programs we
still require backward self-invalidation and self-downgrade.
This happens when data written inside a critical section are
used to expose thread-ordering and thus provide thread
synchronization in time; in other words, when critical-
section execution confirms happens-before relationships that
regulate (under SC for DRF) when previously written data
become visible to other threads. However, if a critical section
is intended solely to provide atomicity, FSI and FSD should
be employed for optimal performance.

Evaluation: We evaluate our proposal for an extensive
set of benchmarks modified appropriately to take advantage
of FSI and FSD where possible (Section 8). Our results for
64-core multiprocessors show that our techniques invariably
retain the benefits of self-invalidation and self-downgrade,
but most importantly, significantly limit the penalties when

2

these appear in synchronization-intensive benchmarks. In
particular, we obtain significant improvements over a tradi-
tional directory-based coherence protocol (17.1% in execu-
tion time and 33.9% in energy consumption) and also over
state-of-the-art VIPS-M coherence protocol [5] that employs
Callbacks [22] for efficient spin-waiting (7.6% in execution
time and 9.1% in energy consumption). More critically, our
proposal exploits inherent program properties to further
enhance simple and efficient coherence approaches without
incurring any additional costs.

2 CACHE COHERENCE SELF-

INVALIDATION

Self-invalidation cache coherence protocols allow simpler
hardware implementation compared to traditional write-
invalidation protocols by relying on relaxed consistency
and/or a DRF synchronization model for correctness [1],
[2], [3], [4], [5], [12]. In a DRF synchronization model, all
conflicting accesses must be ordered by a happens-before
relation dictated by both program order and synchroniza-
tion order [18]. Further, all synchronization operations must
be recognizable by the hardware [18] and therefore can
be exposed readily to the cache coherence layer to initiate
self-invalidations and/or self-downgrades. More explicitly,
upon a synchronization operation with acquire semantics
(e.g., lock, barrier, wait) a self-invalidation operation should
be performed in absence of write-invalidation actions, and
upon a synchronization operation with release semantics
(e.g., unlock, barrier, signal) a self-downgrade operation
should be performed in absence of directory indirection.

A simple but overly conservative implementation is
to perform the self-invalidation (or self-downgrade) of all
blocks stored in the processors’ private caches. Of course
this leads to unnecessary invalidation. A more efficient
solution is to perform a selective invalidation of those blocks
that may incur conflicts, based on bloom filters [2], touched
bits [3], or a private-shared classification [5] (see Section 9
for more details).

The intuition behind this work is that this self-
invalidation (and self-downgrade) of cached blocks is still
conservative, since the programmer does not require co-
herence for those blocks on all synchronization points. Our
approach, therefore, proposes new semantics for some syn-
chronization constructs (e.g., locks and unlocks) that can be
guaranteed with a new type of self-invalidation/downgrade
action called forward. In essence, this lets programmers se-
lectively specify their requirements for memory consistency
and allows to curb the penalty of self-invalidation and self-
downgrade, particularly in the cases where it matters most.

BASED ON

3 ORDERING VS ATOMICITY

Ordering. Some synchronization primitives, such as process
barriers or signal/wait, are clearly intended to establish
order between memory accesses from different threads. The
expectation is then that all data written before a synchro-
nization in thread 1 become visible in thread 2 after its
corresponding synchronization. Thread 2 is then disallowed
from using its stale data found in its cache. Symmetrically,
in the case of barriers, any data written by thread 2 after the

Thread 1 Thread 2
x = 1;
lock (1) ; lock(1l);
count += my_count; count += my_count;
unlock (1) ; unlock (1) ;

print (x);

Fig. 1. Critical sections used for atomicity.

Thread 1 Thread 2
x = 1; lock(1l);
lock (1) ; local = flag;
flag++; unlock (1) ;
unlock (1) ; if (local)
print (x);

Fig. 2. Critical sections used for ordering.

synchronization will not yet be visible to thread 1 before its
synchronization. Such synchronization primitives establish
happens-before order between memory accesses, and are
often used to accomplish data race freedom [18].

Atomicity. On the other hand, some other synchroniza-
tion primitives do not inherently establish order. A common
example is mutual exclusion locks. Consider the critical sec-
tions shown in Figure 1. Assume that we are only interested
in performing an atomic read and write of the global vari-
able count, but not in enforcing any order between other
memory accesses. Assume now that we access data unrelated
to the critical sections. For example, let us assume that we
access the same variable x before and after a critical section
in thread 1. Should x be self-invalidated when entering the
critical section (acquire semantics)? The answer is no. The
reason is that the lock is intended to provide atomicity for
the increment of count. It is not intended to provide any
ordering for x or any ordering between thread 1 and thread
2. Therefore self-invalidating x is unnecessary, and would
hurt performance since it will cause a cache miss when re-
accessing x after exiting the critical section.

However, it is also possible to write code that detects
the order in which different critical sections execute. This
knowledge of the execution order can then be used to
ensure data race freedom for data accessed outside of the
critical sections. A typical example is shown in Figure 2.
Here the variable f1lag is used to detect the order in which
the critical sections execute. The variable x is only read
by thread 2 when the detected execution order guarantees
that the load is not in a data race with the store to x by
thread 1. Hence, the code in Figure 2 is data race free
despite having conflicting accesses to x located outside of
any critical section.

Thus, we can discern three types of accesses with respect
to critical section execution:

o Accesses inside critical sections. The lock and
unlock operations order the conflicting accesses
from different critical sections irrespective of the
execution order of the critical sections. It is clear that
self-invalidation and self-downgrade are needed on
entering and exiting a critical section, respectively, so
that its accesses will be able to see the newest values
created prior to entry [23].

3

o Accesses outside critical sections where the lock is
not intended to establish order through observed
execution order (e.g., as in Figure 1). The data of
such accesses need not be self-invalidated or self-
downgraded because of the critical section synchro-
nization.

e Accesses outside critical sections where order is
required, and is established by the critical section
execution order (e.g., as in Figure 2). The data of
such accesses need to be self-invalidated or self-
downgraded appropriately.

In this paper, we propose new synchronization primi-
tives for locks, providing weaker consistency. In a critical
section, the accesses between lock and unlock are always
self-invalidated and self-downgraded. However, the pro-
grammer can specify if the accesses outside the critical
section should be also self-invalidated or self-downgraded,
depending on the semantics of the critical section: pure
atomicity or thread-ordering. Hence, our new primitives
allow for applications to be optimized by preventing self-
invalidation (Section 4) and self-downgrade (Section 5) of
variables surrounding critical sections for the case when the
locks only provide atomicity. In order to take care of accesses
surrounding thread-ordering critical sections, conservative
self-invalidation and self-downgrade is employed.

4 ELIDING NEEDLESS INVALIDATION: FORWARD
SELF-INVALIDATION

We are now faced with a problem. On one hand, we have
to self-invalidate cached data that we are going to access in
a critical section between a lock and an unlock operation,
but on the other hand this self-invalidation needlessly in-
validates unrelated data accessed prior to the critical section
and potentially afterwards.

The solution to this problem is to change the way we
think of self-invalidation. Normally, we self-invalidate what
we have accessed in the past and is already cached. Let us
call this backward self-invalidation (BSI).

We propose a second kind of self-invalidation which we
call forward self-invalidation (FSI). As the name suggests,
from the time of its activation, e.g., on a lock operation,
FSI invalidates each cache line that is accessed, exactly once
(on its first access). The invalidated cache lines immediately
cause misses and need to be re-fetched and cached again. FSI
continues until its deactivation, e.g., upon the next unlock
operation. The FSI implementation is simple: we use an
additional access bit per cache line that is set when entering
FSI. Accessing a cache line with the FSI bit set, invalidates
the cache line and resets the bit. Ending FSI, all the FSI
bits are reset. This allows us to limit locking primitives to
only enforce consistency for the memory accesses that occur
inside their critical section. No additional work is needed
to enforce consistency for accesses occurring outside of the
critical section.

Since our FSI approach only employs a single bit per
cache line, it does not account for false-sharing. For example,
imagine that a program accesses a variable (a) before and
after the critical section and a variable (b) inside the critical
section. If both variables (a and b) belong to the same cache

NESTED BSI FSI OVERLAPPING BSI ESI
barrier ¢ ﬁ barrier ¢ ¢
a m m a m m
lock X 4 lock X 4
b m m b m m
locky A locky . *
b m m b m m
c m m
c h h c m m
unlock Y unlock X
b h h C h h
unlock X unlock Y
a a
barrier ﬁ m ¢ h barrier ¢ m ﬁ h

ﬁ: backward SI ¢ : forward SI

Fig. 3. Self-invalidation strategies in nested (left) and overlapping (right)
critical sections.

line, the access to b would invalidate also a, thus causing
an extra miss after the critical section. A solution to this
extra misses would be to have per-word (instead of per-line)
bits in cache. We have not explored this solution because
the critical sections commonly consist in few accesses, and
therefore, we do not expect many false-positives.

4.1 Nested and Overlapping Critical Sections

We have seen how FSI works for isolated critical sections,
but what happens if we have nested or overlapping critical
sections?

In this case we cannot just start the FSI at the outermost
lock and finish it at the outermost unlock. This can give rise
to some strange behaviors due to lack of self-invalidation
that can complicate the programming model. One can easily
show this by counter-examples, but in the interest of space
and clarity we omit this from our discussion.

Our solution is to restart the FSI on every lock, but the
FSI region ends only if the number of unlock operations
matches the number of lock operations. To account for this,
we require a single counter initialized to zero which is
incremented on lock operations and decremented on unlock
operations. The FSI region ends when the value of the
counter before the last unlock is “one”.

Figure 3 shows how the FSI policy and BSI behave on
nested and overlapping critical sections. In this figure the
fate of variables “a”, “b”, and “c” in the cache is shown
(miss or hit) depending on the self-invalidation policy used.
Backward self-invalidation is indicated by an arrow point-
ing to the past (upwards) and forward self-invalidation with
an arrow pointing to the future (downwards). While BSI is
a one-shot operation, FSI is continuous and ends at the tip
of the arrow. Shading highlights the transition from a miss
to a hit for the different policies.

Nested critical sections (Figure 3, left): BSI performs a
self-invalidation of “a” (actually all cache contents) when
acquiring the first lock, which will result in a miss on the
subsequent access of variable “a.” Similarly, when acquiring
the second lock, BSI also invalidates “b.” FSI avoids to self-
invalidate “a,” since it is not inside a critical section and
the FSI region finishes just before the last unlock. Although
variable “b” is self-invalidated on its first access, it also has
to be self-invalidated on its second access. This is achieved

4

by resetting the access bits when acquiring the second lock.
Since there are no more lock operations, the third access to
“b,” it will result in a cache hit.

Overlapping critical sections (Figure 3, right): This pat-
tern occurs when we are already in a critical section, and
a new lock is taken but not released in this critical section.
The new lock is typically released in another critical section.
In the general case, however, the new lock can be released
at any point in the code. This is known as “hand-over-hand
locking” in literature, and is commonly used, e.g., for fine-
grained locking of lists since it requires locking of only two
elements of the list, instead of the entire chain from the
head to the point of modification. For overlapping critical
sections, BSI behaves similar to how it behaves for nested
critical sections and is very conservative. FSI improves over
BSI again by avoiding the second self-invalidation of “a.”

5 FORWARD SELF-DOWNGRADE

In the previous section we discussed self-invalidation with-
out regard to the downgrade policy of the coherence
protocol (directory-indirection or self-downgrade). With a
directory-indirection policy, read misses go to the directory
and obtain the latest value from the writer (or find the
latest value in the LLC —last level cache- if it was evicted
from the writer). However, a self-downgrade protocol has to
explicitly put back all the writes in the LLC before crossing
a synchronization point: reads cannot indirect to the last
writer but expect to find the latest data in the LLC. This
downgrade process relies on DRF synchronization (which is
already assumed for self-invalidation).

Thus, similarly to self-invalidation, self-downgrade is
initiated conservatively before every release operation' in
the program (e.g., unlock, barrier, or signal), ensuring that
writes are made globally visible before the corresponding
reads. This is overkill. Following the same reasoning as in
Section 3, we can show that, when exiting a critical section
that it is only intended to guarantee atomicity, we just need
to make globally visible the data written inside it:

1) Lock/unlock only need to make visible the accesses
inside the critical section that they protect. Exiting
a critical section (unlock) makes the data written
inside it globally visible so that the next critical
section that acquires the lock will be able to see
them.?

2) Critical sections are often not intended to guarantee
ordering for their surrounding accesses (Figure 1).
This means that data written before a critical section
do not have to be visible just because of the execu-
tion of the critical section. Thus, there is no need to
self-downgrade writes performed before entering a
critical section.

3) It is only when there is a separate synchronization
point ordering a write and a read, that the write
needs to be made visible to the read (Figure 2).

1. Assuming, again, that no differentiation is made between critical
sections and other synchronization.

2. When the data are actually made visible depends on the consistency
model. In Release Consistency [23], as assumed in the above discussion,
exiting a critical section makes the writes visible. In Lazy Release
Consistency [24] and Entry Consistency [25], entering a critical section
makes the writes of the previous critical section visible.

Normally, self-downgrade concerns past writes: when
we self-downgrade at a synchronization point we make
globally visible writes that already happened. Analogously
to self-invalidation, let us call this backward self-downgrade
(BSD). We define a new type of self-downgrade, called
forward self-downgrade (FSD), that selects what writes are
going to be made visible at the next synchronization point.
FSD is also intended to be used in critical sections. It
starts on critical section entry (lock) and marks the data
written within the critical section. At critical section exit
(immediately preceding the unlock), only the marked data
are downgraded. FSD does not affect what happens outside
the critical section.

An efficient implementation of self-downgrade is based
on write-throughs via a coalescing write buffer [5]. The
effect of the write buffer is to delay write throughs for a
small period of time. For example, VIPS [5] sets an upper
limit to the delay of a write through in the write buffer (a
timer). When this limit is reached the write through is sent to
the LLC. This approach has two advantages. First, multiple
writes on the same data that happen closely in time can
be coalesced, reducing write-through traffic. Second, write
throughs are paced to the LLC throughout execution (as
the write buffer ejects older entries to fit new ones), so that
at synchronization points only a small and bounded write-
through overhead remains: that of emptying the write buffer
and writing back the modified data.

In this context, BSD is equivalent to emptying the write
buffer on all synchronization points with release semantics.
The benefit of FSD, i.e., filtering the writes that go to the
LLC during an unlock, is twofold: first it reduces the delay
of completing an unlock to a minimum, and second it does
not interrupt write coalescing by prematurely emptying the
whole write buffer. For example, when executing a small
critical section to increment a counter (Figure 1), BSD would
unnecessarily empty the whole write buffer on the unlock
operation (interrupting the coalescing of unrelated data
and delaying the operation), whereas FSD would achieve
a correct result only by writing through the updated value
of count on the unlock operation.

The implementation of FSD requires a write bit per write-
buffer entry that is reset when entering FSD. Writing to a
cache line sets its write bit. Ending FSD, all the entries in the
write buffer with the write bit set are self-downgraded, and
their corresponding write bits are reset. Note that during the
self-downgrade operation only the dirty data (e.g., words)
in each block are writen-back, by sending diffs to the next
cache level [5].

5.1 Nested and Overlapping Critical Sections

Analogously to FSI, one needs to define the behavior of FSD
for nested and overlapping critical sections. The behavior is
similar. FSD uses a counter (the same as the FSI policies) that
is incremented on lock and decremented on unlock. As
long as this counter is not zero, we mark writes in the write
buffer (by using the write bit) for immediate downgrade
to the LLC at the next unlock. Every time we encounter
an unlock operation the self-downgrade is performed for
the marked blocks and the write bit is reset. Marking stops
when the counter drops to 0. As usual, BSD empties the
whole write buffer.

NESTED BSD FSD OVERLAPPING BSD FSD
barrier ¢ ﬁ barrier f ﬁ
a a
lock X lock X
b b
lock Y lock Y
b
c
[
unlock Y fabc bc unlock X fabc bc
b C
unlock X ¢ b b unlock Y f [C
a a
barrier ¢ a ¢ a barrier T a ¢ a

f: backward SD ¢ : forward SD

Fig. 4. Self-downgrade strategies for nested (left) or overlapping (right)
critical sections.

Figure 4 shows what is made globally visible at various
synchronization points, in relation to the writes shown in
the code (represented simply with the variable name). The
figure considers both BSD and FSD. BSD empties the write
buffer on every unlock, thus writing back twice variable
“a”. FSD avoids the first self-downgrade of “a” since the
first write is out of the critical section. On the other hand,
“b” is written back twice in the case of nested locks and “c”
is written back twice in the case of overlapping locks with
both policies. This is achieved in the FSD policy by cleaning
the write bit when a block is self-downgraded.

6 INITIATING SELF-INVALIDATION AND SELF-
DOWNGRADE ON SYNCHRONIZATION

Synchronization is commonly offered via a language inter-
face, as a set of libraries (e.g., Pthreads), by the operating
system, or as part of a programming model. In these cases,
the software can easily expose synchronization to the hard-
ware. In Intel Haswel™, locks can be tagged for speculative
lock elision by special instruction prefixes (REPN) preceding
atomic instructions [26]. The same mechanism can serve for
self-invalidation and self-downgrade. More enticing, how-
ever, is to recognize synchronization transparently to the
software. This has already been proposed in several works:
for speculative lock elision for critical-section synchroniza-
tion [27], for management of multithreaded systems [28],
and even for data race detection [29], etc.

Detecting synchronization can be accomplished by the
programmer, compiler, or hardware (given the necessary re-
sources [27], [28], [29]). The actual mechanism is beyond the
scope of this paper. Here we are concerned with interaction
of synchronization with the coherence layer. In particular,
our synchronization operations include special instructions
that backward/forward self-invalidate/self-downgrade the
appropriate memory blocks in the local cache.

Synchronization constructs such as barrier and
signal/broadcast/wait require BSI/BSD. In particular,
BSD is required just before entering the barrier and BSI
is required when exiting it. Signal and Broadcast are
preceded by BSD and wait is followed by BSI. For a
more detailed description about where these instructions are
placed we refer the reader to our previous work [22].

lock (1) ;
lock (1) ; depth++;
BSI; FSIDBegin;
/% CS x/ /% CS x/
BSD; FSIDEnd;
unlock (1) ; depth-—;
unlock (1) ;

Fig. 5. Lock/unlock with both BSI/BSD (left) and FSI/FSD (right).

Regarding critical sections, this work opens the pos-
sibility of performing either backward or forward self-
invalidation/self-downgrade. Figure 5 shows the instruc-
tions needed by the lock and unlock primitives for both
BSI/BSD and FSI/FSD. In FSI/FSD, FSIDBegin acts as
both FSIBegin and FSDBegin if depth is 1, but as only
FSIBegin if depth is greater (as discussed in the analysis
of nested and overlapping critical sections). Analogously,
FSIDEnd acts as FSIEnd and FSDEnd if depth is 1, but as
only FSDEnd if depth is greater.

Finally, all memory accesses employed to implement the
synchronization operations (e.g., lock/unlock, barrier, and
signal/broadcast/wait) that may “race” with other accesses
should always bypass the private cache [22]. In the same
manner, “racy” stores should perform a write-through di-
rectly to the shared cache. This ensures the fast propagation
of writes which is essential to achieve efficient synchroniza-
tion. Although bypassing the private cache for spin-loops
can lead to a considerable amount of network traffic and
LLC accesses, efficient solutions to this problem have been
recently proposed, such as exponential back-off [5], [11],
spurious self-invalidation [12], [16], and Callbacks [22]. In
this paper, the self-invalidation protocols evaluated imple-
ments spin-waiting with Callbacks.

7 SEMANTICS OF FSI/FSD Locks

In this section we give an informal description of the
semantics of critical sections implementing the FSI/FSD
technique as described in Section 6. In essence, the semantics
of FSI/FSD locks resemble the semantics of relaxed atomic
operations in C++. The key difference is that each critical
section can contain multiple instructions, complex control
flow, and multiple memory accesses. Therefore, FSI/FSD
locks offer a more general solution than relaxed atomic
operations.

We will assume here that an FSI/FSD critical section,
as described in Figure 5 (right) is initiated by a call to a
locking primitive FSID_lock(l) and terminated by a call
to a corresponding primitive FSID_unlock(l) for some
lock object I. The implementation of these primitives is
assumed to contain the necessary operations for acquir-
ing/releasing the lock, updating the depth counter, and
initiating/terminating FSI/FSD, as indicated in Section 6.
We allow critical sections to be nested or overlapping. In
an execution, for a call operation a to FSID_lock(l) and
a corresponding call b to FSID_unlock(l), we consider a
and b to define a critical section (I, a, FSID). We consider
each operation which is executed between such a and b to
be a part of the critical section (I, a, FSID). Correspondingly,

Thread 1 Thread 2
1:FSID_lock(l) 8:FSID_lock(l)
2: x:=1 9: 1d x
3:FSID_unlock(l) 10: 1d y
4:y:=1 11:FSID_unlock(l)
5:FSID_lock(l) 12:1d z
6: z:=1
7:FSID_unlock(l)

Fig. 6. Example of access orderings which are or are NOT enforced by
FSI/FSD locks. In Thread 2, only the load of x is guaranteed to see the
value written by Thread 1.

we will refer to a critical section for the lock object [, using
BSI/BSD synchronization as (I, a, BSID), when it is initiated
by the lock operation a. In the discussion, we will let a
variable, typically f, take the value FSID or BSID, in crit-
ical sections (I, a, f) where the particular synchronization
method is not relevant in the context.

We say that a store s to a memory location x is visible
to a critical section (,a, f) when (i) for all stores s’ to x
in the critical section (I, a, f) it holds that s precedes s’ in
memory order®, and (ii) when for all loads 7’ to x in the
critical section (I, a, f) it holds that r’ loads the value of
either s or some memory order-later store. Similarly, we say
that a load 7 to a memory location x is visible to a critical
section (I, a, FSID) when it loads the value of some store
which is visible to (I, a, FSID).

We are now ready to state the intuitive effect of executing
the primitives FSID_lock(l) and FSID_unlock(l).

Executing FSID_lock(l) blocks the executing thread
until the lock object [is available, and then:

e acquires [, making it unavailable to other threads,
and

o initiates a critical section (I, a, FSID), where a is the
current lock operation, and

e ensures that every operation that is part of a critical
section (I, a’, f) for some a’ that happened before a
(i.e., the lock to a’ was taken before the lock to a) in
any thread will be visible to (I, a, FSID).

Executing FSID_unlock(l):

o terminates the latest currently pending critical sec-
tion (I, a, FSID) by this thread, and

o ensures that every operation in ([, a,FSID) will be
visible to every critical section (I, a’, f) for any lock
operation a’ that happens after a (i.e., the lock to a’
will be taken after the lock to a) in any thread, and

o releases [, making it available to other threads.

The main difference between the semantics for FSI/FSD
critical sections, as given above, and BSI/BSD critical sec-
tions, is that the ordering guarantees made by FSI/FSD
critical sections concern only operations which are inside the
critical sections.

To better understand these semantics, we consider the
example given in Figure 6. Note that this example is not
DREF, since the write to y in Thread 1 is not protected
by lock/unlock. Programmers writing correct DRF code

3. For store operations is the order in which new values are propa-
gated to shared memory.

should not worry about this example. We only show this
corner case to make clear which guarantees are or are not
given by forward locks. The intuitive understanding of the
programmer should basically be that FSID critical sections
give atomicity with respect to other critical sections (i.e.,
weak atomicity [20], as ensured by Pthread lock/unlock
critical sections).

In this example, the second critical section of Thread
1 (lines 5-7) is assumed to precede the critical section of
Thread 2 (lines 8-11). When the operation FSID_lock(l) on
line 8 is executed, its semantics guarantee that the opera-
tions in earlier critical sections (i.e., lines 2 and 6) are visible
to the critical section in Thread 2. Hence, it is guaranteed
that the load of x at line 9 will read the value 1, written by
the store at line 2.

On the other hand, the store to y on line 4 is not part
of a critical section for the lock object I, and so there is no
guarantee that it will be visible for the load on line 10. That
load may therefore read either the value 1, written on line 4,
or some earlier value.

Symmetrically, the load of z on line 12 is not part of a
critical section. Hence it is not guaranteed that the store on
line 6 will be visible to it. The load of z may read either the
value 1, written on line 6, or some earlier value.

8 EVALUATION

The goal of our evaluation is to assess the impact of for-
ward self-invalidation (FSI) and forward self-downgrade
(FSD). We use two base cases. One is a conventional
directory-based coherence protocol with MESI states. The
other is a state-of-the-art coherence protocol using (back-
ward) self-invalidation on every synchronization with ac-
quire semantics and (backward) self-downgrade on ev-
ery synchronization with release semantics —we call this
protocol BSI-BSD. For an optimal performance, BSI-BSD
employs a page-level private/shared classification of the
data referenced by the applications performed by the op-
erating system [5], [30], [31] and a Callbacks mechanism
for spin-loops [22]. With this double comparison we show
that (i) self-invalidation/self-downgrade protocols are a
cost-effective alternative for scalable systems and that (ii)
the proposed forward self-invalidation/self-downgrade no-
tably improve performance and energy consumption com-
pared to their backward counterparts.

8.1 Simulation Environment

We evaluate the performance of three cache coherence pro-
tocols (MESI, BSI-BSD, and FSI-FSD) using the Wisconsin
GEMS simulator [32], a detailed simulator for multiproces-
sor systems. GEMS is fed with information gathered by a
PIN tool [33], which offers detailed information about the
instructions executed, memory references, and syncroniza-
tion primitives. Synchronization primitives do not generate
a trace, but provide to the simulator its functionality, such
that spin-loops are modeled properly in the internals of the
simulator. We model an in-order processor that along with
the Ruby cycle-accurate memory simulator offers a detailed
timing model. The cache coherence protocols evaluated in
this work are modeled in detail using the SLICC domain

TABLE 1
System parameters.

Parameter Value
Processor frequency 3.0GHz
Block size 64 bytes
Page size 4KB

Private L1 cache 32KB, 4-way
L1 cache access time 1 cycle

Shared L2 cache
L2 cache access time

512KB per bank, 16-way
Tag 6 cycles; tag+data 12 cycles

Memory access time 160 cycles
Network topology 2D mesh

Routing technique Deterministic X-Y
Flit size 16 bytes

Data message size 5 flits

Control message size 1 flit
Switch-to-switch time 6 cycles

specific language provided by GEMS. The interconnect is
modeled with the GARNET network simulator [34]. The
simulated system is a 64-core chip multiprocessor with
the parameters shown in Table 1. Energy consumption is
modeled with the CACTI 6.5 tool [35], assuming a 32nm
process technology.

We employ a wide variety of parallel applications in our
evaluations. In particular, we evaluate the entire Splash-
3 suite [36] (a modernized, data race free version of the
Splash-2 suite [37]) with the recommended input param-
eters. Additionally, we run a wide range of benchmarks
from the PARSEC benchmark suite [38], all of them with
the simmedium input, except Fluidanimate and Streamcluster,
which use the simsmall input due to simulation-time con-
straints. As recommended, we simulate the entire applica-
tion, but collect statistics only from start to completion of
their parallel section, the region of interest.

We manually identified which critical sections are used
for synchronization and which ones are used only for
atomicity. To aid us in that task, we employed a data race
detection tool similar to the Fast&Furious tool [39], with the
main difference being that our tool simulates the relaxed
lock and unlock operations by only self-invalidating and
self-downgrading the relevant cache lines, as explained in
Sections 4.1 and 5.1. After running the applications with our
verifying tool more that 1000 times, we did not found any
behaviour forbidden by a sequential consistency model, i.e.,
all loads where returning the same values as a sequential
consistency model.

8.2 Results

Results presented in this section are normalized to a direc-
tory protocol with MESI states. Applications are shown in
increasing order of synchronization intensity: from the ones
that do not employ locks (from Blackscholes to Streamcluster,
in increasing order of non-lock synchronization operations)
to the ones that execute a larger number of locks (Fluidani-
mate ~= 5.3M locks). Averages are shown for both categories.
Notice that, in the no locks category, FSI-FSD cannot be
applied, and consequently, results are expected to be the

same as with the backward scheme. However, they are also
reported for completeness.

8.2.1 BSID vs. FSID synchronization

In order to understand the advantages of FSI-FSD on the
evaluated applications it is interesting first to characterize
their synchronization operations and the self-invalidation
and self-downgrade that they cause. Table 2 shows the
number of self-invalidation/self-downgrade pairs of each
type executed by each application. The first column shows
the application. The second column shows the num-
ber of executed BSI-BSD pairs due to barrier and sig-
nal/broadcast/wait synchronization (BSID sync). The third
column corresponds to the locks that are not relaxed and
require BSI-BSD (BSID locks). Finally, the fourth column
reports the number of relaxed locks that use FSI-FSD (FSID
locks). As shown, most of the applications can safely use
FSID locks without breaking the consistency model, which
means that these locks were just employed by the pro-
grammer to guarantee atomicity. A special case of locks
aiming to synchronize threads that can still use FSID, are
the locks protecting critical sections that contain conditional
variables, such as signal/broadcast/wait (which perform
BSI/BSD). Although these locks theirselves do not enforce
self-invalidation and self-downgrade of all data in cache,
this is guaranteed by the conditional variable. Such critical
sections are employed in Dedup, Bodytrack, Cholesky, FMM,
and Barnes.

As mentioned, applications that do not employ locks
are not affected by our proposal. On the other hand, the
more locks the application executes, the more savings can
be expected, given that these locks can use FSI-FSD. This is
the case in most applications. The exceptions are FMM and
Radiosity. In particular, in Radiosity a large amount of locks
require BSI-BSD, which clearly limits the advantages of our
proposal. On the other hand, in FMM most of the FSID
locks contain conditional variables which would neglect the
advantages of the FSI and FSD. For applications, such as
Barnes and Fluidanimate, which execute a large amount of
locks, all of them being FSI-FSD, significant improvements
are expected.

822

The use of self-invalidation can affect the number of
cache misses compared to a write-invalidation protocol,
which in turn affects execution time. Coherence misses in
MESI, caused by remote accesses, are replaced with self-
invalidation misses in self-invalidation protocols. Figure 7
shows the breakdown of L1 cache misses for the evaluated
applications.

BSI-BSD does well for a variety of benchmarks (Blacksc-
holes, Swaptions, FFT, Radix, LU, LU-nc, Ocean-nc, Volrend,
and Cholesky), reducing the number of misses compared
to MESI. The number of synchronization points in these
benchmarks is low and mostly dominated by barriers and
signal/wait (BSID sync). There are two main reasons that
can lower the miss ratio of BSI-BSD compared to MESIL
First, store race-free operations are always hits in BSI-BSD.
Second, store operations do not cause invalidations, which
reduces misses due to false sharing.

Impact on self-invalidation

TABLE 2
Pairs of BSI/BSD versus pairs of FSI/FSD instructions executed.

Benchmark BSID sync BSID locks FSID locks
Blackscholes 0 0 0
Swaptions 0 0 0
FFT 320 0 0
Radix 490 0 0
LU 4224 0 0
LU-nc 4224 0 0
Streamcluster 723328 0 0
Water-Sp 832 0 705
Ocean-nc 22976 0 5184
Ocean 23296 0 5184
Dedup 960 0 9068
Raytrace 64 0 13457
Bodytrack 10550 0 15422
Water-Nsq 832 0 34432
Volrend 2688 0 38599
Cholesky 20700 0 81896
FMM 90618 387 135078
Barnes 13931 0 1064144
Radiosity 640 155355 5146016
Fluidanimate 2560 0 5338710

In others, such as Raytrace, Water-Nsq, Bodytrack, self-
invalidation protocols perform similarly to MESI. The rea-
son is that cache misses in these benchmarks are dominated
by cold, capacity, and conflict misses.

There are, however, a number of benchmarks where
self-invalidation does poorly (FMM and Barnes) or fails
spectacularly (Radiosity, and Fluidanimate). The commonality
in these programs is frequent and intensive synchronization,
mainly using locks. It is exactly in these cases where for-
ward self-invalidation dramatically betters backward self-
invalidation. In fact, forward self-invalidation considerably
reduces the number of misses caused by self-invalidation
in applications like Volrend (32.1%), Cholesky (24.2%), FMM
(16.9%), Barnes (63.1%), and Fluidanimate (65.4%) with re-
spect to BSIL. The only application that is self-invalidation-
sensitive and can barely be optimized with FSI is Radiosity
(0.9% improvements in cache misses). Although almost
most of its locks are FSID, in the cases where a FSID lock is
followed by a BSID lock, self-invalidation of the cache con-
tents takes place, thus negating the advantages of the FSID
lock. In general, the FSI technique is very effective, reducing
the total number of cache misses by 12.2% (geometric mean)
with respect to BSI for the applications that employ locks.

8.2.3 Impact on self-downgrade

Self-downgrade impacts the number of write-backs to
shared memory, which in turn mainly affects network traffic
and energy consumption in the cache hierarchy. In MESI,
downgrades are caused by replacements or by coherence re-
quests due to remote writes. They also can cause extra cache
misses on store operations due to lack of write permission.

In BSI-BSD, self-downgrades never cause extra cache
misses, since DRF store operations can always write in
cache, but can dramatically increase the network traffic,
as happens in the synchronization-intensive applications.

B Cold-cap-conf [Coherence 4 Self-invalidation |

1. MESI 2. BSI-BSD 3. FSI-FSD
3.0 No locks
3
B 2.5
IS
2 2.0
&
© 1.57]
he)
(0]
N
T
IS

\(\0\35 ‘)‘\0(\5 FF" Rad\‘l\ L\) \’\) (\(?\ \ “5\6‘ \00\4‘5

Locks

NANNANNNNNNAN

ﬁ%aﬂ“ SR 0\@“606\?\13\@‘ N \,x‘ad‘o\esw S aﬂ\e ¢\o€»“" aeey ocks
F

' Ge0:

[W Cold-cap-conf [Coherence 4 Self-downgrade |

SO e
6\,&0\« S“Qae W
Fig. 7. Normalized L1 cache misses
1. MESI 2. BSI-BSD 3. FSI-FSD
No locks

7

ANAANANANNANNNANNANN

Normalized downgraded words

ANNAAN\NNNNNNNNNNNNNN

cocooo0000rkR
BT e s e T

| ‘ I
\acmso“o\es PO FFT ol W \’%;\0 \“S‘e VS
5) S\ G

W aes oce

Fig. 8. Normalized downgraded words

Much like FSI does for misses, our forward self-downgrade
approach effectively addresses this problem for write-backs
by dramatically curbing the damage of backward self-
downgrade in the same synchronization-intensive bench-
marks. Forward self-downgrade elides the downgrade of
written words out of the critical section, thus it does not in-
terrupt write coalescing, as BSD, by perceptually emptying
the write buffer on exiting a critical section.

Figure 8 shows the number of downgraded words in
the evaluated applications. Downgrades due to coherence
requests in MESI are translated to self-downgrades in self-
downgrade protocols. Backward self-downgrade (BSD) re-
duces the number of downgraded words for all the ap-
plications except for FMM. It is in this application where
FSD achieves major benefits, reducing the self-downgraded
words by 68.8% with respect to BSD.

FSD achieves reductions in the number of self-
downgraded words with respect to MESI for all bench-
marks, obtaining an average reduction of 66.4% (geometric
mean) for the applications that employ locks. This helps to
reduce the energy consumption of the memory system.

8.2.4 Impact on execution time

In Figure 9 we show the combined effect of FSI and FSD
on execution time. Variations in misses and downgrades
manifest in execution time but in a much more subdued

T
S0 0© Ooe%:\a \I“acsl Qe Oe\?\l\) o \\\ A \J“ac\‘ \esW ?\\N a‘(\e d\os\w \«\a‘e\pc\‘s
?

ﬂ

Ge

manner. As discussed, the more lock-intensive is the ap-
plication, the worse performance is expected for backward
self-invalidation/self-downgrade protocols. Indeed, FMM,
Barnes, Radiosity, and Fluidanimate perform similar or worse
than MESI when considering BSI-BSD. The rest of the appli-
cations perform better than MESI when considering a BSI-
BSD protocol.

Because load misses matter significantly more for exe-
cution time than downgrades, execution time results are
skewed towards the miss behavior of the corresponding
techniques. Thus, FSI-FSD outperforms BSI-BSD mostly
in the applications where self-invalidation is considerably
reduced. In particular, significant reduction with respect
to BSI-BSD is achieved in Barnes (16.4%) and Fluidani-
mate (39.2%). In Ocean-nc and Ocean, despite not reducing
the overal number of cache misses, performance improve-
ments are obtained. In both applications about 18% of self-
invalidations and self-downgrades are turned to forward.
The effect is that FSI-FSD reduces the number of invalidated
and downgraded blocks at locks which are finally inval-
idated and downgraded at barriers. Since locks are more
critical for performance than barriers, FSI/FSD achieves
improvements in execution time. The end result is that,
on average, FSI-FSD outperforms MESI for the applications
using locks by 17.1% and a highly optimized version of BSI-
BSD by 7.6%.

B MESI [0 BSI-BSD 74 FSI-FSD

No locks

R
T i

Normalized execution time

‘(\0\35 g™ 1 qadt*

Ovﬂﬁwédmaﬁ

xsC A€
%\a(} 5“ eae \N

Fig. 9. Normalized execution time

10

Locks - 3.09].:88

v] B

‘Spea(\\'\ Ocea(\ \I“ace 0“e(\doe\?\]a\€‘ \\\50\ \J“ac\‘o\es\d ?\\I\N\ a‘(\e d\os\w \“\a\ LOQ\&S
F

' Ge0:

1. MESI 2. BSI-BSD 3. FSI-FSD

W L1 LLC A Network

No locks

S000000000RREE
B e

Normalized energy consumption

w&wwﬁvﬁww Nwﬁwho

a’\e‘ e

Fig. 10. Normalized energy consumption

8.2.5 Impact on energy consumption

In contrast to execution time, energy consumption tracks
both the downgrade behavior and the miss behavior of
the corresponding techniques. This is because both misses
and downgrades cost in accesses to the shared cache and
network traffic. The combined effect is shown in Figure 10,
where we break the energy consumption in the consump-
tion of the L1 cache (L1), the consumption of the last-level
cache (LLC) with is the L2 in our system, and the consump-
tion of the interconnection network (Network). The only out-
liers in a backward self-invalidation/self-downgrade proto-
col with respect to MESI are Radiosity, and Fluidanimate, but
for every other application BSI-BSD does significantly better.
FSI-FSD consistently lowers energy consumption over BSI-
BSD. More importantly, FSI-FSD works best in the applica-
tions that do not do well with BSI-BSD when compared to
MESI. Again, the exception is Radiosity, which cannot get
full use of FSID locks.

Part of the reduction in energy of self-invalidation pro-
tocols compared to MESI comes from reducing the spin-
waiting in L1, and shifting it to less frequent LLC accesses.
However, in BSI-BSD the traffic generated due to extra L1
misses and downgrades lessens this advantage. Thanks to
the extra reductions in network traffic in FSI-FSD, the energy
consumption is reduced with respect to MESI by 33.9% and

Locks 40, 2t

S0 0© Ooe%:\a \I“acsl Qe De\?\l\) o \\\ A \J“ac\ko\es\a\l et a‘“e d\og\w \ﬁ\a‘e\pc\“’
?

Ge

with respect to BSI-BSD by 9.1% for the applications that
employ locks.

8.2.6 Discussion

To conclude the evaluation it is worth to note that the
number of self-invalidation and self-downgrade actions are
drastically reduced with FSI and FSD, respectively. The
overall improvements in performance, however, are modest
for the evaluated system and applications. Nevertheless,
in novel Software-DSM systems based on self-invalidation
like Argo [17], FSI and FSD can be invaluable, since self-
invalidation is a major bottleneck in such systems.

9 RELATED WORK

Our work builds on a number of previous works that paved
the way for simplifying coherence [2], [3], [4], [5], [6], [7],
[11], [22], [40], [41].

From the VIPS works [5], [7], [22], [42] we bor-
row the concept of integrating self-invalidation and self-
downgrade. However, that work suffers from conserva-
tive self-invalidation and self-downgrade especially in
synchronization-intensive workloads. In this work we ad-
dress this shortcoming and improve the overall performance
and energy efficiency by exploiting program properties.

The DeNovo work [3], [6], [11], [13] is also close to our
work. We see our works as complementary. Below we briefly
touch on some details of the related work that matter in our
context.

9.1 Invalidation Signatures

The approach proposed by Ashby et al. [2] relies on inexact
information gathered in Bloom filters to selectively self-
invalidate data that might have changed but spare data that
are known not to have changed. Signatures are created at
the cores and are communicated to all other cores during
barriers. This approach is restricted to barrier synchroniza-
tion because the Bloom filters cannot be reset easily if it
is not known that every core has observed all prior inval-
idation signatures. This problem is solved in DeNovoND
for lock synchronization, using a hardware queue lock. A
further problem is that it is very expensive to bulk-self-
invalidate using a Bloom filter signature because all the tags
must be matched against the signature. This either takes
excessive time or excessive hardware [2]. In contrast, our
approaches are simple and hardware-efficient: backward
self-invalidation resets the valid bits of all (shared) cache
lines, and forward self-invalidation operates on a per-access
basis consulting a single bit (Section 4).

9.2 DeNovo Touched Bits

Touched bits is an interesting concept introduced in the
DeNovo work to reduce self-invalidation. Touched bits give
a reprieve to cache lines that are touched during an epoch
(the period of execution between two barriers) from being
self-invalidated at the end of the epoch. In short, if a cache
line is accessed in a epoch, it cannot have been changed by
another core during that same epoch —otherwise it would
be a data race. Touched bits are orthogonal to our approach:
i.e., sieving what will be self-invalidated after crossing a bar-
rier. For critical sections, forward self-invalidation subsumes
their function as it restricts invalidation to critical section
accesses which cannot be the same as accesses preceding
the critical section. The touched bit concept requires either
data-race-free semantics at a cache-line granularity (since
it cannot handle false sharing), or alternatively tracking of
touched items on a per-word (as DeNovo does) or per-byte
basis in all cache lines (something that is quite expensive).
However, our emphasis throughout this work has been to
i) propose an approach for the general case (with as few
restrictions to the software as possible, i.e., allowing false-
sharing) and ii) propose low cost solutions, by not requiring
a per-word bit per cache line.

9.3 DeNovoND and Touched-Atomic Bits

One of the main contributions of DeNovoND over DeNovo
is the implementation of a “synchronization” protocol for
critical sections. DeNovoND recognizes that in a critical
section, only data accessed in other critical sections under
the same lock should be invalidated (although this is only
valid for the “atomicity” locks but not for “ordering” locks,
as described in Section 3). Lacking direct invalidations this
is accomplished by tracking each core’s changes (while in
the critical section) and conveying them to the next core

11

that enters the critical section. Changes are encoded in a
signature and compounded from core to core in the same
order the lock is taken. However, the DeNovoND approach
needs to track signatures for the accesses in critical sections
and transfer the signatures from unlock to lock and needs
to explicitly clean signatures which is still a complication. In
case signatures are not employed all the accesses performed
in within critical regions have to be self-invalidated. Dif-
ferently, we support general programs by considering both
atomicity and ordering locks, identifying them in the code.
Additionally, for atomicity locks we opt for invalidating
what will be accessed within a critical section, and not what
was accessed in the critical section in the past.

Touched-atomic bits are introduced by DeNovoND to
self-invalidate each block inside a critical section only once.
Although FSI bits have a similar effect inside critical sections
in our approach, the key of FSI is avoiding invalidation
outside critical sections. It is actually outside critical sections
where FSI obtains improvements with respect to BSI.

Finally, DeNovoSync [11] helps to reduce the self-
invalidation overhead of DeNovoND by delaying reads
with a backoff mechanism.

9.4 Self-invalidation in GPUs

Some proposals based on self-invalidation have been also
proposed for GPUs. TC [43] employs self-invalidation in the
private caches based on expiration times. The problem of
this approach is the difficulty in predicting expiration times
in hardware.

More similar to our work, other proposals perform self-
invalidation on acquire synchronization. Sinclair et al. [13]
reduces the impact of self-invalidation by not invalidating
read-only regions of data detected at compile time. Our FSI
mechanism would benefit from this optimization in the case
of backwards locks, similarly to BSI, thus improving the
benefits of our solution with respect to a MESI protocol.

hLRC [15] delays the self-downgrade and the self-
invalidation. Atomic variables are tracked by the L2 cache.
When an atomic variable changes the owner, the cache
losing the ownership needs to perform a self-downgrade
while the cache acquiring the ownership needs to perform
a self-invalidation. Although this lazy self-invalidation/self-
downgrade can remove some invalidations/downgrades, in
CPUs running applications with contended locks changing
ownership even if the lock is not acquired, self-invalidation
can be triggered more frequently.

Finally, other solutions explore self-invalidation-based
coherence in heterogeneous CPU-GPU systems [14], where
the selective self-invalidation techniques can be less aggres-
sive in the throughput-oriented GPU than in the latency-
oriented CPU. In general, FSI-FSD would improve even
more the performance obtained by the BSI-BSD techniques
used in these approaches.

9.5 Extended-DRF Regions

SPEL [40], [41] is a proposal that defines extended-DRF
code regions as multiple DRF regions of code, separated
by code that contains synchronization operations, that once
aggregated keep the DRF properties. SPEL proposes the
identification of these regions at compile time given the

semantics assumed by OpenMP applications. An automatic
detection of extended-DRF regions has been recently pro-
posed for more Pthreads applications [44].

In practice, in a extended-DRF region every lock and
unlock operation can be relaxed, and therefore, use FSI and
FSD. This work therefore proposes new lock constructs that
have more relaxed semantics (regarding the code outside
the critical section) being able to improve the performance
of pure self-invalidation, self-downgrade cache coherence
protocols.

9.6 Lock-Based Consistency Models

The consistency model proposed in this paper is based
on the idea that order between shared memory accesses
is only maintained when enforced using critical sections.
This behavior is strictly weaker than that of Release Consis-
tency [23], since in Release Consistency locks can be used
to enforce order even between accesses occurring outside of
the critical sections.

Iftode et al. [45] introduce Scope Consistency. Similarly to
our model, Scope Consistency relaxes Release Consistency
by enforcing weaker guarantees on ordering for memory
accesses occurring outside of critical sections. However our
semantics are different from Scope Consistency and, in fact,
more relaxed. For example, in Figure 6, the load on line 12
is allowed to read the initial value of z, while under Scope
Consistency, it would be forced to read the value written on
line 6.

Our model is more similar to Entry Consistency [25], but
easier to use for the programmer since it does not require
explicit identification of shared data in the program nor its
association with particular lock objects.

10 CONCLUSIONS

Self-invalidation and self-downgrade are a two-edged
sword. On one hand they can cut through complexity and
deliver significant savings in area, energy consumption,
and execution time, but on the other, if not used frugally,
can be damaging. Our goal in this work is to methodi-
cally re-examine their use in relation to the synchronization
(critical section or barrier and signal/broadcast/wait) of a
program. We found that conventional self-invalidation and
self-downgrade that affect what happened in the past, can
be substantially improved if we turn them forward in time,
specifically for critical sections that do not ascertain thread-
order and thus allow for this more relaxed behavior, i.e.,
critical sections with relaxed semantics.

Our evaluation shows that forward self-invalidation and
self-downgrade can be safely used, obtaining important
performance and energy improvements over traditional
and state-of-the-art self-invalidation cache coherence pro-
tocols. More importantly, this new approach aggressively
addresses the synchronization-intensive workloads where
prior self-invalidation and self-downgrade protocols exhib-
ited their greatest weakness while consistently maintaining
the advantages in all other workloads. While not every
programmer will be able to use the proposed locks as
easily as the fully synchronizing ones, they are necessary
for achieving the best performance, especially for the people
who are implementing the higher level synchronization
algorithms.

12

ACKNOWLEDGMENTS

This work has been jointly supported by the “Fundacién
Séneca — Agencia de Ciencia y Tecnologia de la Regién de
Murcia” under project “Jévenes Lideres en Investigacion”
18956/JL1/13, the Spanish MINECO, as well as European
Commission FEDER funds, under grant TIN2015-66972-C5-
3-R, the Linnaeus center of excellence UPMARC, Uppsala
Programming for Multicore Architectures Research Center,
and the Swedish VR (grant no. 621-2012-5332). The authors
would like to thank SNIC and UPPMAX for using their
resources.

REFERENCES

[1] A. R. Lebeck and D. A. Wood, “Dynamic self-invalidation: Re-
ducing coherence overhead in shared-memory multiprocessors,”
in 22nd Int’l Symp. on Computer Architecture (ISCA), Jun. 1995, pp.
48-59.

[2] T.J. Ashby, P. Diaz, and M. Cintra, “Software-based cache co-
herence with hardware-assisted selective self-invalidations using
bloom filters,” IEEE Transactions on Computers (TC), vol. 60, no. 4,
pp. 472483, Apr. 2011.

[3] B. Choi, R. Komuravelli, H. Sung, R. Smolinski, N. Honarmand,
S. V. Adve, V. S. Adve, N. P. Carter, and C.-T. Chou, “DeNovo:
Rethinking the memory hierarchy for disciplined parallelism,” in
20th Int’l Conf. on Parallel Architectures and Compilation Techniques
(PACT), Oct. 2011, pp. 155-166.

[4] S.Kaxiras and G. Keramidas, “SARC coherence: Scaling directory
cache coherence in performance and power,” IEEE Micro, vol. 30,
no. 5, pp. 54-65, Sep. 2011.

[5] A. Ros and S. Kaxiras, “Complexity-effective multicore coher-
ence,” in 21st Int’l Conf. on Parallel Architectures and Compilation
Techniques (PACT), Sep. 2012, pp. 241-252.

[6] H. Sung, R. Komuravelli, and S. V. Adve, “DeNovoND: Efficient
hardware support for disciplined non-determinism,” in 18th Int'l
Conf. on Architectural Support for Programming Language and Oper-
ating Systems (ASPLOS), Mar. 2013, pp. 13-26.

[7] S. Kaxiras and A. Ros, “A new perspective for efficient virtual-
cache coherence,” in 40th Int'l Symp. on Computer Architecture
(ISCA), Jun. 2013, pp. 535-547.

[8] B. A. Hechtman, S. Che, D. R. Hower, Y. Tian, B. M. Beckmann,
M. D. Hill, S. K. Reinhardt, and D. A. Wood, “QuickRelease: A
throughput-oriented approach to release consistency on GPUs,” in
20th Int’l Symp. on High-Performance Computer Architecture (HPCA),
Feb. 2014, pp. 189-200.

[9] D.R.Hower, B. A. Hechtman, B. M. Beckmann, B. R. Gaster, M. D.
Hill, S. K. Reinhardt, and D. A. Wood, “Heterogeneous-race-free
memory models,” in 14th Int’l Conf. on Architectural Support for
Programming Language and Operating Systems (ASPLOS), Mar. 2014,
pp. 427-440.

[10] A. Ros, M. Davari, and S. Kaxiras, “Hierarchical private/shared
classification: the key to simple and efficient coherence for clus-
tered cache hierarchies,” in 21th Int’l Symp. on High-Performance
Computer Architecture (HPCA), Feb. 2015, pp. 186-197.

[11] H. Sung and S. V. Adve, “DeNovoSync: Efficient support for
arbitrary synchronization without writer-initiated invalidations,”
in 15th Int’l Conf. on Architectural Support for Programming Language
and Operating Systems (ASPLOS), Mar. 2015, pp. 545-559.

[12] M. Elver and V. Nagarajan, “RC3: Consistency directed cache
coherence for x86-64 with RC extensions,” in 24th Int’l Conf. on
Parallel Architectures and Compilation Techniques (PACT), Oct. 2015,
pp- 292-304.

[13] M. D. Sinclair, J. Alsop, and S. V. Adve, “Efficient gpu synchroniza-
tion without scopes: Saying no to complex consistency models,”
in 48th IEEE/ACM Int’l Symp. on Microarchitecture (MICRO), Dec.
2015, pp. 647-659.

[14] K. Koukos, A. Ros, E. Hagersten, and S. Kaxiras, “Building hetero-
geneous unified virtual memories (uvms) without the overhead,”
ACM Transactions on Architecture and Code Optimization (TACO),
vol. 13, no. 1, pp. 1:1-1:22, Mar. 2016.

[15] J. Alsop, M. S. Orr, B. M. Beckmann, and D. A. Wood, “Lazy
release consistency for gpus,” in 49th IEEE/ACM Int’l Symp. on
Microarchitecture (MICRO), Oct. 2016, pp. 1-14.

[16]

(17]

(18]

(19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

(31]

[32]

[33]

[34]

(35]

[36]

[37]

M. Elver and V. Nagarajan, “TSO-CC: Consistency directed cache
coherence for tso,” in 20th Int’l Symp. on High-Performance Computer
Architecture (HPCA), Feb. 2014, pp. 165-176.

S. Kaxiras, D. Klaftenegger, M. Norgren, A. Ros, and K. Sagonas,
“Turning centralized coherence and distributed critical-section
execution on their head: A new approach for scalable distributed
shared memory,” in 24th Int'l Symp. on High-Performance Parallel
and Distributed Computing (HPDC), Jun. 2015, pp. 3-14.

S. V. Adve and M. D. Hill, “Weak ordering — a new definition,”
in 17th Int’l Symp. on Computer Architecture (ISCA), Jun. 1990, pp.
2-14.

D.J. Sorin, M. D. Hill, and D. A. Wood, A Primer on Memory Con-
sistency and Cache Coherence, ser. Synthesis Lectures on Computer
Architecture. Morgan & Claypool Publishers, 2011.

T. Harris, J. Larus, and R. Rajwar, Transactional Memory, ser. Syn-
thesis Lectures on Computer Architecture. Morgan & Claypool
Publishers, 2010.

ISO, ISO/IEC 14882:2015 Information technology — Programming
languages — C++. International Organization for Standardization,
2015.

A. Ros and S. Kaxiras, “Callback: Efficient synchronization with-
out invalidation with a directory just for spin-waiting,” in 42nd
Int’l Symp. on Computer Architecture (ISCA), Jun. 2015, pp. 427-438.
K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons, A. Gupta,
and J. L. Hennessy, “Memory consistency and event ordering in
scalable shared-memory multiprocessors,” in 17th Int’l Symp. on
Computer Architecture (ISCA), Jun. 1990, pp. 15-26.

P. J. Keleher, A. L. Cox, and W. Zwaenepoel, “Lazy release consis-
tency for software distributed shared memory,” in 19th Int’l Symp.
on Computer Architecture (ISCA), May 1992, pp. 13-21.

B. N. Bershad, M. J. Zekauskas, and W. A. Sawdon, “The midway
distributed shared memory system,” Carnegie Mellon University,
Pittsburgh, PA, USA, Technical report 865207, Jan. 1993.

“Intel(r) architecture instruction set extensions programming ref-
erence,” http://software.intel.com/en-us/intel-isa-extensions, 2012.

R. Rajwar and J. R. Goodman, “Speculative lock elision: Enabling
highly concurrent multithreaded execution,” in 34th IEEE/ACM
Int’l Symp. on Microarchitecture (MICRO), Dec. 2001, pp. 294-305.
T. Li, A. R. Lebeck, and D.]. Sorin, “Spin detection hardware for
improved management of multithreaded systems,” IEEE Transac-
tions on Parallel and Distributed Systems (TPDS), vol. 17, no. 6, pp.
508-521, Jun. 2006.

C. Tian, V. Nagarajan, R. Gupta, and S. Tallam, “Dynamic recogni-
tion of synchronization operations for improved data race detec-
tion,” in 2008 Int’l Symp. on Software Testing and Analysis (ISSTA),
Jul. 2008, pp. 143-154.

N. Hardavellas, M. Ferdman, B. Falsafi, and A. Ailamaki, “Re-
active NUCA: Near-optimal block placement and replication in
distributed caches,” in 36th Int’l Symp. on Computer Architecture
(ISCA), Jun. 2009, pp. 184-195.

B. Cuesta, A. Ros, M. E. Gomez, A. Robles, and J. Duato, “Increas-
ing the effectiveness of directory caches by deactivating coherence
for private memory blocks,” in 38th Int’l Symp. on Computer
Architecture (ISCA), Jun. 2011, pp. 93-103.

M. M. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty, M. Xu,
A. R. Alameldeen, K. E. Moore, M. D. Hill, and D. A. Wood,
“Multifacet’s general execution-driven multiprocessor simulator
(GEMS) toolset,” Computer Architecture News, vol. 33, no. 4, pp.
92-99, Sep. 2005.

C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood, “Pin: Building cus-
tomized program analysis tools with dynamic instrumentation,”
in 2005 ACM SIGPLAN Conf. on Programming Language Design and
Implementation (PLDI), Jun. 2005, pp. 190-200.

N. Agarwal, T. Krishna, L.-S. Peh, and N. K. Jha, “"GARNET: A
detailed on-chip network model inside a full-system simulator,”
in IEEE Int’l Symp. on Performance Analysis of Systems and Software
(ISPASS), Apr. 2009, pp. 33-42.

N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi, “Cacti
6.0,” HP Labs, Tech. Rep. HPL-2009-85, Apr. 2009.

C. Sakalis, C. Leonardsson, S. Kaxiras, and A. Ros, “Splash-
3: A properly synchronized benchmark suite for contemporary
research,” in IEEE Int’'l Symp. on Performance Analysis of Systems
and Software (ISPASS), Apr. 2016, pp. 101-111.

S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, “The
SPLASH-2 programs: Characterization and methodological con-

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

13

siderations,” in 22nd Int’l Symp. on Computer Architecture (ISCA),
Jun. 1995, pp. 24-36.

C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC bench-
mark suite: Characterization and architectural implications,” in
17th Int’l Conf. on Parallel Architectures and Compilation Techniques
(PACT), Oct. 2008, pp. 72-81.

A. Ros and S. Kaxiras, “Fast&furious: A tool for detecting covert
racing,” in 6th Workshop on Parallel Programming and Run-Time
Management Techniques for Many-core Architectures (PARMA) and 4th
Workshop on Design Tools and Architectures for Multicore Embedded
Computing Platforms (DITAM), Jan. 2015, pp. 1-6.

A. Ros and A. Jimborean, “A dual-consistency cache coherence
protocol,” in 29th Int’l Parallel and Distributed Processing Symp.
(IPDPS), May 2015, pp. 1119-1128.

——, “A hybrid static-dynamic classification for dual-consistency
cache coherence,” IEEE Transactions on Parallel and Distributed
Systems (TPDS), vol. 27, no. 11, pp. 3101-3115, Nov. 2016.

S. Kaxiras and A. Ros, “Efficient, snoopless, soc coherence,” in
25th IEEE International System-on-Chip Conference (IEEE SOCC),
Sep. 2012, pp. 230-235.

I. Singh, A. Shriraman, and W. W. L. Fung, “Cache coherence
for gpu architectures,” in 19th Int’l Symp. on High-Performance
Computer Architecture (HPCA), Feb. 2013, pp. 578-590.

A. Jimborean, J. Waern, P. Ekemark, S. Kaxiras, and A. Ros,
“Automatic detection of extended data-race-free regions,” in 15th
IEEE / ACM Int’l Symp. on Code Generation and Optimization (CGO),
Feb. 2017, pp. 14-26.

L. Iftode, J. P. Singh, and K. Li, “Scope consistency: A bridge
between release consistency and entry consistency,” in 8th ACM
Symp. on Parallel Algorithms and Architectures (SPAA), Jun. 1996,
pp. 277-287.

Alberto Ros received the PhD degree in com-
puter science from the University of Murcia,
Spain, in 2009, after being granted with a fel-
lowship from the Spanish government to conduct
the PhD studies. He hold postdoctoral positions
at the Universitat Politecnica de Valéncia and
at Uppsala University. Currently, he is Associate
Professor at the University of Murcia. He has
co-authored more than 60 research papers in
international journals and conferences. His re-
search interests include cache coherence proto-

cols, memory hierarchy designs, and memory consistency for multicore
architectures.

Carl Leonardsson received the PhD degree
in computer science from Uppsala University in
2016, specialized in automated verification in the
context of relaxed memory.

Christos Sakalis obtained his BSc in Computer
Science from Aristotle University of Thessaloniki
in 2013 and his MSc in Computer Science from
Uppsala University in 2015. He is currently pur-
suing a PhD at Uppsala University, researching
approximate computing. Before that he spend
some time at Codeplay (Edinburgh) working with
compilers and autovectorization. He is one of
the creators of the Splash-3 benchmark suite, a
modern version of the well established Splash-2
suite.

Stefanos Kaxiras is a full professor at Uppsala
University, Sweden. He holds a PhD degree in
Computer Science from the University of Wis-
consin. Previously he held positions at Bell Labs
(Lucent) and the University of Patras, Greece.
Kaxiras’ research interests are in the areas of
memory systems, and multiprocessor/multicore
systems, with a focus on power efficiency. He
. has co-authored more than 100 research pa-
a8 pers, awarded 16 US patents, participated in five
major European research projects, and received
grants from Sweden’s VR and VINNOVA agencies. He is a Distinguished
ACM Scientist and IEEE member.

