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ABSTRACT
In Total Store Order memory consistency (TSO), loads can be specu-
latively reordered to improve performance. If a load-load reordering
is seen by other cores, speculative loads must be squashed and
re-executed. In architectures with an unordered interconnection net-
work and directory coherence, this has been the established view
for decades. We show, for the first time, that it is not necessary to
squash and re-execute speculatively reordered loads in TSO when
their reordering is seen. Instead, the reordering can be hidden form
other cores by the coherence protocol. The implication is that we
can irrevocably bind speculative loads. This allows us to commit
reordered loads out-of-order without having to wait (for the loads to
become non-speculative) or without having to checkpoint committed
state (and rollback if needed), just to ensure correctness in the rare
case of some core seeing the reordering. We show that by exposing
a reordering to the coherence layer and by appropriately modify-
ing a typical directory protocol we can successfully hide load-load
reordering without perceptible performance cost and without dead-
lock. Our solution is cost-effective and increases the performance
of out-of-order commit by a sizable margin, compared to the base
case where memory operations are not allowed to commit if the
consistency model could be violated.
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1 INTRODUCTION
To maximize performance, dynamically-scheduled superscalar pro-
cessors execute instructions out-of-order and can speculatively trans-
gress the ordering rules of a memory consistency model. If caught,
they squash incorrect execution and return to a prior checkpointed
state that does not violate the desired consistency model. This ability
is built-in: checkpointing-and-rollback facilities are already pro-
vided to support speculative execution past predicted branches or
past unknown memory dependencies.

Example: Total Store Order (TSO) requires a replay of specula-
tive loads that violate load!load program order when a reordering
is “detected” by other cores. Load-load reordering can occur, for ex-
ample, when an older load has an unresolved address or if it misses
in the cache while a younger load hits (i.e., a hit-under-miss). The
younger load is speculative until the older load completes. A coher-
ence event such as invalidation for the address of the speculative
load means that the reordering has been “seen” by a core racing with
the load in question. In this case, the speculative load and all its
dependent instructions, which followed it in execution, are typically
squashed and must be reissued.

Motivation: Ideally, we would like a solution in which a specu-
latively reordered load (and its dependent instructions) would not
have to be squashed for consistency enforcement. The benefit, in this
case, would be to reduce squash and re-execute overheads, but the
opportunity is rare: it occurs only when the speculative reordering is
observed.

Nevertheless, such an approach could be invaluable when we
irrevocably bind reordered loads:

• in stall-on-use, in-order cores that continue executing after
a miss without a checkpoint, as for example the DEC Al-
pha 21164 EV5 that implemented early commit of loads
(ECL) [20];

• in decoupled access-execute accelerators where there is a
need for non-speculative decoupling via ECL, as for exam-
ple in DeSC [21];

• in out-of-order cores if we commit out-of-order [5].

Although our solution applies to each of the cases above, we
describe it for out-of-order commit which is the most general. For
out-of-order commit the known solutions to deal with load-load
reordering are:

(1) resort to a weak memory model [5, 20, 37];
(2) add additional speculation, i.e., rely on additional specula-

tive state and rollback mechanisms outside the core to undo
committed instructions and architectural state [29, 37];

(3) wait for it, i.e., refrain from committing a load out-of-
order until all previous memory instructions are performed
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and thus it is determined that the reordering has not been
“seen” [5];

(4) restrict the architecture and wait for it (less), i.e., rely on
a globally ordered network (e.g., Gigaplane [34]) and re-
frain from committing a load out-of-order until all previous
memory instructions are ordered in the network [5, 25, 39].

All four options are problematic. The first restricts the memory
model, excluding a vast installed base of machines and software. The
second one carries significant cost and complexity and a host of other
issues of undoing committed architectural state (e.g., undoing I/O
interactions). The third option means that the performance benefit of
out-of-order commit is suppressed in the common case to fend off
a rare occurrence. Unfortunately, this behavior is encountered not
only in parallel programs where we expect consistency enforcement,
but even in serial programs, as the processor cannot a-priori guar-
antee absence of sharing (e.g., coherent I/O). The fourth one is an
improvement over the third, provided that we restrict the architecture
to globally-ordered busses and snooping coherence [5, 34, 37] or
optical networks that provide Atomic Coherence [39]. The improve-
ment is that we only have to wait for previous memory operations
to become ordered, not performed. Unfortunately, even with this
improvement, there is nothing that can be done for a reordering that
involves unresolved addresses.

More importantly, as far as we know, there has never been a
prior solution which commits (reordered) loads out-of-order (without
waiting and without speculating) and can apply to any architecture,
including general unordered interconnection networks and directory
coherence —the prevailing architectural choices of today. Moreover,
even when we rely on ordered networks and snooping coherence,
there has never been any solution to commit a reordered load over
an unresolved address.

A New Solution: We offer a new perspective on how to reorder
loads in TSO without resorting to speculation. We show that it is
possible to have non-speculative load-load reordering for a general
unordered network and directory coherence: we allow irrevocable
binding of reordered loads (e.g., out-of-order commit), even when
the reordering is over loads with unresolved addresses, and we
guarantee at the coherence layer that TSO is preserved.

The main idea of this paper is simple: Consistency is violated
when an ordering transgression is seen but cannot be undone. When
a memory operation is about to “see” a transgression, the coherence
layer covers up the impending exposé by delaying the operation,
until the transgression disappears without being seen (Section 3). We
apply this idea in TSO, where if a store sees a load–load reordering it
would immediately make it illegal. In the off-chance this rare event
occurs, the coherence protocol steps in and delays the store in its
store buffer —an action that is inherently allowed in TSO— until
the load reordering cannot be seen any longer.

We modify the transactions of a base directory protocol to handle
these rare events without penalizing the performance in the common
case. Our solution requires negligible additional state at the cores
and does not add to the cost of coherence in the caches or the
directory. The end result is a deadlock-free and livelock-free solution
that yields higher performance for out-of-order commit or higher
efficiency for in-order commit processors by not having to squash
and re-execute.

Core 0 Core 1
Initially x=0; y=0;
ld ra,y st x,1
ld rb,x st y,1

Table 1: TSO does not allow ra==1 and rb==0. If ld rb,x hits
and irrevocably binds to an old copy of x (x==0) but ld ra,y
misses and sees the new value of y (y==1) we violate TSO.

Why TSO? Total Store Order (e.g., SPARC TSO [36], and
TSOx86 [33]) allows for store buffers and relaxes ordering from
stores to subsequent loads (relaxes the store!load order, but main-
tains load!load, store!store, and load!store). TSO implemen-
tations actually may reorder far more than what is implied by the
formal TSO definition, as long as such reordering is transparent to
the programmer. This is easily achieved with speculation and check-
pointing mechanisms that are readily available to support instruction-
level parallelism (ILP). The example of the speculative load-load
reordering in the beginning of this section briefly demonstrates the
mechanism.

In this paper, we focus on TSO for two reasons: First, TSO is
today one of the most widely used consistency models, as it strikes
a good balance between what the programmer expects as reasonable
and what the hardware can do for performance [35]. Second, inherent
in TSO is an important property: the ability to delay stores in memory
order with respect to loads. We exploit this property to untangle
reordered memory operations at the coherence protocol without the
danger of deadlock.

Evaluation and results: We implement an out-of-order commit
model in simulation (GEMS with an out-of-order processor model),
and with our solution at the coherence layer, we relax the requirement
to delay commit for load-load reordering, assuming an architecture
with an unordered interconnection network and directory coherence.
In the rare case when a store would uncover the reordering, our
solution at the coherence layer simply delays the store to preserve
TSO.

We quantify the effects of our approach on parallel workloads
(SPLASH and PARSEC) and show that: i) we introduce imper-
ceptible overhead with our modifications to the baseline directory
protocol; and ii) we achieve performance benefits of 15.4% on aver-
age (up to 41.9%) over in-order commit and 10.2% on average (up
to 28.3%) over out-of-order-commit without our solution.

2 NOW YOU SEE ME, NOW YOU DON’T
In this section, we explain the idea of non-speculative load–load
reordering in TSO. In the discussion that follows (including Sec-
tion 3) we assume a typical in-order-commit core. We explain how
non-speculative reordering can be exploited for out-of-order commit
in Section 4.

Assume that out-of-order execution allows the reordering of two
loads: the oldest load cannot issue because it has not resolved its
address or issues but misses in the cache, while the younger load
hits in the cache. We remind here that the younger load would be-
come speculative until the time that the older load is performed, i.e.,
resolves its address, issues, and gets its data. In the terminology of
Duan, Koufaty and Torrellas the younger load is M-speculative [14].
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Case Value y,x TSO interleaving
1� old, old ld y! ld x! st x! st y
2� old, new ld y! st x! ld x! st y
3� old, new ld y! st x! st y! ld x
4� old, new st x! ld y! st y! ld x
5� old, new st x! ld y! ld x! st y
6� new, new st x! st y! ld y! ld x
7� new, old ld x! st x! st y! ld y

illegal: ld y cycles to ld x

Table 2: 1�– 6�: the six possible legal TSO interleavings for the
example in Table 1. TSO is violated only when ld y binds to the
new value and ld x to the old. This corresponds to the illegal
interleaving 7�.

For simplicity, we will use the hit-under-miss example (also used in
Table 1 in the introduction) to explain the basic mechanism.

An invalidation for the address of the younger M-speculative load
sees the reordering. This results in the squash of the load (and all
following instructions) and its eventual re-issue, wasting both energy
and bandwidth. Assuming that we cannot squash the younger load
(for example, because we committed it out-of-order), we cannot
allow anyone to see the reordering.

Reordering that can violate TSO: The only way a reordering
can be observed is when the two reordered loads obtain their values
in a different order than the memory order the values were written
to the respective memory locations. Both memory locations must
change in a certain order for the load reordering to matter. This
implies a happens-before relation between the respective stores that
change the memory locations.

Consider the code in Table 1 where one core reads (loads) and
another writes (stores) the same two variables but in the opposite
order. Table 2 gives six legal TSO interleavings ( 1�– 6�) that preserve
the program order of the loads and the stores. The legal interleavings
allow only three combinations of values to be loaded by loads ld y
and ld x, respectively: {old, old}, {old, new}, {new, new}, where
old is the value before the write (e.g., 0) and new is the value after
the write (e.g., 1).

Swapping the loads in 1�, 5�, and 6� has no effect as it yields
the same result: {old, old}, {old, new}, and {new, new} respectively.
Swapping the loads in 2�, and 4� also yields valid results, {old,
old} and {new, new} respectively —albeit different from the initial
interleaving. This means that a reordering of the loads in these five
interleavings does not matter. Let us see now what happens if we
swap the loads in interleaving 3�.

Consider what would happen if the younger load, ld x, hits
in the cache and binds to the old value and the older load, ld y,
misses in the cache and sees the new value of y. This implies the
interleaving marked 7� in Table 2 occurs (i.e., 3� with the loads
swapped), which is illegal in TSO. Figure 1.A (left diagram) shows
why: the program-order between the loads and the program-order
between the stores must be respected, yet the values read by the
loads imply an interleaving that forms a cycle. The reason for the
cycle is apparent on the right side of Figure 1.A where we show how
time flows and how the program-order between loads is violated.

A

B

ld ra,y

ld rb,x st y,1

st x,1
Core0 Core1

x = 0, y = 0

          PO
(violated)

1

0
(old)

(new)

PO
HBHB

ld ra,y

ld rb,x st y,1

st x,1
Core0 Core1

x = 0, y = 0

PO

1

0
(old)

(old)

POInvLck

Ack

HB

HB

HB: happens-beforePO: program-order

ld ra,y

ld rb,x st y,1

st x,1
Core0 Core1

ld ra,y

ld rb,x st y,1

st x,1
Core0 Core1

How TIME flows

Figure 1: (a) Interleaving 7� implies that ld x must see an in-
validation from st x before ld y sees the new value from st y.
(b) Delaying the Ack of the invalidation, Inv, via a “lockdown,”
Lck, forces ld y to happen-before st x and consequently st y.

If we irrevocably bind ld x (e.g., if we cannot squash it because
we have committed it out-of-order), our only choice to maintain
TSO, according to Table 2, is for ld y to also bind to the old value
of y. If ld y sees the new value of y, written by core 1, we violate
TSO.

Observe now that the necessary condition for ld y to see the new
value of y is that st x must be performed: st x precedes st y in
core 1, therefore st x must be performed in the system (globally
visible) before y gets its new value. This is the key property that we
exploit in our approach: As long as we can guarantee that ld y will
read y before the store of x is performed we guarantee that ld y
will get the old value of y.

Furthermore, the necessary condition for ld x to read the old
value of x is for core 0 to have a cached copy of x created before
st x.1 This means that core 0 must see an invalidation for x before
ld y can see the new value of y. This gives us the mechanism to
delay st x.

More specifically, when we get the invalidation for x, we delay
its acknowledgement, and therefore we delay st x by withholding
its write permission, until ld y gets the old value. This is illustrated
in Figure 1.B (left diagram), where the acknowledgment (Ack) to
the invalidation (Inv) of st x is delayed with a lockdown (Lck)
of ld x until ld y performs. The untangling of the reordering in
time is shown in Figure 1.B in the diagram on the right. Effectively,
both loads happen before both stores (interleaving 7� turns into
interleaving 1� in Table 2) and their reordering does not matter. We
explain the lockdown in the next section.

There are four important observations to be made here:
First, what we do is perfectly legal: protocol correctness cannot

depend on the latency of the response to an invalidation, as long
as we guarantee that we respond to it. We delay the invalidation
response until ld y is performed.2

1It does not matter if this copy is created by ld x or if it preexisted.
2Worst case delay is when ld x waits for a number of dependent loads to resolve. The
number of dependent loads can be up to one less than the size of the load queue (LQ).
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Core 0 Core 1 Core 2
Initially x=0; y=0; x cached in Core 0
ld ra,y st x,1 while(rc==0) ld rc,x
ld rb,x st y,1

Table 3: st x and st y are ordered by a happens-before rela-
tionship. ld x commits out-of-order and delays the invalidation
of x until ld y completes. Delaying st x, delays st y until ld y
completes.

Second, delaying the write of x by withholding the response to
its invalidation will delay the write on y even if this write is done by
a third core, as long as x and y are updated in a transitive happens-
before order dictated by program-order and synchronization-order.
See the example in Table 3.

Third, if st x and st y are on different cores and independent,
i.e., their happens-before order is established purely by chance and it
is not dictated by program-order or synchronization-order, delaying
st x has no effect on st y and does not prevent ld y from seeing
the new value of y. However, since there is no program-order or
synchronization-order to enforce between the stores, the stores can
be swapped in memory order. In fact, delaying the invalidation
response to st x will move st x after st y in memory order,
yielding a legal TSO interleaving in the case where ld y reads the
new value of y.

Fourth, a miss-under-miss scenario where the read requests are
reordered in the network, is equivalent to the hit-under-miss scenario.
If the younger load, ld x, reads the old value of x, the underlying
protocol (with 3-hop read transactions with Unblock [26]) ensures
that, in that case, ld x gets a cached copy of x (that will be inval-
idated) before ld y can see the new value of y. This makes it the
same as the hit-under-miss scenario. The hit-under-miss (Figure 1)
and miss-under-miss are two cases that can lead to the {new, old}
case in Table 2. If both loads hit, or if the older load hits but the
younger misses, there is no such danger.

3 LOCKDOWNS AND WRITERSBLOCK
In the previous section we show that, to preserve TSO, it is not
necessary to squash a reordered younger load upon receiving an
invalidation —it suffices not to return an acknowledgment until the
time that the older load is performed. The mechanism to achieve this
is the lockdown: When a load performs out-of-order with respect
to any older load in the same core, it locks down, i.e., it will not
acknowledge invalidations until all previous loads perform.

However, a lockdown by itself is not enough. In addition, we need
to guarantee that:

(1) A store is blocked (not made globally visible) until all
existing lockdowns for the store’s cacheline address, on all
cores, are lifted.

(2) No further writes for the address in question can take place
in memory order before the blocked store is allowed to be
performed.

This sets an upper bound for the delay, which is still less than typical timeouts to detect
errors (e.g., dropped messages) which work at a much larger timescale; we assume that
properly adjusted timeouts pose no problem for our approach.

ordered w.r.t.l unordered w.r.t.l
not performed SoS Load —

performed Completed M-Speculative (lockdown)
Table 4: Terminology for loads. “Ordered w.r.t.l” means ordered
with respect to loads. “SoS” means Source of Speculation.

completed ! unordered
p p SoS (n-p) n-p n-p M-speculative (p) n-p ...
Head LQ (Program order!) Tail
Table 5: SoS load. “p”: performed; “n-p”: non-performed;

(3) Loads are never blocked, so that the lockdowns can be lifted
to unblock the store.

We achieve these goals by introducing a new transient directory
state that blocks a coherent write request from completing until the
relevant lockdowns are lifted, yet at the same time, never blocks the
loads’ read requests from accessing the current value of the data. This
new transient coherence state is called WritersBlock and we refer
to the resulting coherence protocol as the WritersBlock protocol.
Typically, transient directory states for writes block both new reads
and new writes. In WritersBlock we decouple read blocking from
write blocking and enforce only the latter.

WritersBlock coherence is an extension of a typical, invalidation-
based, MESI directory protocol (e.g., as in GEMS [26]) to support
cores that can set lockdowns, while maintaining compatibility for
cores that use squash-and-re-execute to enforce TSO on speculative
reordering.

3.1 Setting the Stage
In this paper we distinguish loads and stores from reads and writes.
Loads and stores are instructions (that issue, execute and commit)
while reads and writes are transactions of the coherency protocol.
They differ in granularity (loads and stores operate on bytes, words,
etc., while reads and writes operate on cachelines) but more impor-
tantly they differ on how we consider them to be performed.

3.1.1 Loads and Reads. Table 4 summarizes our terminology for
loads. We say that a load is performed when it receives data; prior
to that, the load is non-performed. We say that a load is ordered
with respect to loads in its core when all prior (older) loads in
program order are performed; otherwise the load is unordered. Since
we only focus on load-load reordering, in this paper we shall use the
term ordered to mean ordered with respect to loads and differentiate
otherwise.

An ordered and performed load is completed. A load can be
ordered without necessarily having been performed. This is a special
and important case. There can be only one such load in the core. We
designate it as the Source of Speculation or SoS load. It means that
all loads before it are completed and all loads after it are unordered
(see Table 5).

Finally, unordered loads that are performed are M-speculative
loads [14]. A load goes into lockdown when it becomes M-speculative,
i.e., it is performed out-of-order with respect to older non-performed
loads. A load exits lockdown when it becomes ordered.
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Figure 2: Lockdown concept. A: squash-and-re-execute core; B:
lockdown core

A load can be speculative for other reasons. We define a load
to be control-speculative (C-speculative) if it is on a speculative
path (i.e., past unresolved branches); and dependency-speculative
(D-speculative) if prior stores have unresolved addresses. If a load is
squashed as C-speculative or D-speculative, its lockdown is ended.

A read is the coherent request of a load at cacheline granular-
ity (often denoted as a GetS transaction). We say that a read is
performed when it brings the data in the L1.

3.1.2 Stores and Writes. Stores enter the FIFO store queue (SQ)
when they issue. They commit in program order when they have both
the address and the data. The SQ keeps the correspondence of stores
to the loads in the LQ. It allows stores to commit when all prior
loads are ordered. We are not relaxing the load!store order as it only
delays the commit of stores which has no significant performance
impact in TSO.

Committed stores leave the SQ and enter the FIFO Store Buffer
(SB) that enforces TSO’s store!store. We say that a store is per-
formed when it makes its value globally visible by writing it in the
cache. A store writes the cache when it reaches the head of the SB
and has write permission.

Request for write permission can occur as early as the store re-
solves its address. A coherent write request, at cacheline granularity
(typically a GetX or Upgrade), prefetches the cacheline (if needed)
with write permission.3 We say that a write is performed when it
gets the data with write permission in the cache. Writes are not
bound by the program-order of the stores that initiate them and can
be performed in any order.

3.2 Lockdowns
Figure 2 contrasts the operation of a squash-and-re-execute core,
(Figure 2.A) with one having a lockdown mechanism (Figure 2.B).
The example uses the ld ra,y and ld rb,x instructions from our
previous examples but with additional loads interspersed in-between.

3If write permission has been lost by the time the store reaches the head of the SB, the
store requests write permission again and writes the cache before it relinquishes the
permission.

We depict only the core’s LQ which keeps loads in program order
(PO).

LQ entries are tagged with the load address and show the status of
the instruction: h: hit, m: miss. The speculatively performed load is
shaded light-red. Loads exit the head of the LQ (FIFO) at the same
time they commit and are removed from the reorder buffer (ROB).

As it is shown in Figure 2.A, an invalidation for address x results
in the immediate squash of ld x and all following (younger) loads
in the LQ. Cache line x is invalidated; further accesses to x miss and
go to the directory.

Figure 2.B, depicts the lockdown approach. Each LQ entry is aug-
mented with an extra “seen” bit (S). The S bit is set when some other
core sees this load execute out of order, i.e., when an invalidation
matches the target address of the load while the load is in lockdown.
In contrast to the squash-and-re-execute case, loads are not squashed
upon invalidation.

The S bit withholds the Ack for the invalidation until the time
the load exits the lockdown mode, i.e., becomes ordered (all the
loads that precede the load are performed) or is squashed (if it is
C-speculative or D-speculative and we have a misspeculation). At
this point if the S bit is set, we return the acknowledgement to the
invalidation.

We can potentially have as many lockdowns as unordered loads
in the LQ, irrespective of their target address. In fact, if we have mul-
tiple M-speculative loads on the same (cacheline) address, they can
be all in lockdown. In this case, the S bit is set for the youngest load.
If this load is squashed because it is C-speculative or D-speculative,
the S bit is transferred to the next youngest load that survives the
squash. Only when the youngest load becomes ordered (or is the last
one for this cacheline address to be squashed) the invalidation Ack
is returned.

3.3 WritersBlock: Block the Writes
With the WritersBlock protocol we aim to achieve three goals: First,
we need to put the directory entry in a state that will hold the write
in waiting until all the lockdowns are lifted. Second, we must block
all new writes. Third, at the same time, we must allow new reads
(loads) that reach the directory to see the current value of the data,
i.e., the last value before the pending write.

Figure 3 contrasts the base protocol for writes with the modifica-
tions that we implement in the WritersBlock protocol (highlighted
in red). Figure 3 shows the directory, the writer, and one sharer
(only the LQ of the sharer is shown). There may be more sharers
(not shown) or just the one shown in exclusive or modified state. In
the lockdown case (Figure 3.B) the sharer sets a lockdown on the
address.

Base protocol: Upon a write miss the writer sends a write request
to the directory (Figure 3.A, step 1�). The directory blocks for reads
and writes to the target line until the write transaction completes.
The directory sends invalidations (Inv) to the sharers (Figure 3.A,
step 2�). Invalidation acknowledgments (Ack) are returned to the
writer (Figure 3.A, step 3�). The writer gets the data either from
the directory (it has an up-to-date copy) or from the single exclu-
sive/modified copy. In this case, the exclusive/modified copy sends
the invalidation acknowledgment and the data in the same message
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(Ack+Data). When the writer has the data and all the acknowledg-
ments (all sharers have been invalidated) it unblocks the directory
(Unblock).

WritersBlock protocol: The common case of a write that does
not hit a lockdown remains unchanged from the base protocol. How-
ever, an invalidation that hits a lockdown sends a Nack to the direc-
tory (Figure 3.B, step 3�).

It is this Nack that puts the directory entry into the WritersBlock
state which blocks all writes but allows reads to proceed.

An important detail here is the way we guarantee that the directory
supplies the correct data. The shared level (e.g., LLC) may have
stale data when there is a single exclusive or modified copy that
is invalidated. In this case, the data are simultaneously sent to the
shared level along with the Nack (Nack+Data) and to the new writer
(Data), as depicted in Figure 3.B, step 3�. Thus, the readers are
provided with a place to access to the data, as the exclusive copy
is no longer accessible via the directory —it has been invalidated—
and the new writer is not visible yet.

When a lockdown is lifted, an Ack must be returned to the writer.
Lockdowns do not retain the identity of the writer as there is only
one S bit to indicate that an invalidation has occurred but not who
is invalidating. The Ack is redirected to the writer via the directory
entry where the writer’s identity is known (Figure 3.B, steps 4�, 5�).
When the writer has the data and all of the acknowledgments it
unblocks the directory.

To summarize, the major changes over the base protocol for writes
are:
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• A lockdown returns Nack to the invalidation, putting the
directory entry in the WritersBlock state that allows reads
(of the latest “old” data) but blocks all writes. The current
writer awaits the Ack to complete its transaction.

• The Ack of the invalidation takes more time and redirects
through the directory to the writer.

• Data are sent to both to the directory and to the writer if the
invalidated cache line was in exclusive state.

3.4 WritersBlock: Admit the Reads
The common case of a read to a directory entry not in WritersBlock
remains unchanged from the base protocol. Reads are 3-hop transac-
tions (e.g., GetS request, Data, Unblock), either finding the data in
the shared level cache, or redirecting via the directory to the cache
that has the exclusive copy. Here, we discuss what happens when a
read finds the directory in WritersBlock.

Consider a load that misses in the cache, sends a read to the
directory, and finds the directory entry in WritersBlock. Such a read
is allowed to access the latest version of the data before the write,
but cannot see the new value of the write. The read catches the write
midway, but the outcome is identical as if the read happened before
the write. Taking this view, the reader core should see no difference
than if it was one of the initial sharers at the time of the write, had a
copy of the current version of the data, and was invalidated by the
write. WritersBlock implements this behavior. There are two ways
to do this:

Option 1: Let the reader cache a copy of the data and send a
new invalidation. Consider what would happen if we opted to return
cacheable copies to the reads: The directory has already sent all its
invalidations for the initial sharers and is waiting for an Unblock
from the writer. If new read requests obtained cacheable copies,
they would have to be invalidated before the writer is allowed to
perform and Unblock the directory. The directory would have to go
into another round of invalidations for the newcomers.
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The danger is that this can continue in perpetuity and livelock.
Spin loops waiting for a write to set a value are the prime example:
new read requests arrive at a rate that forces the directory to indefi-
nitely delay the write by having to constantly invalidate new sharers.
Obviously, we cannot consider this option further.

Option 2: Serve an uncacheable version of the data without
registering the reader in the sharing list; i.e., an uncacheable tear-
off copy of the data [23]. In this way, there are no new sharers to
invalidate.

Figure 4 depicts the uncacheable tear-off protocol for reads. Core
1 issues a read request for a load that misses (Figure 4, step 1�). The
directory, in WritersBlock, replies with an uncacheable copy of the
data that can be used at most once (Figure 4, step 2�). Since the
copy is not cached, the directory does not track it.

Consider, however, what happens when the load instruction that
causes the read is the unordered load a� in Figure 4. If load a� uses
the tear-off copy to perform and become M-speculative, it should
prevent the writer from performing. It is not correct for the writer to
be performed as this allows load b�, the SoS load, to see a new value.
As we explain in Section 2, this violates TSO. The problem is that
there is no mechanism for load a� to maintain the WritersBlocks
until load b� is performed, as there is no invalidation Ack to delay.

For this reason, load a� is not performed and must repeat the
request anew. We optimize this case by only repeating the request
when the load becomes ordered, i.e., when it becomes the SoS load.
It is always correct for the ordered SoS load (e.g., load b�) to be
performed immediately using the uncacheable tear-off copy.

As a further optimization, a core refrains from issuing new (un-
ordered) loads for any address for which there is already a lockdown
and an invalidation has been received. We know, in this case, that
such new loads in this core will receive uncacheable tear-off copies
that they cannot use.

To summarize, we choose to implement Option 2 for reading from
a WritersBlock state as this is a livelock-free solution. Our solution
has an important implication:

There are no new lockdowns after invalidation: A write can
only be blocked by a fixed number of loads that are in lockdown
at the time of invalidation. New loads in the invalidated cores
and new loads in newcomer cores are not allowed to block
anew an already blocked write.

3.5 Ensuring Safe Passage for SoS Loads
WritersBlock prevents stores from being performed by blocking their
write transaction until the lockdowns that caused the WritersBlock
are lifted. As we have explained, lockdowns are lifted when the
M-speculative loads become ordered. The key to understanding how
deadlocks can be avoided is the following observation: The ability
of an M-speculative load to become ordered hinges solely on the
ability of the SoS load to be performed—whichever the SoS load
might be at any point in time. If the SoS load is blocked because of
a WritersBlock, a deadlock ensues. The condition that we need to
guarantee to avoid deadlocks it the following:
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Figure 5: (A) Directory deadlock, (B) MSHR deadlock.

A SoS load cannot be blocked anywhere in the memory system.

WritersBlock changes the behavior of the directory and the behav-
ior of the write transactions. This creates only two situations where
a SoS load can be blocked:

• attempting to bypass a WritersBlock entry at the directory;
and

• attempting to bypass writes that are blocked in the MSHRs
of their core.

We explain with examples how these two situations can possibly
give rise to deadlocks and we describe our measures to avoid them.
To discuss deadlocks, we use a blocked-by dependence: operation
x is blocked-by y, if y prevents x from being performed. Figure 5
shows the two deadlock scenarios: one at the directory and one at
the MSHRs.

3.5.1 Safe Passage through the Directory. The purpose of the
WritersBlock state in a directory entry is to block writes but allow
reads to proceed. This is guaranteed for reads that access the same
address as the directory entry.

However, a WritersBlock on address a can inadvertently block a
read on a different address b. This could happen when a read on b
needs to evict directory entry a (which is in WritersBlock).

Figure 5.A shows this case: a reader core (core k) and a writer
core (core j) deadlock because of the eviction of the WritersBlock di-
rectory entry. Let us follow the example4 to see why this can happen:
4In the figure, program order is from left (older) to right (younger). Addresses for
stores and loads refer to the size of the register loaded or saved, but addresses for write
misses (e.g., GetX, Upgrade) and read misses (e.g., GetS) refer to the cache line size
that contains the item loaded or saved. In other words, false sharing is taken into account.
Blocked-by dependencies are depicted by an arrow with a dot on its tail.
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A store on address a in core j (represented as storej(a)) requests
write permission with a write request: writejWB(a) which is blocked
by the lockdown of a load on address a in core k (loadkLK(a)) via
the WritersBlock state DirWB(a), (steps 1�, 2�, 3�).

The question is whether the SoS load in core k is guaranteed to
be performed. If the SoS load’s address resolves to b, different than
a, and b conflicts with a in the directory, we have a cycle (and dead-
lock). The directory entry cannot be evicted until the WritersBlock
is lifted. This in turn depends on writej

WB(a) being performed
and writej

WB(a) cannot be performed unless the directory entry is
evicted to allow the SoS load, loadkSoS(b), to be performed.

A variation of the above scenario is when there is no writer.
The eviction of Dir(a) causes the directory entry to enter Writers-
Block through the eviction-invalidation it sends to core k that finds
loadk

LK(a) in lockdown. In this case, the WritersBlock must remain
until the lockdown is lifted, otherwise a future writer might miss the
lockdown as there will be no way to reach it after the eviction of the
directory entry.

Solution: Instead of trying to evict a WritersBlock entry, the load
simply obtains an uncacheable tear-off copy of the data and performs
without needing a directory entry.

Increased use of uncacheable tear-off copies (especially when they
must be brought from memory), could manifest as a performance
problem as the effectiveness of caching is reduced. However, the
standard practice for evictions renders it a non-issue: Eviction is
performed on the side, in an eviction buffer (e.g., MSHRs). This
allows a load to immediately claim its directory entry and obtain a
cacheable copy of the data. The WritersBlock entry under eviction is
put in the eviction buffer until it is safe to discard, after the blocked
write completes.

It is only in the rare case when the eviction buffer is full, and the
read cannot allocate a directory entry, that the read turns into an un-
cacheable transaction. Deadlock is thus avoided while uncacheable
reads are practically eliminated.

3.5.2 Safe Passage through the core’s MHSRs. The second situa-
tion where a SoS load could be potentially blocked is when it tries
to bypass blocked writes in its core’s MSHRs. TSO allows loads to
bypass stores in the store buffer, but there is a problem with their
writes. The problem lies with a common optimization that coherence
protocols do for simplification. If a load’s cacheline address matches
a store’s cacheline address and the store has an outstanding write
request in the memory system, the load piggybacks on the same
MSHR and awaits the resolution of the outstanding write request.5

The write request, however, can be blocked in WritersBlock.
Figure 5.B shows how a deadlock can arise in this case. As

in the previous example (Figure 5.A), writejWB(a) is blocked by
loadk

LK(a) in core k (steps 1�, 2�, 3�). Another write from core k,
writek(a), is blocked in its MSHR by DirWB(a) in WritersBlock.

Assume now that the SoS load in core k, loadkSoS(*), resolves its
unknown address “*” to a2 which is in the same cacheline a as a1 and
piggybacks on the same MSHR used by writek(a) for this cache-
line (step 5�). The SoS load will not be performed, as it is blocked

5Of course, as per TSO, if the load’s address matches exactly the store’s address, the
load takes on the store’s value available in the store buffer.

by writek(a), which in turn is blocked by writej
WB(a) (in Writers-

Block at DirWB(a)), blocked by the lockdown of loadkLK(a), which
is prevented from lifting until loadkSoS(a2) itself is performed.

Solution: A SoS load launches a read on a new MSHR to bypass
a potentially blocked write.

It is only when a load becomes the SoS load, we need to launch a
read on a new MSHR. As a further optimization, we return a hint to
any write that enters or encounters a WritersBlock (the hint message
is not shown in Figure 3), so we know when a write is blocked. A
SoS load initially piggybacks on the MHSR of a write and waits. If
and when it is determined that the write has blocked, a new read is
launched on a new MSHR. This new read receives an uncacheable
tear-off copy as described in Section 3.4.

As our approach may require a new MSHR to be allocated for
the SoS load, we assume resource partitioning at all levels of the
hierarchy: There is at least one MHSR always reserved for SoS
loads; stores or evictions cannot hog all MHSRs.

3.5.3 Summary. Deadlocks could arise because of resource con-
flicts or resource exhaustion: i.e., when the read of a SoS load con-
flicts with a blocked write on the same MHSR, or when it conflicts
with a directory entry in WritersBlock. We have a simple strategy to
avoid these deadlocks:

SoS loads bypass the resources (MSHRs and directory entries)
on which they can block; their reads become uncacheable.

As a result, SoS loads cannot be blocked by writes, and conse-
quently by stores, directly or indirectly, anywhere in the memory
system and are guaranteed to be performed. This means that lock-
down loads are guaranteed to become ordered.

3.6 Ensuring that stores are performed
A store can only be blocked via its write request by the lockdown
loads of the cores it invalidates. Their number is fixed, since we allow
no new lockdowns for an address in WritersBlock. Since lockdown
loads are guaranteed to become ordered, writes are also guaranteed
to be performed.

Stores are guaranteed to be performed even though they must be
performed in program order (i.e., when they reach the head of the
FIFO store buffer), but can send their write request in any order (e.g.,
to prefetch write-permission). The reason is that it is the completion
of the write transaction that lifts the WritersBlock —not the store
being performed. These two events are decoupled: A store may be
performed only when it reaches the head of the FIFO store buffer
(and still has write permission), but its write may be sent earlier and
be performed without any ordering restriction with respect to other
writes in the same core. This ensures that stores from different store
buffers do not deadlock when sending write prefetch requests.

3.7 Atomics
Atomic read-modify-write (RMW) instructions represent a special
case for all consistency models and out-of-order architectures [35]
—it is not different in our case. An atomic RMW instruction is an
atomic load-store pair. In TSO, the load of an atomic instruction is
not allowed to bypass stores in the store buffer. This would violate
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either the store!store order or the atomicity of the instruction [35].
Thus, the store buffer needs to be drained for the atomic instruction
to execute. In WritersBlock coherence, however, in order for the
store buffer to drain, it may be necessary for the load of the atomic
data to bypass blocked stores in the store buffer.

Furthermore, even if the store buffer drains without a problem,
the load of an atomic instruction behaves as a store. In fact, in many
implementations the load issues a write transaction to obtain write
permission. This means that the load itself can block in Writers-
Block.

Thus, the load of an atomic RMW violates the basic premise of
our approach, that SoS loads cannot be blocked. In other words, the
load of an atomic RMW can never be a source-of-speculation (SoS)
load. This means that no load following an atomic instruction in the
ROB can go into lockdown mode. If we allowed this, deadlock could
easily ensue.

For this reason, we default to the behavior of the baseline core
architecture: If the underlying core supports squash-and-re-execute,
loads following an atomic instruction can issue before the atomic
instruction executes, but may get squashed. If the underlying core
does not support squash-and-re-execute, loads cannot issue until the
atomic instruction executes. In this case, however, prefetches can be
issued instead and loads can use the prefetched values only after the
atomic instruction is performed.

3.8 Cache Evictions
With respect to speculative reordering in TSO, we must distinguish
between evictions that do not remove the evicted line from the
directory’s sharing list (e.g., as in OpenPiton [4]), and evictions that
remove the evicted line from the sharing list. We will call the former
silent evictions and the latter non-silent evictions.6 Various protocols
implement one of the two eviction methods or even both, choosing
between them based on the evicted line’s state.

Non-silent evictions in the baseline protocol must cause a squash
of M-speculative loads and all instructions that follow. The reason
is that if a line is evicted, it will not be notified if it is written: the
directory will not send an invalidation to a non-sharer. This can
lead to a TSO violation in the example of Table 1 and Figure 1.
Conservatively, a non-silent eviction squashes M-speculative loads
in the off-chance that a write would occur in the reordering window.

Silent evictions, on the other hand, do not query the LQ, mini-
mizing squashes. The downside, in this case, is that we may have
invalidations that do not find a cache line in the L1 —not possible
with non-silent evictions— which also must query the LQ.

Depending on the eviction type in the baseline protocol, in our
approach:

• Silent evictions in the baseline remain silent.
• Non-silent evictions in the baseline that do not cause a

squash remain non-silent.
• Non-silent evictions in the baseline that cause a squash,

i.e., under a lockdown in our approach, become silent in-
stead of squashing. This guarantees that a write during the
reordering window will observe the lockdown and block

6Albeit this naming convention may not accurately reflect the communication with the
directory as this depends on the state (e.g., clean, dirty) of the data.

accordingly. In the remote case of an eviction under a lock-
down, we trade off a squash with the possibility of an extra
invalidation that must reach the LQ even in the absence of
a hit in the cache. This tradeoff is to our advantage.

We chose our baseline protocol with silent evictions for shared
lines, resulting in 9.6% lower traffic (25% lower in some bench-
marks) and with similar performance as a baseline with non-silent
evictions [17].

4 USE CASE: OUT-OF-ORDER COMMIT
Our motivation for non-speculative load-load reordering in TSO is
the potential for irrevocable binding of loads. This opens up a slew of
possibilities, from non-speculative execution to out-of-order commit,
past a non-performed load. In this paper, we use out-of-order commit
to demonstrate the performance benefits of our approach.

Speculative vs. safe out-of-order commit: In general, there are
two classes out-of-order commit proposals: those that use extra,
uncore (outside the core) checkpoint-and-rollback mechanisms to
allow speculative retirement [7, 11–13, 22, 27, 29]; and those that
only commit when it is safe to do so [1, 5, 15, 21, 25, 37, 38].

Checkpoint-and-rollback approaches extend the speculative mech-
anisms of a processor beyond the dynamic instruction window. Al-
locating uncore checkpointing and rollback resources defeats the
purpose of using out-of-order commit for energy-efficiency and dras-
tically complicates the designs. Invariably, such work grapples with
reducing the excessive cost and complexity of speculation [7, 13].

In contrast, a more conservative approach of safe out-of-order
commit has the potential for higher efficiency as it introduces no
additional checkpointing cost. The safe approach was articulated in
the work of Bell and Lipasti [5] in the form of six limiting conditions.
The necessary conditions to allow an instruction to safely commit
out-of-order are:

(1) The instruction is completed. Obviously, instructions can
commit only after their completion.

(2) Registers: Register write-after-read (WAR) hazards are re-
solved (i.e., a write to a particular register cannot be per-
mitted to commit before all prior reads of that architectural
register have been completed).

(3) Branches: Previous branches are successfully predicted.
This condition simply says that we can commit only while
on the correct path of execution.

(4) Stores: We cannot commit speculative loads (or their de-
pendent instructions) if an earlier store has an unresolved
address (unknown memory dependence).

(5) Exceptions: No prior instruction in program order is going
to raise an exception.

(6) Consistency: We cannot commit loads and stores unless
the global order is not perturbed in a way that violates the
consistency model: i.e., the proper memory order for all
previous memory operations is already established.7

Often, the first five conditions resolve fast (on the order of instruction
latencies). The branch and the unresolved-store-address conditions
typically resolve in a few cycles unless the corresponding instruc-
tions depend on a miss. The sixth condition, however, typically
7This condition covers previous loads with unresolved addresses that were lumped in
condition 4 by Bell and Lipasti [5].
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Figure 6: Block diagram of Out-of-order-commit microarchi-
tecture. Shaded structures participate in out-of-order-commit.

requires significant time to resolve, as loads are reordered due to
misses and consistency enforcement requires that we wait for these
misses to be resolved.

Example: In an out-of-order commit core, for the same TSO
example given in Section 1, we have the opportunity to commit the
younger load and its dependent instructions, provided of course that
they satisfy the rest of the conditions listed above (for example, the
instructions are not on an incorrect path). However, in an unordered
network and with directory coherence, until it is determined that the
reordering has not been caught by anyone, they cannot commit: If
instructions irrevocably commit out-of-order while transgressing the
ordering rules of a consistency model (in this case TSO), there is no
checkpoint-and-rollback to repair the damage if caught. Lockdowns
and WritersBlock coherence address exactly this problem.

4.1 Out-of-order-commit microarchitecture
The out-of-order-commit microarchitecture model of this paper fol-
lows the Bell-Lipasti design [5]. As a base case we assume out-
of-order commit only when it is safe to do so according to the
six Bell-Lipasti conditions. A detailed analysis of the Bell-Lipasti
conditions appears in [3].

Bell and Lipasti describe and study three techniques for the imple-
mentation of an out-of-order-commit microarchitecture: a collapsible
ROB design that removes gaps left from committed instructions; a
design that fills gaps with new instructions and keeps program order
with an indirection; and a design that leaves gaps empty until they
reach the head of the ROB where they are discarded. Performance
analysis shows that closing or filling the gaps is necessary to obtain
benefits [5]. From the first two options they settle on a collapsible
ROB design as it naturally keeps program order in its entries as
opposed to the alternative design that significantly complicates the
commit logic (testing for the six conditions).

Figure 6 shows the block diagram of the core we model in this
paper. Shaded structures are involved in out-of-order commit. In our
base model, the ROB and the Load Queue (LQ) are collapsible, and
the Store Queue (SQ) and the Store Buffer are FIFO. We add a small
table (“LDT”) next to the collapsible LQ (see Subsection 4.2).

4.2 Lockdowns for a Collapsible LQ
The benefits of out-of-order-commit come from committing loads
and dependent instructions out-of-order allowing a collapsible ROB
to bring in more instructions without stalling. However, a non-
collapsible LQ may become a bottleneck as pressure increases from

the collapsible ROB. Increasing LQ size might not be the best option
(it is an expensive CAM), hence the preference is for a collapsible
LQ. In this paper we consider a collapsible LQ, in which committed
loads are removed from any position.8

At any time, there is only a small number of M-speculative loads
that can commit out-of-order. The reason is that after committing a
few loads out-of-order, it becomes increasingly likely that one of the
Bell-Lipasti conditions will kick in to prevent further out-of-order
commit [5]. If an M-speculative load commits out-of-order, it exports
its lockdown to a small structure at the L1, called the Lockdown Ta-
ble (LDT). Each committed load corresponds to an entry in the LDT.
A small number of lockdowns (e.g., 32) is kept in the LDT and in
the rare case we reach this limit, we stop committing M-speculative
loads out-of-order. As in the case of a non-collapsible LQ, we allow
multiple lockdowns in the LDT for the same cacheline address and
we return an Ack (if there was an invalidation) only when the last
lockdown in the LDT for this address is lifted. Similarly, the LDT
allows multiple lockdowns for the same cache line address (one per
load). On invalidation, the S bit is set for all LDT entries of the same
address, but the Ack is sent only when the last lockdown in the LDT
for this address is released. This corresponds to the same condition
mentioned previously: Only when the youngest M-speculative load
for a given address becomes ordered is the invalidation Ack returned.

Incoming invalidations search the LDT associatively using the
cacheline address and set the “seen” S bit of the matching LDT entry.
The key to correct operation is to release each lockdown and return
the invalidation Ack (if the S bit is set) when the corresponding
M-speculative load would have become ordered. To achieve this,
having removed the committed load from the LQ, we assign the
responsibility of releasing its lockdown to its immediate older non-
performed load, (i.e., the first non-performed load towards the SoS
load). If that older load also commits while being M-speculative, it
passes all the lockdowns for which it is responsible (including its
own) to the next non-performed load, and so on, until we reach the
SoS load. When the SoS load is performed it lifts all the lockdowns
it has been assigned. The lockdowns are efficiently encoded in the
LQ entries as a bitmap index to the LDT entries.

The LDT endows a collapsible LQ with the lockdown functional-
ity of a non-collapsible LQ.

LDT Example: Figure 7 shows the operation of the LDT in
relation to a collapsible LQ. The example is the same as in the in-
order commit case, shown in Figure 2. Each LDT entry contains the
address of a lockdown, and the corresponding “seen” bit, S. When a
load commits out-of-order it is removed from the LQ, for example,
ld x in step 1�. At this point the lockdown is transferred to the LDT
by allocating a new entry, e.g, LDT[1].

The responsibility to lift the lockdown of ld x is passed to the
first available older load in the LQ, ld j, by assigning it the index of
LDT[1].9 More than one index can pile up on a load. For example, in
step 2�, ld k commits, sets its lockdown in LDT[3], and passes the
lockdown index to the LQ entry of ld j. Any load that is removed
from the LQ transfers its set of indices (the bitmap that also encodes

8In the evaluation, we use the same size LQ (number of entries) in in-order commit and
OoO-commit; the effective size in the collapsible LQ is larger as we free up committed
loads.
9Although indices are encoded in a bitmap, in the figure we show them as individual
entities for clarity.
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Figure 7: LDT/Collapsible LQ operation

its own index) to the first available LQ entry on its left. Between
steps 2� and 3�, ld j “guards” two more lockdowns (1 and 3). At
the moment it becomes performed and ordered in step 3�, it lifts
its lockdown if it had set one10 and releases all the lockdowns in
its set of indices. When lockdowns are lifted, Acks are sent for the
invalidations that may have arrived in the interim. This is handled by
the “seen” bit in each lockdown entry in LDT. Ld x which committed
out-of-order is “seen” by an invalidation that matched the lockdown
LDT[1] in step 2�, and set the “seen” bit. When the lockdown is
lifted in step 3�, the invalidation is acknowledged.

5 EVALUATION
Our simulation infrastructure is based on the GEMS simulator [26],
which offers a detailed timing model of the memory hierarchy, con-
nected to a x86-like in-house out-of-order processor model that
provides TSO and is driven by a Sniper [9] front-end. The intercon-
nect is modeled with GARNET [2]. We run the applications from
the SPLASH-3 [32] and PARSEC 3.0 [6] benchmark suites, with
simsmall inputs, and present results for their parallel region.

We simulate a multicore processor consisting of 16 out-of-order
cores. The WritersBlock coherence protocol extends the functional-
ity of the directory-based protocol (MESI states) provided by GEMS,
to support blocking of writes and delivering uncacheable read copies.
The processor model has been extended to implement out-of-order
commit (OoOCommit) with a commit depth equal to the size of the
ROB. OoOCommit in a directory protocol respects the sixth Bell-
Lipasti condition (consistency enforcement) and cannot commit a
reordered load. OoOCommit enhanced with WritersBlock coher-
ence relaxes the consistency enforcement condition, thus allowing
reordered loads to commit immediately provided they satisfy the
other five conditions.11

The purpose of this evaluation is to demonstrate that WritersBlock
coherence introduces negligible overheads by seldomly delaying
stores and utilizing uncacheable tear-off copies of the data. Since the
performance of WritersBlock may be sensitive to the depth of the
10Ld j may become M-speculative when it performs, but since it was not taken out of
the LQ it holds its own lockdown without allocating an external one in the LDT, exactly
as in the non-collapsible LQ.
11In our experiments the exception condition is inactive.

Table 6: System configuration

Processor: SLM-class / NHM-class / HSW-class
Issue and commit width 4
Instruction queue (IQ) 16 / 32 / 60 entries
Reorder buffer (ROB) size 32 / 128 / 192 entries
Load queue (LQ) 10 / 48 / 72 entries
Store queue (SQ), Store buffer (SB) 16 / 36 / 42 entries
Lockdown table (LDT) 32 entries

Memory
Private L1 cache 32KB, 8-way, 4 hit cycles
Private L2 cache 128KB, 8-way, 12 hit cycles
Shared L3 cache 1MB per bank, 8-way, 35 hit cycles
Memory access time 160 cycles

Network
Topology / routing 2D mesh / Deterministic X-Y
Data / Control msg size 5 / 1 flits
Switch-to-switch time 6 cycles

load queue, we compare a range of cores from efficient Silvermont-
class (SLM-class) to higher-performing Nehalem-class (NHM-class)
and Haswell-class (HSW-class). Details of the simulated architec-
tures are displayed in Table 6.

5.1 Coherence Protocol Implications
WritersBlock guarantees that M-speculative loads are never squashed.
Our goal is to achieve this with minimum overhead.

Delayed writes. In WritersBlock, when a write-request invalida-
tion finds a M-speculative load, the write request is delayed until the
load becomes ordered. If the ratio of delayed write requests is high,
store latency can increase, adding pressure on the store buffer and
causing slow-downs. Figure 8 (top graph) shows the number of write
requests that are blocked per thousand of stores (kilo-stores) when
varying the aggressiveness of the core. As expected, the NHM-class
and HSW-class cores see more write-request blocked because of
their larger LQ, but their ratio is still very low (0.4 writes blocked per
thousand store operations). The worse case is streamcluster, where
less than 1% of stores issue writes that block at the LLC.

Read misses. When write requests are in WritersBlock state, read
misses get uncacheable data, that can be used by the load in case
it is ordered. Responding with a vast amount of uncacheable data
would increase the number of cache misses. Figure 8 (bottom graph)
plots the number of uncacheable data responses per thousands of
loads (kilo-loads). Again, a larger LQ implies more uncacheable
reads, but its number is very low (less than 0.9 uncacheable reads
per thousand load operations in the worst case freqmine and around
0.1 per kilo-loads on average).

Time and traffic overhead. Write delays are not frequent in
WritersBlock. Even in aggressive cores with a large LQ, there is no
perceptible difference in store latency. The reason is that aggressive
cores have also a large store buffer able to tolerate extra latency
while prefetching the write permission for the block. Therefore,
the execution time does not vary due to delayed write requests.
Differences in execution time are therefore minimal –Figure 10 (top
graph). On the other hand, the overall impact on coherence traffic by
the WritersBlock protocol is also minimal, since the number of extra
cache misses introduced by WritersBlock is negligible –Figure 9
(bottom graph).
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Figure 8: WritersBlock per kilo-stores and uncacheable reads per kilo-loads
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Figure 9: WritersBlock overheads: execution time and network traffic

5.2 Out-of-Order Commit Implications
While for in-order commit WritersBlock shows neither benefit nor
penalty, the advantages available to a core that implements safe (non-
speculative) out-of-order commit are high. This section shows these
advantages for the SLM-class processor.

Processor stalls. Figure 10 (top graph) depicts the average per-
centage of cycles per core when cores stall (i.e., cannot commit a
single instruction) and the reason why (SQ, LQ, or ROB full). One
significant trend in OoO commit is the reduction in stalls due to
a full ROB, because of the ability of committing OoO. However,
in traditional OoO, the LQ becomes the bottleneck. Thanks to the
commit of loads both earlier and out-of-order, this bottleneck is re-
duced in WritersBlock. On average, WritersBlock with OoO commit
significantly reduces processor stall cycles.

Execution time: Due to the reduction of processor stalls, execu-
tion time is greatly improved by the combination of WritersBlock
and out-of-order commit (14% on average, as seen in Figure 10
(bottom graph). In fact, the maximum benefit over in-order commit,
seen by bodytrack, is 41.9%. Other applications such as fft, lu_ncb,
and ocean_ncp also experience similar improvements. On average,
WritersBlock with OoO commit shows 15.4% improvements over

Directory-based coherence coupled with out-of-order commit. Over
a directory protocol with OoO commit, that is, without our solution
for safe OoO commit of loads, our simulations show improvements
by 10.2%, on average, and up to 28.3%. Given these results we
can conclude that the advantages of out-of-order commit can be
enhanced with WritersBlock coherence to guarantee that speculative
loads will not require re-execution.

6 RELATED WORK
Out-of-order commit: Committing instructions in program order
may lead to significant performance degradation if a long latency op-
eration blocks the ROB head. Several proposals have been published
to deal with this problem in either a speculative, or non-speculative
manner.

Speculative Retirement: Most works dealing with early retire-
ment do so speculatively [11–13, 22, 27, 29]. Speculative retirement
requires processor checkpoints to rollback the processor to a valid
state. These works shift the speculation burden away from the main,
expensive-to-scale structures for out-of-order execution, and instead
focus on minimizing the overall cost of checkpointing.
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Figure 10: Percentage of processor stalls and normalized execution time with out-of-order commit

Non-speculative Retirement: Non-speculative early release of
hardware structures before commit requires knowledge that no older
instruction (that has come before the instruction to be released) can
cause the program to abort, raise an exception, or require exposure
of the architected state at that time. Non-speculative solutions [1,
5, 15, 21, 25] have the potential to be the most energy efficient, a
necessity in an era of the end of Dennard Scaling and power-limited
platforms.

Improving core performance through coherence: In Atomic
Coherence [39], the authors present a globally-atomic method for
coherence without the need for speculation. While this work is close
to our work, it targets centralized, bus-based systems (based on
optical interconnects), and does not directly apply to directory-based
schemes to allow for fast and scalable resolution for ownership and
load!load ordering.

Many recent works [7, 8, 10, 14, 18, 28, 29, 31] use speculation
between the core and coherence models to improve performance.
One major drawback of these works is the requirement for the core
to squash and re-execute instructions in the case that an illegal mem-
ory reordering does occur. Our work, instead, uses the coherence
protocol to prevent a reordering from being seen.

TSO-Driven Cache Coherence: Several recent works combine
the coherence protocol with the consistency model: TSO-CC [16],
Tardis 2.0 [40], and Racer [30]. We are inspired by these works
which, however, still operate on the premise of squash-and-re-execute
on consistency violations. We go a step further in this direction.

Non-speculative reordering: Conflict Ordering [24] character-
izes the situation under which a younger memory operation can
commit non-speculatively before an older memory operation. The
authors use the idea to reorder store!load and store!store non-
speculatively in SC. Subsequently, Gobe and Lipasti extend the
conflict ordering concept to also perform load-load reordering in SC
but they rely on taking mutexes for every address involved in the
reordering [19]. Our work makes the observation that in TSO we can
simply delay a conflicting store. This obviates the need for complete
tracking of all memory operations of a core in an Augmented Write
Buffer as is done in [24] or the use of global address mutexes as
in [19].

Further, our approach has a fundamental advantage for load-load
reordering not found in any earlier work: we can reorder over unre-
solved load addresses, whereas previous approaches require address
computation.

7 CONCLUSION
In this paper, we present a novel cache coherence solution that
can hide speculatively reordered loads in TSO so that a memory
reordering in one core is not seen by other cores. The value loaded
will always respect the load!load program order. This means that
loads that execute out-of-order do not have to be squashed and re-
executed due to consistency enforcement. As a consequence, loads
can be committed out-of-order safely with respect to consistency
enforcement. We demonstrate our approach for out-of-order commit
and show significant improvements over the base case without our
solution. Prior out-of-order commit proposals support TSO with
expensive checkpoint-and-rollback mechanisms, or rely on globally
ordered networks (e.g., snooping busses), or penalize performance
by delaying the commit of reordered loads. As far as we know, this
is the first solution for irrevocable binding of speculative loads under
TSO, and the first solution allowing their out-of-order commit on
architectures with general unordered interconnection networks and
directory coherence.
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