Berti: A Per-Page Best-Request-Time Delta Prefetcher

Alberto Ros
University of Murcia

aros@ditec.um.es

ABSTRACT

Prefetching data blocks into the caches comprising the mem-
ory hierarchy is a fundamental technique for designing high-
performance computers. In fact, current systems implement
prefetchers at every cache level. Timeliness is an essential
property for getting the maximum performance from the
prefetcher, as bringing the data early to cache can increase
its miss ratio and requesting the data too late can lead to
sub-optimal performance.

This paper presents Berti, a prefetcher that finds the delta
that provides the best timeliness for memory blocks in each
page. The prefetcher works in two modes: (i) on the first
access to a block, in a certain period of time, the prefetcher
issues a request for the next block according to the best delta
found; (ii) for cold pages, a burst mechanism fetches blocks
that cannot be reached adding the delta to the current accessed
block.

1. INTRODUCTION AND MOTIVATION

A widely employed prefetching technique is to find a stride
or delta that repeats for each memory instruction and to use
that stride to prefetch next addresses [1]. These prefetchers
are known as stride-based prefetchers. However, the stride
can be difficult to find, as the order of accesses can be altered
by the out-of-order core, the lower cache levels, or even the
prefetchers of lower cache levels. Additionally, just prefetch-
ing the next address according to the stride may lead to late
prefetches, resulting in sub-optimal performance.

These observations were leveraged by Michaud to propose
the best-offset prefetcher (BOP) [2], which was the best per-
forming prefetching technique in the 2nd Data Prefetching
Championship. BOP finds the best delta for the accesses per-
formed by an application, and applies it to the next accesses.

Our prefetching mechanism, highly inspired in BOP, is
based on the observation that timeliness, and therefore the
best delta, varies from page to page, and a global delta results
in missing opportunities. As a consequence, our prefetching
mechanism finds a unique delta per page that provides the best
timeliness for its blocks and applies it to the next accesses.
For those blocks that cannot be reached by the selected delta,
a burslt of prefetches is initiated on the first access to a cold
page.

Additionally, we use the instruction pointers (IP) in order
to link them to the pages that they access, as the best delta
tends to be stable for each instruction. In this way, when a
new page is accessed and its delta is not known, the prefetcher
can prefetch according to the instruction pointer. Instructions

'A memory page that has not been accessed for a long time.

accessing the same pages are clustered and point to the same
delta.

Finally, the confidence of the prediction is built depending
on the matching with the information available. We keep the
first offset (the block position in the page) accessed within
each page. A match with the page and the first offset provides
more confidence than a match only with the page. This
confidence mechanism is inspired by the Bingo prefetcher [3].

In particular, the proposed prefetching mechanism builds
on the following concepts: (i) per-page best delta for timely
prefetches, (ii) burst of prefetches for cold pages starts, (iii)
IP tracking and IP clustering to predict pages that have not
been accessed yet, and (iv) confidence built as the current
access matches better with the collected information.

2. THE BERTI PREFETCHER

The main goal of our prefetch technique is to collect two
pieces of information about previously accessed pages, both
of them independent of the order in which the accesses took
place since, as mentioned in the introduction, they can arrive
at any order. These two pieces of information are the blocks
(offsets) accessed within each memory page and the delta
that provides more timely prefetches for each memory page,
namely best-request-time delta, or for short, Berti delta.

This information is then leveraged to predict which mem-
ory blocks are prefetched. The Berti prefetcher has two
prefetching modes: Burst and Berti. The Burst mode starts
on the first access to a cold page, and it aims to prefetch the
memory blocks accessed in between the first access to the
page and the Berti delta. These blocks cannot be prefetched
by the Berti mode, as they would require to be triggered by
accesses in another page. The burst prefetches are expected
to be late prefetches but, since we are bound to accesses
within the same memory page, it is not possible to make them
timely. The Berti mode is initiated when the burst finishes,
and it issues prefetches according to the Berti delta, which
are expected to be timely.

As a clarifying example, let us consider a memory page
found in 429.mcf-217B (SPEC CPU 2006). The informa-
tion collected by the Berti prefetcher is shown in Table 1.
The accessed blocks are represented in a bit vector, where
1 indicates that the memory block with a page offset equal
to its position in the vector has been accessed. The Berti
delta for this page is —6 which means that the timely block
corresponds to six offsets before the current access.

In bold are represented both the first access to the page (the
right one) and the block that would be prefetched on the first
access according with the Berti delta (the left one). The three
ones (1) that lay in between the first accessed block and the

Table 1: Example found in 429.mcf-217B
Blocks accessed [0..63] Berti
...110110110110 -6

first Berti prefetched block (in red) are late prefetches that
need to be covered by the Burst mode. The remaining of the
accesses will be covered by the Berti mode and are expected
to be timely.

Next subsections offer, first, details about how the informa-
tion is collected and, then, how the prefetcher decides which
blocks to prefetch based on that information.

2.1 Gathering information

The Berti prefetcher gathers two classes of data at run-time:
information directed to predict which blocks to prefetch, such
as the vector of accessed blocks and the Berti delta for each
page, and meta-information which is used to locate the first
information and to give a high or low confidence on the
prediction, such as the page address, the instructions pointers,
and the offset of the first accessed block.

2.1.1 Bit vector of accessed blocks

The Berti prefetcher collects information for the pages that
are currently being accessed (hot pages). The information
about the memory blocks accessed within a page is quite
straightforward to collect. We use a bit vector of 64 bits (as in
ChampSim simulator the block size is 64 bytes and the page
size is 4KB), where each bit represents the offset of the block
within the page. We keep the hot pages within a table, namely
the current pages table, which matches the accessed blocks
vector with the page address (Figure 1). On every access we
add the offset of the block to the accessed blocks vector. In
case an access for a cold page takes place, we add it to the
current pages table and the information of the evicted page is
recorded in a new table, the recorded pages table (Figure 1).

2.1.2 Berti delta

The goal of our prefetching mechanism is to calculate the
best timely delta for the accesses in hot pages. We consider
every access that would have caused a miss if the prefetcher
would not have been active, namely potential misses. We
leverage the accessed blocks vector in order to find if the
block is accessed for the first time since the page became
hot. If there is a hit in the cache, but we have not recorded a
previous access to this block, then we assume that the block
has been brought to the cache by one of our prefetches.

For every potential miss, we need to find the set of requests
that could have brought the block to cache on time if they
were prefetching it at their issue time. We require two struc-
tures for this: the previous demand requests table and the
previous prefetch requests table (Figure 1). These structures
store the page address (actually just a pointer to a hot page
entry in the current page table), the block offset, and the issue
time of the request. The previous prefetch requests table also
stores a completed bit which indicates that the prefetch has
been completed, and in this case the issue time field stores
the time that the prefetch required to be resolved (its latency).

When a potential miss is resolved, its potential latency is
obtained in the following way. In case of an actual miss,

the latency is computed when the miss resolves, by looking
up in the previous demand requests table the time when the
request issued. In case of a hit in case due to a prefetched
block, the latency is computed by looking at the latency of
the completed prefetches in the previous prefetch requests
table. Once the latency is calculated, the previous demand
requests table is searched again in order to find the offsets
that could have brought the block to cache in a timely manner,
according to the obtained latency. The deltas with respect to
these offsets are recorded in the current pages table, and a
counter associated with each delta counts how many blocks
in the page found that delta. In the current implementation
we store up to ten deltas with their respective counters.

When a hot page is evicted from the current pages table
the timely deltas are checked and the delta with higher count
is selected as the Berti delta. The Berti delta, along with the
accessed blocks vector, is recorded in the recorded pages
table.

2.1.3 Page address, offset of first access, and IP

Both the current pages table and the recorded pages table,
which store the relevant information to perform the prefetches,
are looked up using the page address. However, the recorded
pages table can also be looked up using the information
regarding the first access to the page. This gives more con-
fidence in the prediction, as we will describe it in the next
subsection, and allows the same page to have several en-
tries in the recorded pages table. This information is initially
recorded in the current pages table and moved to the recorded
pages table when the page is evicted from the former table.
Therefore, both tables need to be extended with an offset of
first access field.

Additionally, IPs can be used in order to predict prefetches
for new pages that have not been accessed yet, as the same
instruction may frequently follow the same trend in its ac-
cesses. We also noted that for some pages different memory
instructions contribute to its accesses. Therefore, we cluster
instruction pointers that access the same page in order to
predict the pattern accurately when any of those instructions
access a new page.

In order to collect the clustered IP information, the current
pages table is extended with a field storing the first IP that
accesses a hot page. We also introduce an IP table (Figure 1)
indexed by a hash function of the IP (least significant bits
in the current implementation). The IP table only stores a
pointer to an entry in the recorded pages table.

On the first access to a hot page the first IP field registers
the IP and a pointer for this IP is created in the /P table. When
a new IP accesses the same hot page, the current pages table
is not modified, but the pointer of the first IP is assigned to
the new IP entry. This way, clustered IPs point to the same
entry in the recorded pages table.

2.1.4 Berti prefetcher scheme

Figure 1 shows an overview of all the tables required for
the Berti prefetcher. The tables in the Current dashed square
collect information about pages being currently used. The
tables in the Recorded dashed square collect information
about cold pages. Fields stored in some tables that point to
other tables are indicated with arrows.

,,,,,,, Current _____
Previous
,,,,, l}@gqrgi . Previous demand
Recorded prefetches requests
IP pages o RN

Current pages

Figure 1: Berti prefetcher overview

2.2 Issuing prefetches

The Berti prefetcher leverages the information in the /P
table, the recorded pages table, and the current pages table
in order to asses if issuing prefetches or not. Depending
on the matching of the current request with the information
recorded, a different confidence level will be assigned, and a
different prefetch mode, Burst or Berti, can be applied.

2.2.1 Confidence

The Berti prefetcher builds its confidence depending on
the matching information with the current IP of the access,
the current page address and the first offset that accessed the
page. A match with the page address and the first accessed
offset in the recorded pages table gives the higher confidence
followed by a match with the IP of the current request and
the first accessed offset. In both cases, when a match with
the first accessd offset happens, the Burst mode is initiated.

In case of not finding a match with the first accessed offset
and the IP or the page address, the prefetcher checks the
current pages table, looking for the Berti delta. If its counter
gives us some confidence (a value of 2 blocks finding this
delta is employed in the submitted version), then we use the
Berti delta of the current page. No burst is necessary in this
case since the page is hot.

Otherwise, in case of no matching in the previous tables,
we look for a match in the page address in the recorded pages
table (the most recently allocated entry, since there may be
several entries for the same page) or, in case of a mismatch,
we try to find the entry in the recorded pages table pointed by
the IP table. In both cases, we employ the Berti delta stored
in the recorded pages table, and no Burst mode is initiated,
as the confidence is and Burst is an aggressive technique.

Finally, if none of the previous matches happen, the prefetcher
will opt for not issuing any prefetch.

2.2.2 Burst prefetches

The Burst mode is responsible for prefetching the blocks
that cannot be prefetched with the Berti mode. If the Berti
delta is too large many blocks may fall into this category.
This mode starts on the first access to a cold page and if the
offset of this access matches the first accessed offset recorded.
Only the blocks that where accessed previously by the page
are prefetched. This information is obtained from the bit
vector of accessed blocks. And only blocks in between the

current offset and the current offset plus the Berti delta are
accessed. These prefetches are expected to be late prefetches,
but they help to improve performance.

Burst prefetches do not need to be triggered all at once.
We keep track of the last burst prefetch offset in the current
pages table, allowing to split the burst across several accesses.
In the current implementation we issue three Burst prefetches
per access.

2.2.3 Berti prefetch

The Berti prefetches are expected to be timely prefetches.
The block to be prefetched is calculated by adding the off-
set of the current request and the Berti delta. The prefetch
is issued only if a demand access has not been previously
issued for it (this information is available in the bit vector
of accessed blocks of the current pages table). In case the
Berti delta is obtained from the recorded pages table and
there is a match in the first accessed block, the prefetch is
only issued if the current block was accessed before (this
information is available in the bit vector of accessed blocks
of the recorded pages table). In case there is not a match with
the first accessed block, the Berti prefetch is issued.

3. MEMORY REQUIREMENTS

The Berti prefetcher has been employed for all cache levels.
They configurations only differ in the size of the recorded
pages table, which is larger for lower level prefetchers. The
reason for this decision is that a good timely prefetching tech-
nique would basically require a good L1 prefetcher such that
blocks are in the L.1 when the processor requests them. Ta-
ble 2 shows the memory requirements of the Berti prefetcher
for each cache level and the total memory requirements (less
than 64KB of memory per core).

The current pages table is a fully associative structure
which is looked up with the page address (52 bits). It also
contain the following fields: the IP index (10 bits), the bit
vector of accessed blocks (64 bits), the offset of the first
access (6 bits), ten timely deltas and their counters (7 + 6 bits
each), the current burst offset (6 bits), and the least recently
used (LRU) information of the table.

The previous demand requests table is a circular queue.
Each of its entries stores a pointer to a current pages table
entry (depends in the current pages table entries, 6 bits in our
case), the offset of the request (6 bits), and the issue time of
the request (16 bits are used as an approximation).

The previous prefetches table is also a circular queue. It
stores a pointer to a current pages table entry (6 bits), the
offset of the request (6 bits), its issue time or latency (16 bits),
and a completed bit.

The recorded pages table is a fully associative table where
each entry stores part of the page address (32 bits), the bit vec-
tor of accessed blocks (64 bits), the offset of the first access
(6 bits), the Berti delta (7 bits), and the LRU information.

Finally, the /P table is a direct mapped table that stores a
pointer to an entry in the recorded pages table.

4. EVALUATION RESULTS

We evaluate both configurations with one core and four
cores with SPEC CPU 2017 applications. For one core, we
evaluate the applications that have, without any prefetching,

Table 2: Memory requirements per core

Cache Structure Number of entries Bytes per entry Total (bytes)
LID Current pages 26 (52410464464 (7+6)*10+6+6)/8 2192
LID Previous demand requests 210 (6+6+16)/8 3584
LID Previous prefetches 2° (6+6+16+1)/8 1856
LID Recorded pages 210428 4 27 (32+64+6+7+11)/8 21120
LID IP 210 11/8 1408
L2C Current pages 26 (52410464464 (7+6)*10+6+6)/8 2192
L2C Previous demand requests 210 (6+6+16)/8 3584
L2C Previous prefetches 2° 6/8+6/8+2+1/8 1856
L2C Recorded pages 20 +28 (324+64+6+7+9)/8 11424
L2Cc IP 210 10/8 1280
LLC Current pages 26 (52410+64+6+(74+6)*10+6+6)/8 2192
LLC Previous demand requests 210 (6+6+16)/8 3584
LLC Previous prefetches 2° (6+6+18+1)/8 1856
LLC Recorded pages 28 27 (32+64+6+7+8)/8 5664
LLC IP 210 9/8 1152

Total Berti prefetcher

(63.4KB) 64944

at least one miss per kilo instructions (MPKI) at the LL.C. For
four cores, several random mixes from all the SPEC CPU
2017 applications have been employed. Applications run for
200M instructions after a SOM instructions warm-up.

We have analyzed a next-line prefetcher (NextLine) [1],
an stride prefetcher (Stride) [1], a Signature Path prefetcher
(SPP) [4], a best-offset prefetcher BOP prefetcher [2], and a
Kill the Program Counter prefetcher (KPCP) [5]. Simulations
with the ported version of the BOP prefetcher did not offer
the expected results (not better than SPP), and therefore, we
opt for not showing them in the evaluation.

Table 3 shows the geometric mean for the configurations
analyzed. We first employed a NextLine prefetcher of all
cache levels. When we replaced the L2C prefetcher with a
more elaborated prefetcher. The KPCP is the state of the art
prefetcher with better results for the one core configurations,
while for the four core configuration the best results are ob-
tained by the Stride prefetcher. Berti outperforms KPCP for
both configurations and obtain similar figures than SPP for
the four core configuration. When applying Berti to all levels,
however modest improvements are obtained. Surprisingly,
Berti does not performs as expected for the LLC, and simple
prefetchers are preferable for that cache level, being able to
give its memory budget to the L1D prefetcher (Berti+). The
reason is that the average miss latency at the LLC is larger
than at lower levels and many pages will use very large Berti
deltas, missing a lot of opportunities for late prefetches.

S. DISCUSSION AND FUTURE WORK

In the submitted version of the prefetcher we employ fully
associative structures, as there are no associativity limits in
the championship rules. However, an actual implementation
of this prefetcher will use set-associative structures.

Our implementation does not explores late prefetches. How-
ever, it has been seen that this may be a limitation for last
level caches. Future work can account for late prefetches in
order to calculate the Berti delta. to prefetch

Finally, the Berti prefetcher does not uses confidence coun-

Table 3: Evaluation results (geometric mean)

Configuration (L1D, L2C, LLC) 1 core 4 cores

NextLine, NextLine, NextLine 1.268853 1.104525
NextLine, Stride, NextLine 1.294615 1.114741
NextLine, SPP, NextLine 1.308339 1.104330
NextLine, KPCP, NextLine 1.314242 1.103204
NextLine, Berti, NextLine 1.321133 1.104235
Berti, Berti, Berti 1.334763 1.108715
Berti+, Berti, NextLine 1.347102 1.118640
Berti+, Berti, None 1.330342 1.126840

ters as other prefetchers found in the literature [5]. Confi-
dence counters are useful in order to learn about the goodness
of the performed prefetches and act as consequence. Future
versions of the Berti prefetcher will benefit from confidence
counters, as we found a large amount of useless prefetches in
our simulation results.

6. ACKNOWLEDGMENTS

"This work was supported by the Spanish MCIU and AEI,
as well as European Commission FEDER funds, under grant
RTI2018-098156-B-C53"

7. REFERENCES

[1] J.-L. Baer, Microprocessor Architecture: From Simple Pipelines to Chip
Multiprocessors. Cambridge University Press, 1st ed., 2009.

[2] P. Michaud, “Best-offset hardware prefetching,” in 22th Int’l Symp. on
High-Performance Computer Architecture (HPCA), Feb. 2016.

[3] M. Bakhshalipour, M. Shakerinava, P. Lotfi-Kamran, and
H. Sarbazi-Azad, “Bingo spatial data prefetcher,” in 25th Int’l Symp. on
High-Performance Computer Architecture (HPCA), Feb. 2019.

[4] J. Kim, P. V. Gratz, and A. L. N. Reddy, “Lookahead prefetching with
signature path,” in 2nd Data Prefetching Championship, June 2015.

[5] J. Kim, E. Teran, P. V. Gratz, D. A. Jimenez, S. H. Pugsley, and
C. Wilkerson, “Kill the program counter: Reconstructing program
behavior in the processor cache hierarchy,” in Int’l Conf. on
Architectural Support for Programming Language and Operating
Systems (ASPLOS), Apr. 2017.

	Introduction and motivation
	The Berti prefetcher
	Gathering information
	Bit vector of accessed blocks
	Berti delta
	Page address, offset of first access, and IP
	Berti prefetcher scheme

	Issuing prefetches
	Confidence
	Burst prefetches
	Berti prefetch

	Memory requirements
	Evaluation results
	Discussion and future work
	Acknowledgments
	References

