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The Entangling Instruction Prefetcher
Alberto Ros, Senior Member, IEEE, Alexandra Jimborean

Abstract—Prefetching instructions is a fundamental technique for designing high-performance computers. There are three key
properties to consider when designing an efficient and effective prefetcher: timeliness, coverage, and accuracy. Timeliness is an
essential property, as bringing instructions too early increases the risk of the instructions being evicted from the cache before their use
while requesting them too late can lead to the instructions arriving past their designated execution time. Coverage is important to
reduce the number of instruction cache misses (there is enough prefetching), and accuracy to ensure that the prefetcher does not
pollute the cache or interacts negatively with the other hardware mechanisms (there is not too much prefetching).
This paper presents the Entangling instruction prefetcher that entangles instructions to provide timeliness. The prefetcher works by
finding which instruction should trigger the prefetch for a subsequent instruction, accounting for the latency of each cache miss. The
prefetcher is carefully adjusted to account for both coverage and accuracy. Our evaluation shows that the Entangling I-prefetcher
increases performance by 29.3% on average, with a coverage of 94.9% and accuracy of 77.4%.

Index Terms—Instruction prefetcher, timely prefetching, performance.
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1 INTRODUCTION

INSTRUCTION fetch stalls block the processor pipeline,
causing significant performance degradation. In partic-

ular, applications with large working instruction sets that
do not fit in the first level cache, such as server applications
or applications designed to run in the Cloud, exhibit large
instruction-cache miss rates and thus incur more stalls. In
such cases, instruction fetching represents a considerable
fraction of the memory stalls, together with data accesses.

As memory latency has been recognized as a critical fac-
tor for performance, prefetching techniques have emerged
to install the data or instructions in the cache ahead of time,
ready to be used when demanded by the processor [1].
Driven by their impact on performance, prefetchers have
evolved from simple next line prefetchers, to complex tech-
niques, such as the Proactive Instruction Fetch prefetcher [2]
captures the blocks accessed by the committed instruc-
tions and instructions from handlers for OS interrupts.
The Return-address stack-directed instruction prefetching
(RDIP) [3] captures the context of a miss caused by a
function call as signatures which are then consulted upon
each call and return operations to trigger prefetching. More
recently, Ansari et al [4] propose a lightweight prefetcher
that reduces storage demands. We propose the Entangling
Instruction Prefetcher,1 which, in contrast to its predeces-
sors, is designed around the notion of timeliness. The Entan-
gling I-prefetcher estimates the latency of the cache missing
operations and entangles them with the instructions that
should trigger the prefetch to ensure the timely arrival of
the requested instructions. In this way, the Entangling I-
prefetcher is robust and effective, agnostic to the application
characteristics and achieves a 99.3% I-hit rate, approaching
the perfect L1-I.
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1. A performance-oriented version of the Entangling Instruction
Prefetcher won the 1st Instruction Prefetch Championship (IPC1) [5].

2 THE ENTANGLING I-PREFETCHER

The Entangling I-prefetcher entangles distant and unrelated
operations, which, intuitively, translates to pairing two in-
structions, the instruction isrc upon whose execution should
be triggered the prefetch for the instruction idst. More pre-
cisely, we define as src-entangled the cache line that should
trigger the prefetch of the dst-entangled cache line such that
the requested line arrives timely.

To ensure timeliness, we first compute the latency of
each cache miss. To this end, the Entangling I-prefetcher
starts by recording the history of L1-I accesses and in-flight
misses which are kept in a condensed form in dedicated
data structures, as explained below. For each L1-I miss, we
compute the latency of fetching the requested cache line
by subtracting the timestamp of the cache miss from the
time the requested cache block enters the cache. Next, we
track back in the recorded history the instruction which
was executed at least latency number of cycles earlier
than the requested instruction and entangles the cache lines
corresponding to the source and destination instructions.

As tracking each pair of entangled cache lines would re-
quire considerable storage space, the Entangling I-prefetcher
only entangles heads of basic blocks, defined as follows.
A basic block represents the set of consecutive cache lines
(where consecutive refers to the program order of instruc-
tions, grouped in cache lines [1]). The head of a basic
block is therefore the first non-consecutive cache line that
is accessed. The size of the basic block is the number of
consecutive lines being accessed. Furthermore, in order to
reduce the number of entangled lines, the Entangling I-
prefetcher merges “almost” consecutive basic blocks (see
Subsec. 2.6) and entangles only the head of the first block.

The prefetching engine is then triggered upon every
cache access and prefetches the entire basic block of the cur-
rent line and of the entangled destinations (see Subsec. 2.4).
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Fig. 1. Overview of the Entangling I-prefetcher

2.1 Design
Figure 1 shows the data structures employed by the Entan-
gling I-prefetcher, with the hardware extensions marked as
gray. The right-top part (Basic block) computes the size of the
current basic block and records its head (first) cache line. It
also indicates when the basic block ends (new).

History buffer, on the right-bottom part of Figure 1, is a
small circular queue that records the history of basic block
heads together with the timestamp of their first access to
L1-I. This table is parsed to identify potential src-entangled
cache lines for each L1-I miss. Basic block size table (BB size) is
a small structure that records the size of the youngest basic
blocks in the History buffer. This table is employed to merge
consecutive and overlapping basic blocks.

Timing and src-entangled information are stored along with
the prefetch queue (PQ), the miss status holding register
(MSHR), and the L1-I cache (shown as gray areas in these
structures). The timing information is a timestamp stored
only in the PQ and MSHR, holding the initial trigger time for
in-flight prefetches (if they miss in the L1-I cache) and L1-I
misses. When the requested data is stored in the cache, the
latency of the miss is computed and a src-entangled cache line
from the History buffer is selected. The src-entangled informa-
tion consists of an access bit which indicates whether the
line has been accessed and the corresponding src-entangled
line (when applicable). Each request moves from one struc-
ture to another as the request progresses (PQ→MSHR→L1-
I). The src-entangled information serves to add confidence to
the entangled source-destination pair.

Entangled table, depicted on the left part of Figure 1, is the
core structure of this proposal and records the entangled
basic block heads used for deciding which cache lines to
prefetch. Note that in an effort to keep the structure within a
limited size, entangling is rather coarse-grain, i.e. only head
basic blocks are entangled, not all cache lines. An entry
contains the src-entangled cache line, its basic block size, a
compressed array of dst-entangled cache lines (up to 6 des-
tinations), and their associated confidence. Each dst-entangled
is associated a confidence field initialized to the maximum
value (since it was just computed prior to inserting it in the
table and therefore expected to be accurate). The confidence
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Fig. 2. Actions taken on various cache events.

is increased by timely prefetches and decreased by late
and wrong prefetches. When confidence reaches 0, the dst-
entangled becomes invalid (no prefetch is triggered).

2.2 Updating the basic block size
When a non-consecutive cache line accesses the cache, we
start tracking a new basic block. We store in the Entangled
table the size of the previous basic block (that has just
completed). If the block to be added is already recorded
in the table, we update its size to the maximum between the
old size (of the already stored basic block) and the new size.

2.3 Adding dst-entangled cache lines
To populate the Entangled table, we insert each new basic
block head together with its size, and add destinations as
explained below. Figure 2 illustrates the actions taken upon
each cache event and how the tables are populated.

Prefetches. Upon each prefetch issued, the PQ stores
along with the currently allocated prefetch entry the current
time and the src-entangled cache line (if the prefetch is for a
basic block head). The access bit is not set. If the prefetch
misses in cache, this information is transferred to the MSHR
entry allocated by the cache miss. Otherwise the information
in the PQ entry is discarded.

Demand cache misses. Upon a demand cache miss, an
entry is allocated in the MSHR. The PQ is first checked
for a matching prefetch and, if found (i.e. the prefetch was
not timely), the timing and src-entangled information of the
PQ entry is transferred to the MSHR entry. Otherwise, the
current time is set in the MSHR entry. Demand misses also
set the MSHR access bit and a pointer to the entry for that
access in the History buffer (if it is a basic block head).

Cache fills. Upon a cache fill, if the access bit is set, it in-
dicates that a miss happened before the line was prefetched
(either there was no prefetch altogether or the prefetch was
late). To fix this, the Entangling I-prefetcher attempts to find
a src-entangled cache line for the newly cached line. The
latency of the current memory access is computed based on
the timestamp of the MSHR. If the entry has a valid pointer
to the History buffer, we know when the actual access for this
cache line took place and that it is a basic block head. The
source is then selected among the accesses that took place
at least latency cycles before. If there is no pointer stored, no
action is taken. Such misses will be covered by prefetching
the full basic block starting from the head, as explained in
the summary for triggering the prefetch.
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TABLE 1
Compression modes of dst-entangled blocks

Mode Destinations signifB bits Size (bits)

1 1 [29, 58] (58 + 2)× 1 = 60
2 2 [19, 28] (28 + 2)× 2 = 60
3 3 [14, 18] (18 + 2)× 3 = 60
4 4 [11, 13] (13 + 2)× 4 = 60
5 5 [9, 10] (10 + 2)× 5 = 60
6 6 [1, 8] (8 + 2)× 6 = 60

Once a src-entangled cache line is found, the Entangled
table is updated by adding to the src-entangled entry the
corresponding dst-entangled with the confidence set to the
maximum value. If the array of destinations is full, the dst-
entangled with the lowest confidence is replaced.

If in the time window between issuing the prefetch and
the corresponding cache fill there has been no demand
access to the cache line, it means that the prefetch is either
timely or wrong and no entangled pair needs to be added.

When the MSHR entry is removed, the src-entangled
information is transferred to the corresponding L1-I entry.

Demand cache hits. Cache hits may find the access bit
in the L1-I unset, if the cache line was brought by a prefetch.
This is the ideal scenario indicating a timely prefetch. The
access bit becomes set upon the hit.

Cache line evictions. Upon a cache line evict, the src-
entangled entry is checked. If this is non-empty, it indicates
that the evicted cache line has been brought through an
entangled prefetch. Depending on the access bit:

• If it is not set, the line was unnecessarily brought to
the cache, which indicates a wrong prefetch (early
or unnecessary). The Entangled table is updated by
decreasing the confidence of the dst-entangled corre-
sponding to the evicted cache line.

• If it is set, it indicates a timely prefetch and in
consequence the confidence of the dst-entangled cor-
responding to the evicted cache line is increased.

2.4 Triggering the prefetches
For every cache access we check the Entangled table. If the
current cache line is recorded in the Entangled table (1)
the entire basic block that starts with that cache line is
prefetched.(i.e., size-1 lines starting from the second line in
the basic block); (2) for each dst-entangled with confidence >
0, prefetch the entire basic block starting from dst-entangled.

2.5 Compressing destinations
The Entangled table uses different modes for encoding the
array of dst-entangled entries (dst-entangled block and confi-
dence) on 63 bits, as follows: 3 bits for the mode + 60 bits
of the dst-entangled block and the confidence. The destination
bits encode the least significant bits (signifB) of the dst-
entangled line, starting from the most significant bit that
differs from the src-entangled. The most significant bits can
be inferred from the source. Since the distance between src-
entangled and dst-entangled is typically small, the destina-
tions can be highly compressed.

The mode is a value between 1 and 6 which indicating
how many destinations can be kept in the 60 bits of the

TABLE 2
Baseline System Configuration

Processor width 6 fetch, 6 decode, 6 execute, 4 retire
ROB, LQ, and SQ 352 entries, 128 entries, and 72 entries

L1I cache 32KB, 8-way, 4 hit cycles, no prefetcher
L1D cache 48KB, 12-way, 5 hit cycles, next-line prefetcher
L2 cache 512KB, 8-way, 10 hit cycles, spp-dev prefetcher
L3 cache 2MB, 16-way, 20 hit cycles, no prefetcher
DRAM 4 GB, one 8-byte channel, 1600MT/s

array of dst-entangled blocks and the associated confidence.
Depending on how many significant bits are required, the
number of destinations can vary. For the confidence we
always use a 2-bit saturated counter. Table 1 details the
available modes.

All entries of the same dst-entangled array must be
represented in the same mode. Hence, every time a new
dst-entangled entry is inserted, we compute the maximum
between its mode and the mode of the previously recorded
destinations. To improve compression, upon the eviction
of a dst-entangled we re-compute the mode, to ensure that
it is not unnecessarily set to a restricting value due to a
destination that no longer exists.

Finally, to maximize the utilization of the Entangled table
we first try to fill the dst-entangled arrays for the sources
that are already inserted. More precisely, if the selected src-
entangled is not present in the Entangled table, the prefetcher
looks for the next best src-entangled entry, namely a cache
line with the timestamp earlier than the one searched for. Up
to six entries are checked and if there is no free destination
entry, one is evicted.

2.6 Merging spatio-temporal basic blocks

Finally, to further reduce the number of entangled blocks in
the Entangled table we perform a merge of quasi-consecutive
basic blocks and prefetch the entire block. Merging is also
aimed to address scenarios such as the sequence of accessed
cache lines: ABCECD, in which a basic block head C
always hits in the cache because it was prefetched as part of
another basic block (ABC) and was not evicted. However,
D may lead to a substantial number of misses that would
not be covered by the Entangling I-prefetcher since D is
not a basic block head. To address this issue, we inspect
the last four recorded basic block sizes, and if the current
block can be merged with one of the previous blocks (i.e.
they are consecutive or overlapping), then we update the
size of the previous basic block (size of block starting with
A would become 4 and prefetch ABCD) and do not record
the current basic block (starting with C in the History buffer).

3 EVALUATION

We evaluate our instruction prefetcher using the ChampSim
simulator [6]. We model an out-of-order processor and a
memory hierarchy similar to the latest Intel’s Sunny Cove
machine. The main configuration parameters of our baseline
system are shown in Table 2.

We evaluate our prefetcher on the public traces provided
by the 1st Instruction Prefetching Championship, which
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Fig. 3. IPC normalized to a configuration without L1-I prefetcher.

includes a set of client and server traces as well as applica-
tions from the SPEC CPU 2017 benchmark suite (gcc, gobmk,
perlbench, and x264). Applications run for 50M instructions
after a 50M instructions warm-up.

3.1 Configurations and Memory Overhead

The History buffer is a 16-entry circular queue, with a 58-bit
tag field and a 20-bit timestamp field. A 4-bit register points
to the head of the queue. The Basic Block Size table keeps
the size of the last four basic blocks inserted in the History
buffer. The basic block size is represented on 7 bits, allowing
a maximum block size of 127 cache lines. The total memory
required by both structures is 160 bytes.

Timing and src-entangled information is stored along with
PQ (64 entries), MSHR (10 entries) and L1-I cache (512
entries). The timing information consists of the time the
request was issued (12 bits) and the position of the access
in the History buffer (4 bits). The src-entangled information
includes the position of the source in the Entangled table (8
bits for the set and 4 bits for the way) and an access bit. Once
the miss is resolved, the timing information is no longer
necessary, thus the L1-I cache only records the src-entangled
information. The total memory required to store the timing
and src-entangled information is about 1KB (1100.25 bytes).

The Entangled table is a large set-associative cache that
stores sources along with their maximum basic block size
and destinations. It employs a FIFO replacement policy. It
has 256 sets and 12 ways per set (next section performs a
sensitivity analysis with respect to the number of ways). The
tags are encoded using 34 bits, the basic block is encoded
with 7 bits, and the format, destinations, and confidence bits
are encoded on a total of 63 bits. This is the largest structure
employed by our prefetcher and requires 39.1KB.

3.2 Performance Results

We compare our prefetcher to a baseline system without
any L1-I prefetcher (No-IPref ) and a system with an L1-I
pure next-line prefetcher (NextLine) [7]. We evaluate several
configurations of the Entangling I-prefetcher with an Entan-
gled table of 256 sets and the number of ways ranging from
4 (Entangling-4w) to 32 (Entangling-32w).

Figure 3 shows the instructions per cycle (IPC) nor-
malized to No-IPref. Table 3 offers a sensitivity analysis
of the number of ways of the Entangled table presenting
the memory requirements of the prefetcher, the geometric
mean of the normalized IPC, and the arithmetic mean for
coverage (ratio of misses that became hits), accuracy (ratio
of useful prefetches), and percentage of L1-I misses, across
all applications. The Entangling I-prefetcher achieves 29.3%
speedup with respect to the baseline configuration when

TABLE 3
Sensitivity analysis and detailed results

Prefetcher Size (KB) Norm. IPC Coverage Accuracy Misses (%)

No-IPref 0.00 1.000 0.000 0.000 23.055
NextLine 0.00 1.085 0.244 0.307 17.754
Entangling-4w 14.15 1.155 0.639 0.736 8.575
Entangling-8w 27.25 1.253 0.850 0.764 2.540
Entangling-12w 40.36 1.281 0.921 0.773 1.084
Entangling-16w 53.36 1.288 0.941 0.774 0.805
Entangling-20w 66.46 1.290 0.946 0.774 0.736
Entangling-24w 79.46 1.291 0.947 0.774 0.717
Entangling-28w 92.46 1.292 0.949 0.774 0.705
Entangling-32w 105.56 1.293 0.949 0.774 0.697

using 105.56KB (Entangling-32w). More interestingly, with
just 40.36KB overhead, Entangling-12w offers a good area-
performance balance obtaining 28.1% speedup and reducing
the average cache miss rate from 32% to just 1%.

4 CONCLUSIONS

The entangled prefetcher for instructions offers an alterna-
tive prefetching direction driven by timeliness. The Entan-
gling I-prefetcher entangles source cache lines that trigger
prefetches for destination cache lines in a timely manner.
The design does not require access to the branch prediction
structures, does not add contention to the critical structures,
and does not entail large associative searches. Thus, the
Entangling I-prefetcher’s implementation is highly efficient
without being intrusive in the processor design.
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