Journal of Systems Architecture 54 (2008) 1155-1163

Contents lists available at ScienceDirect

Journal of Systems Architecture

journal homepage: www.elsevier.com/locate/sysarc

Optimizing CAM-based instruction cache designs for low-power
embedded systems

Juan L. Aragén®*, Alexander V. Veidenbaum®

2 Department Ingenieria y Tecnologia de Computadores, Universidad de Murcia, 30100 Murcia, Spain
b Department of Computer Science, University of California, Irvine, CA, USA

ARTICLE INFO ABSTRACT

Article history:

Received 10 December 2007

Received in revised form 22 February 2008
Accepted 3 June 2008

Available online 11 June 2008

Energy consumption and power dissipation are important concerns in the design of embedded systems
and they will become even more crucial with finer process geometry, higher frequencies, deeper pipe-
lines and wider issue designs. In particular, the instruction cache consumes more energy than any other
processor module, especially with commonly used highly associative CAM-based implementations.

Two energy-efficient approaches for highly associative CAM-based instruction cache designs are pre-
sented by means of using a segmented wordline and a predictor-based instruction fetch mechanism.
The latter is based on the fact that not all instructions in a given I-cache fetch are used due to taken
branches. The proposed Fetch Mask Predictor unit determines which instructions in a cache access will
actually be used to avoid fetching any of the other instructions. Both proposed approaches are evaluated
for an embedded 4-wide issue processor in 100 nm technology. Experimental results show average
I-cache energy savings of 48% and overall processor energy savings of 19%.

Keywords:

Embedded systems
Energy-efficient architectures
Fetch unit design

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Power dissipation and energy consumption are major design
concerns when facing the design of a new microprocessor in the
high performance domain (server and desktop) and, more dramat-
ically, in the embedded computing systems domain, especially in
the case of battery-operated devices. Embedded processors
increasingly use multiple instruction issue, higher frequencies
and deeper pipelines to increase performance which leads to high-
er energy consumption due to the presence of additional resources
and higher utilization of such resources. These processors use in-
order instruction issue and often do not contain a floating point
unit. As a result, I-, D-caches, and TLBs consume an increasing
share of overall energy. For instance, I-cache energy consumption
was reported to be 27% of the total energy in the StrongArm
SA110 [15].

Current embedded processors typically use content-address-
able-memory (CAM) tags in highly-associative data and instruction
caches (e.g., 32-way set associative for the Intel StrongArm [15]
and the XScale [4]; or 16-way set associative for the Transmeta
Crusoe [12]). Highly-associative CAM-tag caches consume more
energy than SRAM-tag implementations, increasing the energy
share of caches [16,22,26]. First, the CAM-tag access consumes a
lot of energy (5-10 times more than a traditional, same sized
SRAM-tag array [5,25]). Next, the subsequent access into the SRAM

* Corresponding author. Tel.: +34 968 398788; fax: +34 968 364151.
E-mail address: jlaragon@ditec.um.es (J.L. Aragén).

1383-7621/$ - see front matter © 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.sysarc.2008.06.001

data array also consumes a significant amount of energy. However,
the higher energy cost is justified by efficient implementations of
high associativity. This is a trend that is likely to become common-
place. But the increasing energy consumption is especially impor-
tant for the I-cache, which is accessed almost every cycle, always
“reading out” an entire cache line, even if only some of the instruc-
tion words are used. For example, a 32-byte cache line (containing
eight 4-byte instructions) may be read out in a given cycle but only
two instructions being fetched in that cycle. For these reasons, the
energy consumption of both the I-cache and the fetch unit is a ma-
jor design concern in current and next-generation low-power
embedded processors.

Several techniques have been proposed to provide the ability to
access just a portion of the entire cache line (e.g., subbanking [6,20]
and divided wordlines [23]), which is particularly useful when
accessing the D-cache to retrieve a single data word. However,
the I-cache fetch is much wider and typically involves fetching
an entire line. But, because of the high frequency of branches in
applications, in particular taken branches, not all instructions in
an I-cache line may actually be used.

The goal of this research is to explore the effect of these trends
and propose an energy-efficient instruction cache design for future
low-power embedded processors, taking advantage of the unused
instructions in an I-cache line fetch. The proposed approach at-
tempts to reduce the instruction fetch energy in two ways. First,
we propose a modification for the data array organization to use
a segmented wordline organization. This is similar to proposals for
using segmented bitlines [6] and it saves energy by allowing the

mailto:jlaragon@ditec.um.es
http://www.sciencedirect.com/science/journal/13837621
http://www.elsevier.com/locate/sysarc

1156
branch out branchi{)
LELT TP Iyl LT T
\/ \/
unused unused

Fig. 1. Branch out and branch into cases.

fetch of the exact number of instruction words needed in a cycle as
determined by the issue width N (typically 1, 2, or even 4 for future
embedded designs). Second, it further reduces the number of
instructions read by fetching only the “useful” instructions among
the N-word segment.

When a processor fetches N instructions per cycle, not all N
instructions may actually be issued. This happens in two cases
which are illustrated in Fig. 1:

(1) One of the N instructions is a branch that is taken - a branch
out case. All instructions in the N-word segment after the
taken branch will not be used.

(2) An I-cache line contains a branch target, which is not at the
beginning of the N-word segment - a branch into case. The
instructions before the target will be unused.

In this work, a Fetch Mask Predictor unit is proposed to identify
which of the instructions in each N-word segment are going to be
used. Based on this information, only the useful part of the cache
line is fetched in each clock cycle. Determining the unused words
requires identifying the two branch cases described above. For
the branch into case, a standard BTB (Branch Target Buffer) is used
to obtain the word address of the first useful instruction in a fetch
segment. For the branch out case, a different table is used to track
whether the next line to be fetched contains a branch that will be
taken, either conditional or unconditional. Finally, both cases can
occur in the same cache line and we combine them to identify all
instructions to be fetched in a given access. Once the useful
instructions have been identified, the I-cache needs the ability to
perform a partial access to a line. This may be achieved by using
either a subbanked [6] or the proposed segmented wordline I-cache
organization. Our proposed mechanisms will perform a partial ac-
cess to the I-cache by supplying a bit vector to control either the

J.L. Aragon, A.V. Veidenbaum /Journal of Systems Architecture 54 (2008) 1155-1163

subbanks to be activated or the pass transistors and drivers in case
of using segmented wordlines.

The rest of the paper is organized as follows. Section 2 presents
some related work. Section 3 motivates and analyzes the effect of
the unused fetch instructions and Section 4 describes the proposed
Fetch Mask Predictor unit. Section 5 details the experimental meth-
odology and presents the energy-efficiency evaluation of the pro-
posed mechanism. Finally, Section 6 summarizes the main
conclusions of this research.

2. Background and related work

There have been many hardware and architectural proposals for
reducing the energy consumption of TLBs and caches in general.
Most of them are only applicable to SRAM-tag cache organizations.
However, current and next-generation embedded processors
implement highly-associative CAM-tag caches.

A general block diagram of one set of a CAM-tag cache is shown
in Fig. 2 as outlined in [3]. In CAM-based caches, the CAM array is
used to perform tag comparisons which significantly changes the
organization, access mechanism and energy consumption of the
cache. There are no longer separate tag and data RAM arrays that
can be accessed in parallel (as for SRAM-tag caches). The CAM
and data storage are a single unit. A domino-logic comparator in
each tag location in the CAM drives a match line, which serves a
wordline for the data array. Thus, there is no decoder for the data
store. The bitlines, match lines, and buffers that drive control sig-
nals across the tag array are the main consumers of energy in the
CAM-tag cache [26].

In order to allow a partial access to a cache line, several ap-
proaches have already been applied to D-caches, although they
could also be applied to I-caches, supporting the idea of fetching
just the desired instructions from the I-cache.

A subbanked cache organization divides the cache into subbanks
[6,20] and activates only the required subbanks. A subbank con-
sists of a number of consecutive bit columns of the data array.
For the case of the I-cache, the subbank will be equal to the width
of an individual instruction, typically 32-bit wide. While not di-
rectly applicable to CAM-based cache designs, this approach has
the same general idea of selectively fetching only the desired
instruction words.

MLO > WLO
ML1 > WL1
ML2 > WL2
ML3 > WL3
1%}
32-entry 2
CAM SRAM array :‘
@
[22 bits ———W| 256 bits
ML31 »> WL31

Lvlv v iy
N

|

Fig. 2. Organization of a highly-associative CAM-based cache set.

J.L. Aragon, A.V. Veidenbaum /Journal of Systems Architecture 54 (2008) 1155-1163

100

1157

80

70

60
50 H
40
30 H
20 H
10 H

Taken branches (%)

(=]

basicmath
bitcount
gsort
susan_s
susan_e
susan_c
dijkstra
patricia
blowfish_e
blowfish_d
pgp_saz
pep_z
rijndael_e
rijndael_d
sha
CRC32

- A=) < Q= = 9
D2 2R g2 A EEEEEEERD
a"JEEmgo%"gh.‘:Uﬁbg%E
8 g8 & & & & ¥ @ - 2 z 2 = 3
22 SEEEE LT £ 7z

& 3 s B & S g

=
o =
2

Fig. 3. Fraction of taken branches for the MiBench benchmark suite.

Similarly, the DWL (Divided Wordline) approach [23] can be
used to reduce the length of a wordline and thus its capacitance.
This design has been implemented in actual RAMs. It typically re-
fers to a hierarchical address decoding and wordline driving. How-
ever, the need of a hierarchical decoding scheme makes DWL not
applicable to CAM-based cache designs.

A related approach is bitline segmentation [6], which divides a
bitline using pass transistors and allows sensing of only one of
the segments. This approach isolates the sense amplifiers from
all other bitline segments allowing for a more energy-efficient
sensing. This is the design approach assumed for the segmented
wordline mechanism we use in this paper.

A number of other organization techniques have also been pro-
posed to reduce cache energy consumption although many of them
are not applicable to CAM-based designs. Way-prediction predicts
a cache way and accesses it as a direct-mapped organization
[9,18,21]. A phased cache [8] separates tag and data array accesses
into two phases. First, all the tags in a set are examined in parallel
but no data access occurs. Next, if there is a hit, the data access is
performed for the hit way. This reduces energy consumption but
doubles a cache hit time. Way-memorization [13] is an alternative
to way-prediction that stores precomputed in-cache links to next
fetch locations aimed to bypass the I-cache tag lookup and thus,
reducing tag array lookup energy. Other proposals place small buf-
fers in front of caches to filter traffic into the cache. Examples in-
clude block buffers [1,20], multiple line buffers [6], the filter
cache [11] and the victim cache [14]. In general, these proposals
trade performance for power since they usually increase the cache
hit time.

Finally, circuit techniques can also be used to reduce the power
consumption of CAM structures. Pipelined CAM [17] breaks the
match lines into pipelined stages. Since mismatches typically hap-
pen in the early stages, the pipelined CAM reduces power through
halting additional searching operations in other pipeline stages.
Techniques that use both circuit and organization techniques in-
clude serially accessed [5] and way-halting [24] caches. Serially ac-
cessed CAM caches may prolong the cache access time whereas
way-halting caches need a specially designed CAM, which may
not be easily available for embedded system designs.

3. Problem overview: unused fetched instructions analysis

In this section, we study the number of instructions that are un-
used in an I-cache line fetch due to taken branches in order to pro-
vide some insight on how these extra accesses may impact the
energy consumption of a highly-associative I-cache organization
as those typically implemented in embedded microprocessors such
as the XScale.

The XScale microprocessor implements three pipelines as out-
lined in [4]. The main integer pipeline is seven stages long, memory

operations follow an eight-stage pipeline, and finally, when operat-
ing in thumb mode an extra pipe stage is inserted after the last
fetch stage in order to convert thumb instructions into ARM
instructions. Both the I- and D-caches are 32 Kb, 32-way set asso-
ciative caches with a 32-byte line size (i.e., eight 4-byte instruc-
tions per cache line). The replacement policy is a round-robin
algorithm and caches also support the ability to lock code in at a
line granularity. The I-cache has a fill buffer of two entries whereas
the D-cache has a fill buffer of four entries. The D-cache supports
hit-under-miss operation and there is an eight-entry coalescing
writeback buffer. In addition, 32-entry fully associative TLBs that
support multiple page sizes are provided for both caches. There
is also a 128-entry, direct-mapped branch target buffer (BTB) for
improving branch performance. The BTB stores the history of
branch outcomes along with their targets.

In any case, for the analysis of the number of unused instruc-
tions in an I-cache line fetch due to taken branches, we must focus
on the XScale’s fetch policy operation [4]. Assuming a general N-is-
sue width pipeline and a cache line of eight instructions, every
eight/N cycles a whole 32-byte line is read out and placed in a fetch
buffer. The purpose of the fetch buffer is to decouple the I-cache
from the decode unit and the rest of the pipeline, as well as to pro-
vide a smooth flow of instructions to the decoders even at the pres-
ence of I-cache misses. Instructions from the fetch buffer are
introduced into the pipeline at the issue width rate of N. The de-
scribed XScale fetch policy works well from a performance-ori-
ented point of view but it is not energy-efficient due to the high
frequency of branches in applications, in particular taken branches,
that interrupt the smooth flow of instructions through the pipeline.

Fig. 3 shows the fraction of taken branches for the evaluated
MiBench benchmark suite [7], a publicly available suite designed
to be representative for several embedded system domains. The
baseline configuration is an in-order 4-wide embedded processor
with a 4K-entry bimodal branch predictor and, as the XScale pro-
cessor, it uses a 32 KB, 32-way I-cache with a 32-byte line size'.
It can be observed that the average fraction of taken branches is
about 78%, with some applications close to 99%. In addition, the
average distance between taken branches has been measured to be
13 instructions. Note that this is a well-known application behavior
also followed by other benchmark suites such as Spec2000 that is
commonly used in the superscalar processor domain. As a reference
point, the SpecINT2000 and SpecFP2000 have an average fraction of
taken branches of 65% and 71%, respectively. Note however, that the
fraction of taken branches is exacerbated in some embedded appli-
cations since they are very small, simple and loop-based programs.

This huge fraction of taken branches leads to a great amount of
unused instructions in an I-cache line fetch. Therefore, for highly-
associative CAM-based I-caches with long cache lines, it would

1 See Section 5.1 for further details about processor configuration.

1158

be more energy-efficient to read instructions from the I-cache at a
smaller granularity instead of reading a whole line (typically eight
instructions), given the high probability of some of the instructions
never being used. This negative effect is illustrated in Fig. 4. If the
second instruction of the cache line is a taken branch out of the
line, the 4-instruction cache line results in 50% of unused instruc-
tions (2 out of 4) whereas the 8-instruction cache line results in
75% of unused instructions.

The next analysis quantifies the effect of fetching unnecessary
instructions from the I-cache. Figs. 5 and 6 show the fraction of to-
tal unused instructions for the evaluated in-order 4-wide issue
embedded processor respect to the ideal case where we were able
to fetch the exact number of instructions needed. It can be ob-
served that, on average, about 61% of all retrieved instructions
from the I-cache are not introduced into the pipeline due to taken
branches. This trend is followed by most benchmarks, going up to
67% of unused instructions for some of them such as CRC32 and
gsm_t.

Note also that, in general, Figs. 3 and 5 point out a correlation
between the fraction of taken branches and the fraction of unused
instructions. However, we can find some benchmarks with a high
fraction of unused instructions, such as CRC32 (67%), that do not
have a high fraction of taken branches (just 50%). Contrarily, fft_d
presents 56% of unused instructions but 77% of taken branches.
The reason is the following. As illustrated in Figs. 1 and 4, a taken
branch can be either at the beginning or at the end of the cache
line, therefore, its negative effect highly depends on its position
within the cache line (branch out case) as well as on the position
of its target address (branch into case). In our case, the experimen-
tal results have shown that CRC32 presents most of taken branches
at the opposite cache line extremes (branch out case at the begin-
ning but branch into case at the end), contrarily fft_d presents its
branches out at the end of the line but its branches into at the begin-
ning of the line.

Summarizing, these results show that for CAM-based I-caches
with long lines, the presence of taken branches interrupting the
sequential flow of instructions is very significant and, conse-

branch out

4-instruction |
cache line

|

8-instruction cache line

Fig. 4. Unused instructions for a 4-wide issue processor with either 4
instructions per cache line.

70

J.L. Aragon, A.V. Veidenbaum /Journal of Systems Architecture 54 (2008) 1155-1163

70

60

50 4
40

30 +

20 +
10
0

Unused Instructions (%)

industrial network security telecom consumer AVERAGE

Fig. 6. Average unused instructions for each benchmark category.

quently, there is a significant impact on the energy consumption
of the I-cache. These results show the potential of the proposed
Fetch Mask Prediction unit to reduce the energy consumption of
the I-cache due to unused instructions for embedded processors.

4. Fetch Mask Predictor unit

The FMP (Fetch Mask Predictor) unit generates a control bit vec-
tor, whose length is equal to the number of instructions in a cache
line, used to decide which instruction words within the line will be
fetched in the next cycle. The bit vector controls either the sub-
banks to be activated or the pass transistors and drivers in case
of using a segmented wordline I-cache organization. This allows
for a partial line access to only the useful instructions and, there-
fore, it can save I-cache energy. In order to determine the bit mask
for each fetch cycle, let us consider each of the two cases described
in Section 1: branching into and branching out of a cache line.

For branching into the next line, it is only necessary to determine
whether the current fetching line contains a branch instruction
that is going to be taken. This information is provided by both
the BTB (Branch Target Buffer) and the conditional branch predictor,
as depicted in Fig. 7. Once a branch is predicted to be taken and the
target address is known, its position in the next cache line is easily
determined. For this case, only the instructions from the target po-
sition until the end of that cache line should be fetched. This infor-
mation is stored into a target_mask.

For branching out of the next line, it is necessary to determine if
the next I-cache line contains a branch instruction that is going to
be taken. In that case, instructions from the branch position to the
end of the line do not need to be fetched in the next cycle. To
accomplish this, a Mask Table (MT) is used to identify those I-cache
lines that contain a branch that will be predicted as taken for its
next execution. The number of entries in the MT equals the num-
ber of lines in the I-cache. Each entry of the MT stores a binary-en-
coded mask, so each entry has log,(issue_width) bits. Every cycle,
the MT is accessed to determine whether the next I-cache line con-

50 -H
40 H
30 -H

20 1

Unused Instructions (%)

10

= s 0 O = o TN o T °
£ EE 02 2E £ 228 N2

% 2 = @2 o T T 5
E g & 3§ 8 3§ 2 5 2 2 J @38 8
L 8 2 3 3 5 8 £ € g & -
g ° 2 2 2 © = 3z = & = 5
o S 2 (SR

© ©°

CRC32

- - 3 o - %) = o
B I e RS B R ":.! 2 g B § E E 5 T 2
£ % E E ; £ 8 ¥ B ETEE §F 5

2 2 % B 5 g2 & ¢ B 2 g z Tz
2 = = 5 £ = 2 P <
E == 2 £
g g
% E
Z

Fig. 5. Unused instructions for a 4-wide issue processor.

J.L. Aragon, A.V. Veidenbaum /Journal of Systems Architecture 54 (2008) 1155-1163 1159

branch
Branch rediction
Predictor
BTB target_mask

. next_fetch_mask

predicted_mask

next line

mask |—

Mask Table
(MT)

Fig. 7. The Fetch Mask Predictor unit.

tains a taken branch. This mask is called predicted_mask. When a
branch is committed and prediction tables are updated, we can
easily determine what the next prediction for that branch will be
just by looking at the saturating counter. This information is used
to update the MT in order to reflect if the branch will be predicted
as taken the next time. Therefore, there are no extra accesses to the
branch prediction tables, and thus, no additional power
dissipation.

It is important to note that the proposed FMP unit is not degrad-
ing nor improving performance since it just anticipates the behav-
ior of the underlying branch predictor to detect future taken
branches, either correctly predicted or mispredicted. But the FMP
unit does not change the behavior of the branch predictor and,
therefore, the execution time remains the same. When a branch
is executed, the corresponding MT entry will provide the correct
mask for a branch out case, always in agreement with the predic-
tion for that branch. In this way, the proposed FMP unit is not per-
forming any additional predictions and, therefore, the FMP unit
cannot miss. FMP just uses either the next prediction for a partic-
ular branch (n cycles before the next dynamic instance of the
branch) to identify a branch out case or the information from the
BTB to identify a branch into case. In other words, the proposed
FMP is a deterministic unit that follows the branch predictor
guesses, and there is no prediction accuracy associated to it.

In addition, neither the I-cache hit rate nor the accuracy of the
branch predictor affects the energy savings provided by our pro-
posal, only the amount of branches predicted as taken (as shown
in previous Section). In case of branch misprediction, all necessary
recovery actions will be done as usual and the corresponding MT
entry will be reset to a mask of all 1’s as explained below. Finally,
it is possible for both branching into and branching out cases to oc-
cur within the same cache line. In this case, the target_mask and
the predicted_mask need to be combined (ANDed).

To better understand the proposed design, let us consider the
following example for two different I-cache lines:

linel: I, branch,_to_targetg, I, Is.
line2: 1, target,, branchy, Is.

where I; (j=1,...,5) and target, are non-branching instructions.
Assume that linel is the line currently being fetched and the
branch in linel is predicted to be taken to target, in line2. For this
branch into case, target_mask = 0111 for the second cache line. If
branch, from line2 is also going to be predicted as taken?, then only
the first three instructions from line2 must be fetched. For this
branch out case, the corresponding MT entry will provide a pre-

2 We are assuming that its last execution changed the 2-bit saturated counter to
the predict-as-taken state, updating the MT entry with mask = 1110.

dicted_mask = 1110. When both masks are combined by a logical
AND operation, the resulting mask is next_fetch_mask = 0110 which
are the control bits that will be used for fetching just the required
instructions from line2.

4.1. FMP implementation details
The Fetch Mask Predictor unit operates as follows:

(1) All the entries in the MT table are initialized to all 1's which
means that all instructions in the line are going to be
fetched.

(2) When an I-cache miss occurs and a line is replaced, the asso-
ciated mask in the MT is reset to all 1’s.

(3) In the fetch stage:

1. if (taken branch in current line) then

2. use branch predictor/BTB to compute the
target_mask;

3. else target_mask=all 1’s;

4, predicted_mask=MT[next_line];

5. next_fetch_mask=target_mask AND predicted_
mask;

6. if (next_fetch_mask==0) then

7. next_fetch_mask=target_mask;

The last test above (line 6) is necessary for the following

case:

linel: Iy, branch_to_targeta, I, I3

line2: branch,, targeta, 4, Is

If the first line is fetched and branch, is predicted as not
taken, the program will continue with line2. If branch, is
taken, then the MT will contain for line2 a pre-
dicted_mask = 1000. The next time line1 is fetched, if branch,
is taken then target_mask = 0111 for line2. The combination
of both masks results in zero, which is incorrect. According
to steps 6 and 7 above, the next_fetch_mask used for fetching
line2 will be equal to target_mask, which is the correct mask
for this example.

(4) When updating the branch predictor at commit, also update
the MT entry that contains the branch. If the branch that is
being updated will be predicted as taken for the next execu-
tion, then disable all the bits from the position of the branch
to the end of the line. Otherwise, set all the bits to 1.

(5) In case of a branch misprediction, reset the corresponding
MT entry to all 1's. There is no other effect for our proposal
in case of misprediction.

As for the effect on cycle time, note that determining the
next_fetch_mask for cycle i +1 is a two-step process (see Fig. 7).
In cycle i the BTB is used to create a target_mask for the next line.
Then, the next line PC is used to access the MT to determine the
predicted_mask and, finally, both masks are ANDed. Since the BTB
and MT access are sequential, the next_fetch_mask may not be
ready before the end of cycle i. If this is the case, despite the very
small MT size (2 Kbits - see details at the end of Section 5.2), dur-
ing the first half of cycle i+ 1, the CAM-tag comparison could be
overlapped® with the access to the MT started in cycle i. By doing
this, by the time the selected wordline is driven into the SRAM data

3 According to CACTI simulations of a 32 Kb, 32-way I-cache, approximately 50% of
the whole cache access time is spent on the CAM-tag comparisons that select the
wordline, whereas the other 50% is spent on driving the wordline into the SRAM data
array, pulling down the corresponding bitlines, sensing them, and driving the output
drivers for reading the line out of the cache.

1160 J.L. Aragon, A.V. Veidenbaum /Journal of Systems Architecture 54 (2008) 1155-1163

array in cycle i+ 1, the next_fetch_mask will be ready for disabling
the requested SRAM data subbanks.

4.2. Wordline segmentation

Wordline segmentation is aimed at reducing the I-cache energy
by allowing the fetch of the exact number of instructions needed
in a cycle as determined by the instruction issue-width N (in-
stead of reading out the 32-byte cache line every four cycles,
in case of a 2-issue width). As shown in Section 3, recall that
due to the high frequency of taken branches it is more energy-
efficient to fetch instructions at a smaller granularity instead of
reading out a whole line and placing the eight instructions in a
fetch buffer, given the high probability of some of the instruc-
tions never being used.

The implementation of wordline segmentation is similar to that
of bitline segmentation [6], by using pass transistors in order to iso-
late the different N-word segments. This approach allows for a
more energy-efficient sensing of only one of the segments since
the effective load capacitance of the cache line is reduced (imple-
mentation details can be found in [6]).

5. Experimental results
5.1. Simulation methodology

To evaluate the Fetch Mask Predictor unit design, the Wattch
v1.02 power simulator [2] was augmented with a model for the
FMP unit (as will be shown in Section 5.2). In addition, since the
original Wattch power model was based on CACTI version 1, the
dynamic power model has been changed to the one from CACTI
version 3.2 [19] in order to increase its accuracy.

Next-generation embedded processors modeled in this paper
use multiple instruction issue and deep pipelines. In particular,
the pipeline has been lengthened to 12 cycles (from fetch to com-
mit). The simulated processor is an in-order 4-wide issue processor
with four integer ALUs and one complex arithmetic unit for integer
multiplication and division. The conditional branch predictor is a
4K-entry bimodal predictor whereas the BTB has 256 entries. The
simulated architecture uses a 100 nm feature size and a 1.5 GHz
clock frequency.

The simulated cache organization is based on that of the XScale
processor [4]: 32KB, 32-way set associative data and instruction L1
caches with 32-byte lines. There is no L2 cache. The L1 cache access
latency is 2 cycles and the main memory access latency is 150 cy-
cles. The I- and D-TLBs are fully associative and have 32 entries.

Finally, the energy-efficiency of the proposed FMP unit has been
evaluated using the MiBench benchmark suite [7]. The benchmarks
are divided in six categories targeting different parts of the embed-
ded systems market: Automotive and Industrial Control (basic-
math, bitcount, susan (edges, corners and smoothing), Consumer
Devices (jpeg encode and decode, lame, tiff2bw, tiff2rgba, tiffdi-
ther, tiffmedian, typeset), Office Automation (ghostscript, ispell,
stringsearch), Networking (dijkstra, patricia), Security (blowfish
encode and decode, pgp sign and verify, rijndael encode and de-
code, sha) and Telecommunications (CRC32, FFT direct and inverse,
adpcm encode and decode, gsm encode and decode). All the bench-
marks were compiled with the -O3 compiler flag and were simu-
lated to completion using the “large” input set.

5.2. Power models for the Wordline Segmentation approach and the
FMP unit

According to [10,19], the main sources of energy consumption
in a typical SRAM‘tag cache are: Edecodes Ewordiines Ebitlines Esenseamp

and Eiagarray. For CAM-tag caches, since there is no decoder, the en-
ergy consumption is:

ECAM-tag cache = Ewordline + Ebitline + Esenseamp + Etagarray (1)

To correctly model CAM-based set associative caches, the original
Wattch’s cache energy model was changed: first, excluding the de-
coder for the data array, and second, using Wattch’s power model
for CAM structures in order to model the CAM-tag match operation
that selects the matching wordline.

Both the proposed Wordline Segmentation approach and the FMP
unit energy savings rely on a partial access to a subset of the
instruction words within the I-cache line. In Eq. (1), only terms
Ewordiines Ebitiine aNd Esenseamp are proportional to the number of bits
fetched from the I-cache line, therefore, the energy consumed in a
CAM-based cache access as a function of the number of fetched
instructions in a given cycle is:

ECAM—tag partial = % X (Ewordline + Ebitline + Esenseamp) + Etagarray (2)
where W is the total number of instructions words in the line and
i € [0,W] is the number of fetched instructions in a cycle.

The power model for the Wordline Segmentation approach as-
sumes a partial access to the I-cache to fetch as many instructions
as determined by the issue width N: therefore, i = N in Eq. (2). On
the other hand, the power model for the FMP unit assumes a partial
access to the I-cache to fetch as many instructions as determined
by the control bit vector: therefore, i = next_fetch_mask in Eq.
(2). Also note that, in general, the Eworqiine term is very small
(2%), whereas both Epgine and Egenseamp terms account for approxi-
mately 80% of the 32 Kb, 32-way I-cache energy* as determined by
CACTI v3.2.

Regarding the power overhead of the FMP unit, it uses three reg-
isters and the MT table described in Section 4. Note, however, that
the size of the MT table is very small compared to the size of the I-
cache. The MT has the same number of entries as I-cache lines and
each MT entry has log,(issue_width) bits. For a 4-wide issue proces-
sor with a 32 Kb I-cache, the size of the MT is just 2 Kbits®, which is
128 times smaller than the I-cache. For this example, the power dis-
sipated by the MT has been measured to be about 0.8% of the power
dissipated by the whole I-cache, which is negligible for the total pro-
cessor power consumption. In any case, this power overhead has
been modeled and incorporated in the evaluation of the FMP unit
by using CACTI and Wattch’s power models.

Finally, to better understand the effects of improving the en-
ergy-efficiency of the I-cache, Fig. 8 shows the maximum a priori
power breakdown for each structure of the simulated 4-wide issue,
in-order processor. It can be seen that the I-cache is responsible for
about one third of the overall power dissipation, which is similar to
results reported in [15]. It is important to note that this power dis-
tribution corresponds to the maximum a priori power of each struc-
ture. However, the actual dynamic power breakdown after
executing an application is different since the I-cache is accessed
more frequently than the D-cache. Our experimental results show
that for the MiBench benchmark suite, on average, the I-cache ac-
counts for 43% of the total processor power whereas the D-cache
accounts for 23% of the overall power.

5.3. Energy-efficiency of the Fetch Mask Predictor unit

The baseline I-cache operation (similar to that of the XScale pro-
cessor) is as follows supposing a N-wide issue processor. Every

4 The other 18% cache energy is consumed in the CAM-tag match operation, the
Etagarray term, which is not reduced by our proposals.

5 This I-cache has 1024 lines, each containing eight 32-bit instructions. So, the MT
size is 102442 bits.

J.L. Aragon, A.V.

D-cache
28,5%

Branch Pred
2,4%

Reg.File
4,7%

Clock
24.9%

ALUs
8,1%

Others
2,9%

I-cache
28,5%

Fig. 8. Power breakdown for the simulated 4-wide issue, in-order processor.

eight/N cycles an access is performed to fetch a whole I-cache line
(eight instructions). The desired CAM bank is first selected using 5
bits from the PC. PC high-order 22 bits are used for tag compare in
the CAM array. An active CAM match line selects a data array line
and the eight instructions (256 bits) are read out and placed into
the instruction fetch buffer. In the baseline implementation, a mul-
tiplexor is used to select an aligned set of N instructions from the
fetch buffer to be sent to instruction decoders.

However, the proposed Wordline Segmentation approach allows
reading out of the cache only the desired N-word segment, as ex-
plained before, instead of the whole line. Additionally, the Fetch
Mask Predictor unit identifies and enables access to a subset of
the N words within the line whereas all other words are disabled.

Fig. 9 shows the energy savings over the baseline case for the I-
cache when considering a 4-wide instruction fetch/issue. Fig. 10
shows the average energy savings for each benchmark category.
On average, the segmented wordline approach saves 39% of the I-
cache energy as compared to the baseline case. The fact that half
of the data array is disabled in this case, and that the data array
consumes approximately one half of the I-cache dynamic energy
justifies the above results. More interesting is the fact that FMP
provides additional energy savings, an average 48%, by disabling
even more instructions that are not introduced into the pipeline.

Veidenbaum /Journal of Systems Architecture 54 (2008) 1155-1163

1161

shows the effectiveness of FMP in determining unused instructions
within an I-cache line with an almost negligible hardware
overhead.

In order to show the high correlation between the number of
unused fetched instructions and the I-cache energy savings,
Fig. 11 shows the fraction of unused fetched instructions for both
the segmented wordline approach and the FMP unit. For comparison
purposes, the Oracle mechanism identifies the exact number un-
used instructions, previously reported in Fig. 5. As expected, the
fraction of unused instructions per cache line represents an upper
bound on the I-cache energy savings that can be obtained with the
proposed mechanisms.

Finally, Figs. 12 and 13 show the total processor energy savings
whereas Table 2 shows the cumulative overall energy savings for
each of the evaluated mechanisms. On average, the segmented
wordline approach provides 15% of overall energy savings whereas
FMP provides additional 4% overall energy savings. It is important
to note that the I-cache dissipates a major fraction of overall pro-
cessor power (around 30%) as shown in Fig. 8. However, as ex-
plained in Section 5.2, when taking into account the dynamic
power breakdown after executing an application, the frequent
accesses to the I-cache makes it a more power-hungry structure

(=
(=}
|

4' M Segmented BFMP O Oracle'i

50 1

I-cache energy savings (%)

0 - T T T T T

industrial ~ network security telecom consumer AVERAGE

Fig. 10. Average I-cache energy savings for each benchmark category.

Table 1
Cumulative I-cache energy savings provided by the three mechanisms (segmented,
FMP and Oracle) for each benchmark category

In addition, the improvement achieved by an Oracle mechanism Category Segmented (%) FMP (%) Oracle (%)
is also evaluated. The Oracle mechanism identifies precisely all Industrial 39 8 4
the instructions actually used within a cache line, therefore provid- Network 40 8 3
ing an upper bound on the benefits of the design proposed in this ielw“ty 431? ;1 :
P . . . elecom
paper. It is interesting to note that FMP obtains energy savings very Consumer 39 3 4
close to that of the Oracle experiment in all benchmarks (less than o 39 9 4
. . N . . Vi
4% on average as it can be seen in Fig. 10 and in Table 1). This &
_70 I M Segmented OFMP O Oracle I
S
2 60 - -
20 . _ — _ _ — — - — - — - I - M —
£ 50 .- | Tl |
B
> 40 7
20
Q
£ 30
o
S 20
<
Q
— 10
P I A AP A A s A
EfZ:ssZtgg 53Tl egsgseegp s E
3] =] @ [z =5 z = = 2 "
£ 3 § 335 &% : 8 22 O £S5 T 2EEE g £ ER- -
© s = = = =) g,

Fig. 9. I-cache energy savings for a 4-wide issue processor.

1162 J.L. Aragon, A.V. Veidenbaum /Journal of Systems Architecture 54 (2008) 1155-1163
2 |.Segmenled OFMP OOracle |
< _ M M R I B N - o M M A —
L m I I | | M
60 - I — - - 0 o A -
z _
S 50 7 il ™
=
2
b40
Z
= 30
=
2
Z 20
5
10
oLl imigiimigligigligligigiggigigigeigegeigegigegigeig@ig
£ 2 £ »© o o g & © 9 N N O T 5 N g - O B = =5 O T 2 S 5 £ o @7 = = o
= | 5 5 s o y [T T | S 2 = =2 2
S 285 2252 % a3 30 L e £ B RBESEFE R
3 2 8 8 g =5 3§ € &€ g &3 3 RS 2 2 % 5 &2 B2 g B g 2 g %@
S 2 2 2 F 2
z = 222 % =~ & £5& O el TTTEE g gz <
3 =1 g 8 s F R= =
o © o5
Fig. 11. Fraction of unused instructions for the proposed mechanisms.
30 I]
| ®Segmented B FMP OOracle |
_ _
® -
~ 25 M 1
2
= -
g M I
Z 20
B
)
5 15
=]
(5]
=
s 10
(5]
>
OS
0 | L L | i §E §ED BN
£ 8 £ » o o 8 & © T N N O T 5 g g oo~ O T = 3 o0 T oz I 5 S o @B £ = o
| k=1 s | T T | [o = = o o
£ 2828522535 %5373 %0 e £ € ppg st 55 E &g
'Q‘BUmii::gcc%ggg ¥ = &&fng}b&g%eeg-—ég._g
z 5 22 2% &~ % 3 & £ £ © g 2 T T F E B £ g @ <
= JCR—c T g = b=
s © o 5
2

Fig. 12. Total processor energy savings for a 4-wide issue processor.

[
=)
|

4' M Segmented BFMP O Oracle'i

I
G

—_ —_ o
1S w S
L L

Overall energy savings (%)
w

=}
L

industrial network security telecom consumer AVERAGE

Fig. 13. Average total processor energy savings.

Table 2
Cumulative total processor energy savings for each mechanism

Category Segmented (%) FMP (%) Oracle (%)
Industrial 15 4 2
Network 16 3 1
Security 13 5 2
Telecom 18 4 2
Consumer 15 3 1
Average 15 4 2

that accounts for 43% of overall processor power. For this reason, a
mechanism such as FMP is able to provide such significant overall
energy savings (an average of 19% energy savings).

In summary, the proposed FMP unit is able to provide signifi-
cant I-cache and overall energy savings at a minimal hardware cost
for next-generation embedded processors implementing highly

associative CAM-based caches by not reading out from the data ar-
ray of the I-cache those instructions that are not going to be used
due to taken branches.

6. Conclusions

Modern embedded processors fetch, but may not use, many
instructions from an I-cache line due to the high frequency of taken
branches. Two energy-efficient mechanisms for a highly associa-
tive CAM-based caches have been presented by means of using a
segmented wordline I-cache data array organization and a FMP
(Fetch Mask Prediction) unit able to detect such unused instruc-
tions. The proposed FMP unit provides a bit vector to control the
pass transistors and drivers in order to perform a partial access
to the segmented wordline. Neither mechanism has an impact on
performance.

A combination of both proposed approaches has been shown to
reduce the energy consumption of the instruction cache by 48%
and to provide overall processor energy savings of 19% for a 4-issue
next generation embedded processor. Future embedded processors
are likely to have even larger caches, branch predictors and branch
target buffers. This will further improve the energy-efficiency of
the proposed Fetch Mask Predictor unit.

Finally, the FMP unit is a mechanism orthogonal to other power-
aware techniques such as fetch gating or way-prediction, and it can
be used in conjunction with such techniques, therefore, providing
additional energy savings.

Acknowledgements

This work has been jointly supported by the Spanish MEC and
European Comission FEDER funds under Grants “Consolider Inge-

J.L. Aragon, A.V. Veidenbaum /Journal of Systems Architecture 54 (2008) 1155-1163 1163

nio-2010 CSD2006-00046" and “TIN2006-15516-C04-03”; and by
the Center for Embedded Computer Systems at the University of
California, Irvine.

References

[1] L Bahar, G. Albera, S. Manne, Power and performance trade-offs using various
caching strategies, in: Proc. Int. Symp. on Low-Power Electronics and Design,
1998.

[2] D. Brooks, V. Tiwari, M. Martonosi, Wattch: a framework for architectural-level
power analysis and optimizations, in: Proc. 27th Annual International
Symposium on Computer Architecture, 2000.

[3] L.T. Clark, B. Choi, M. Wilkerson, Reducing translation lookaside buffer active
power, in: Proc. 2003 International Symposium on Low Power Electronics and
Design, ACM Press, 2003.

[4] L. Clark, E. Hoffman,]. Miller, M. Biyani, L. Liao, S. Strazdus, M. Morrow, K.
Velarde, M. Yarch, An embedded 32-b microprocessor core for low-power and
high-performance applications, IEEE Journal of Solid-State Circuits 36 (11)
(2001) 1599-1608.

[5] A. Efthymio, J. Garside, An adaptive serial-parallel cam architecture for low-
power cache blocks, in: Proc. Int. Symp. on Low-Power Electronics and Design,
2002.

[6] K. Ghose, M.B. Kamble, Reducing power in superscalar processor caches using
subbanking, multiple line buffers and bit-line segmentation, in: Proc. Int.
Symp. on Low Power Electronics and Design, ACM Press, 1999.

[7] M.R. Guthaus,].S. Ringenberg, D. Ernst, T.M. Austin, T. Mudge, R.B. Brown,
Mibench: A free, commercially representative embedded benchmark suite, in:
Proc. IEEE 4th Annual Workshop on Workload Characterization, 2001.

[8] A. Hasegawa et al., Sh3: High code density, low power, IEEE Micro 15 (6)
(1995) 11-19.

[9] K. Inoue, T. Ishihara, K. Murakami, Way-predicting set-associative cache for
high performance and low energy consumption, in: Proc. Int. Symp. on Low
Power Electronics and Design, 1999.

[10] M.B. Kamble, K. Ghose, Analytical energy dissipation models for low power
caches, in: Proc. Int. Symp. on Low Power Electronics and Design, 1997.

[11] J. Kin, M. Gupta, W.H. Mangione-Smith, The filter cache: an energy efficient
memory structure, in: Proc. Int. Symp. on Microarchitecture, 1997.

[12] A. Klaiber, The technology behind crusoe processors, in: Technical Report,
Transmeta Corporation, 2000.

[13] A. Ma, M. Zhang, K. Asanovic, Way memoization to reduce fetch energy in
instruction caches, in: Proc. ISCA Workshop on Complexity-Effective Design,
2001.

[14] G. Memik, G. Reinman, W.H. Mangione-Smith, Reducing energy and delay
using efficient victim caches, in: Proc. Int. Symp. on Low Power Electronics and
Design, 2003.

[15]]. Montanaro, R.T. Witek, K. Anne, AJ. Black, E.M. Cooper, D.W. Dobberpuhl,
P.M. Donahue, J. Eno, G.W. Hoeppner, D. Kruckemyer, T.H. Lee, P.C.M. Lin, L.
Madden, D. Murray, M.H. Pearce, S. Santhanam, K.J. Snyder, R. Stephany, S.C.
Thierauf, A 160-MHz, 32-b, 0.5-w CMOS RISC microprocessor, IEEE Journal of
Solid-State Circuits 31 (11) (1996) 1703-1714.

[16] D. Nicolaescu, A. Veidenbaum, A. Nicolau, Reducing power consumption for
high-associativity data caches in embedded processors, in: Proc. Int. Conf. on
Design, Automation and Test in Europe (DATE’03), 2003.

[17] K. Pagiamtzis, A. Sheikholeslami, A low-power content-addressable memory
(CAM) using pipelined hierarchical search scheme, IEEE Journal of Solid-State
Circuits 39 (9) (2004) 1512-1519.

[18] M.D. Powell, A. Agarwal, T. Vijaykumar, B. Falsafi, , K. Roy, Reducing set-
associative cache energy via way-prediction and selective direct-mapping, in:
Proc. Int. Symp. on Microarchitecture, 2001.

[19] P. Shivakumar, N.P. Jouppi, Cacti 3.0: an integrated cache timing, power,
and area model, Technical Report 2001/2, Digital Werstern Research Lab,
2001.

[20] C. Su, A. Despain, Cache design tradeoffs for power and perfor-
mance optimization: a case study, in: Proc. Int. Symp. on Low Power Design,
1995.

[21] W. Tang, A.V. Veidenbaum, A. Nicolau, R. Gupta, Integrated i-cache way
predictor and branch target buffer to reduce energy consumption, in: Proc. Int.
Symp. on High Performance Computing, Springer LNCS 2327, 2002.

[22] A.V. Veidenbaum, D. Nicolaescu, Low energy, highly-associative cache design
for embedded processors, in: Proc. IEEE Int. Conf. on Computer Design: VLSI in
Computers and Processors (ICCD), 2004.

[23] M. Yoshimito, K. Anami, H. Shinohara, T. Yoshihara, H. Takagi, S. Nagao, S.
Kayano, T. Nakano, A divided word-line structure in the static ram and its
application to a 64k full CMOS RAM, IEEE Journal of the Solid-State Circuits SC-
18 (1983) 479-485.

[24] C.Zhang, F. Vahid, . Yang, W. Najjar, A way-halting cache for low-energy high-
performance systems, ACM Transactions on Architecture and Code
Optimization (TACO) 2 (1) (2005) 34-54.

[25] C. Zhang, A low power highly associative cache for embedded systems, in:
Proc. IEEE Int. Conf. on Computer Design: VLSI in Computers and Processors
(ICCD), 2006.

[26] M. Zhang, K. Asanovic, Highly-associative caches for low-power processors, in:
Proc. Kool Chips Workshop, 33rd Int. Symp. on Microarchitecture, 2000.

Juan L. Aragén received his M.S. degree in Computer
Science in 1996 and his Ph.D. degree in Computer Engi-
neering in 2003, both from the Universidad de Murcia,
Spain, followed by a 1-year postdoctoral stay as a Visit-
ing Assistant Professor and Researcher in the Computer
Science Department at the University of California,
Irvine. In 1999 he joined the Computer Engineering
Department at the Universidad de Murcia, where he
currently is an Associate Professor. His research interests
are focused on CMP architectures, processor microar-
chitecture, and energy-efficient and reliable systems. He
is a member of the IEEE Computer Society.

Alexander V. Veidenbaum received a Ph.D. in Com-
puter Science from the University of Illinois at Urbana-
Champaign in 1985. He is a Professor in the Department
of Computer Science at the University of California,
Irvine. His research interests include high-performance
and parallel architectures, low-power design, and
compilation.

	Optimizing CAM-based instruction cache designs for low-power embedded systems
	Introduction
	Background and related work
	Problem overview: unused fetched instructions analysis
	Fetch Mask Predictor unit
	FMP implementation details
	Wordline segmentation

	Experimental results
	Simulation methodology
	Power models for the Wordline Segmentation approach and the FMP unit
	Energy-efficiency of the Fetch Mask Predictor unit

	Conclusions
	Acknowledgements
	References

