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ABSTRACT
The reasons for performance losses due to conditional branch
mispredictions are first studied. Branch misprediction penalties
are broken into three categories: pipeline-fill penalty, window-fill
penalty, and serialization penalty. The first and third of these
produce most of the performance loss, but the second is also
significant. Previously proposed dual (or multi) path execution
methods attempt to reduce all three penalties, but these methods
are also quite complex. Most of the complexity is caused by
simultaneously executing instructions from multiple paths.

A good engineering compromise is to avoid the complexity of
multiple path execution by focusing on methods that reduce only
the pipeline and window re-fill penalties. Dual Path Instruction
Processing (DPIP) is proposed as a simple mechanism that
fetches, decodes, and renames, but does not execute, instructions
from the alternative path for low confidence predicted branches at
the same time as the predicted path is being executed. All the
stages of the pipeline front-end are hidden once the misprediction
is detected. This method thus targets the pipeline-fill penalty and
is shown to achieve a good trade-off between performance and
complexity. To reduce the window-fill penalty, we further
propose the addition of a pre-scheduling engine that schedules
instructions from the alternative path in an estimated execution
order. Thus, after a misprediction, a high number of instructions
from the alternate path can be immediately issued to execution,
achieving an effect similar to very fast re-filling of the window.
Performance evaluation of DPIP in a 14-stage superscalar
processor (like IBM Power 4) shows an average IPC improvement
of up to 10% for the bzip2 benchmark, and an average of 8% for
ten benchmarks from the SPECint95 and SPECint2000 suites.

Categories and Subject Descriptors
C.1.1 [Processor Architectures]: Single Data Stream
Architectures.

General Terms
Performance, Design.

Keywords
Branch misprediction penalty, dual path processing, confidence
estimation, pre-scheduling.

1. INTRODUCTION
Branch mispredictions are well known as a major cause of
performance loss in high performance superscalar processors. The
conventional way of mitigating this performance loss is to
increase the branch prediction accuracy [5][22][24]. To
accomplish this, the proposed mechanisms usually increase
predictor complexity, which may adversely affect the latency of
prediction [15]. Furthermore, many current processors have
designs targeted at very high clock frequencies which lead to
longer pipelines (e.g. 14 stages in the IBM Power 4 [19] and 20
stages in the Pentium 4 [8]). In such processors, the branch
misprediction problem becomes even more crucial because
branches take longer to be resolved and instructions take longer to
reach execution after a misprediction.

A more radical approach to reducing branch misprediction penalty
relies on executing multiple program paths simultaneously [13]
[17][26][27]. Branch predictions are assigned a confidence level,
and for low confidence predictions, instructions from both paths
are decoded, issued, and executed. When the branch outcome is
eventually determined, instructions from the wrong path are
selectively flushed. A major problem with these techniques is the
complexity introduced in the processor design. The size of the
physical register file and instruction window must be increased,
and selective flushing adds complexity to control. Furthermore,
higher execution bandwidth may require more functional units.
This may affect not only the cycle time but also the power
dissipation because of the execution of more un-committed
instructions.

The research reported here is focused on reducing the branch
misprediction penalty while striking a balance between
complexity, cost, and performance. First, we study the sources of
the branch misprediction penalty. Then, we propose a simple
scheme that fetches, decodes and renames, but does not execute,
instructions from the alternative path of low confidence branch
predictions while the predicted path is processed as usual.
Consequently, instructions from the alternative path can be issued
to execution immediately after a misprediction is detected.
Finally, we consider an additional mechanism, a pre-scheduling
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engine [4][23], that pre-schedules instructions from the alternative
path in a simple way. Thus, instructions from the alternative path
can be issued to execution in an estimated execution order,
achieving a similar effect to instantaneously filling the instruction
window immediately after a misprediction.

The rest of this paper is organized as follows. Section 2 presents
the motivation of our proposal and the related work. Section 3
analyzes the sources of performance degradation due to branch
mispredictions. The proposed DPIP architecture model is
described in section 4. Section 5 explains the simulation
methodology and analyzes the performance of the DPIP. Finally,
section 6 summarizes the main conclusions of this work.

2. BACKGROUND AND RELATED WORK
There are two major ways of reducing the performance
degradation caused by branch mispredictions. One way is to
improve branch prediction accuracy. A very large body of
research has been targeted at this solution
[5][10][20][21][22][28]. A less-studied approach is to minimize
performance degradation by fetching and/or executing multiple
paths following a conditional branch. The IBM 3168 and 3033
mainframes could fetch instructions from both paths, though only
one path could be decoded and executed [6]. The MIPS R10000
processor has a one cycle delay to decode and predict branches.
During this cycle, the processor fetches instructions from the fall-
through path. These instructions are stored in a Resume Cache
[12] partially decoded if the branch is predicted taken. If the
prediction is eventually found to be incorrect, the sequential
instructions are quickly recovered from the Resume Cache.

In [2], the Misprediction Recovery Cache (MRC) is proposed as a
special-purpose cache for an in-order superscalar processor. It is
evaluated for an in-order CISC pipeline; thus, instructions are pre-
decoded into micro-operations and stored in program order in the
cache without register renaming. After a branch misprediction, the
MRC is probed for a valid subsequent trace. If it is found, the
trace is used to feed the execution stages of the pipeline trying to
perform a quick recovery.

In [7][9], dual Fetch/Decode mechanisms were evaluated for very
simple pipelined processors. A more aggressive approach is
proposed in [26], where Disjoint Eager Execution (DEE) follows
a limited number of paths following conditional branches: those
more likely to be taken. DEE is a limited form of Eager Execution
(EE) that performs better than EE when resources are constrained,
and helps to speed up the execution of loops. The proposed
architecture is implemented on the complex LEVO machine,
which uses a fixed-size static instruction window. It can process
up to 100 simultaneous branch paths (i.e. the dynamic code
between two branches) and executes and resolves up to 256
branches per cycle, something infeasible in current and near future
superscalar processors.

In [13], Selective Dual Path Execution (SDPE) selectively forks a
second path, executing instructions from both the predicted and
the alternative paths. Decisions about which branches should be
forked are based on branch confidence estimation [14]. The
proposed implementation duplicates the fetch stage in order to
fetch two basic blocks per cycle, one from each path. To support
this, the I-cache, BTB, branch predictor, and confidence estimator
must be dual ported. Decoding is alternatively performed for both

paths in order to simplify the renaming logic, although it requires
two Register Mapping Tables. In [17], Selective Eager Execution
(SEE) and the PolyPath architecture are proposed, generalizing
SDPE by executing instructions from a limited number of paths.
The implemented PolyPath architecture can manage up to 8 active
paths. In order accomplish this, it can fetch 8 instructions from up
to 8 different paths each cycle. Such fetch mechanism puts high
pressure on the fetch bandwidth. Context (CTX) Tags are used to
identify instructions from different paths, to allow selective
flushing of those instructions belonging to the wrong path and
their descendents. In [18], several instruction fetch mechanisms
are evaluated, studying the effect of fetch bandwidth limitations in
multiple path execution processors. Threaded Multi-Path
Execution (TME) [27], uses a Simultaneous Multithreading
(SMT) architecture [25] and has the ability to execute multiple
predicted paths, multiple alternate paths, or both simultaneously.
Primary-path branches forking policy is based on branch
confidence estimation.

In general, multiple path execution schemes increase the
complexity of the processor: bigger register files are needed to
store the results of the different instructions. In addition, the size
of the instruction window is increased, as well as the size of the
reorder buffer. Resource contention may be one of the bigger
problems of these architectures, because instructions from a
wrong forked path may prevent those of the correct path from
being executed. In order to avoid this, resources must be
increased: memory ports, functional units, etc. This may affect not
only the cycle time but also the power dissipation and energy
consumption because many more processor resources are being
actively used.

3. BRANCH MISPREDICTION PENALTY
ANALYSIS
This section analyzes the sources of performance loss due to
branch mispredictions in order to gain some understanding of the
performance gap between perfect branch prediction and real
branch prediction. We will refer to this overall performance
degradation as the Branch Misprediction Penalty.

The overall branch misprediction penalty can be divided into
three components:

1. Pipeline-fill penalty. This is the delay between the time the
branch misprediction is discovered and the first instruction
from the correct path is fetched, decoded, renamed, and
placed in the instruction issue window. This penalty is
largely a function of the instruction decode pipeline length,
but also includes the time required for recovery actions such
as flushing the pipeline and restoring the state of the
processor.

2. Window-fill penalty. This is the performance loss due to the
fact that the instruction window is nearly empty for several
cycles after the first group of instructions from the correct
path has been dispatched. When instructions first begin to
re-fill the window, the ILP that can be exploited is first
rather small, and begins growing as instruction fetch
“catches up”.

3. Serialization penalty. A mispredicted branch essentially
forces a serialization point in instruction execution. That is,



correct path instructions following the branch cannot be
scheduled ahead of the branch (as would be the case if the
branch were predicted correctly). In other words, even if
there were no pipeline-fill penalty or window-fill penalty,
there would still be a penalty because the correct path
instructions would have to wait for the mispredicted branch
to be resolved before executing.

To assess each component’s contribution to the overall branch
misprediction penalty, we simulated and measured the IPC for the
following scenarios:

a) Real branch prediction using a recovery penalty of n cycles.
We consider three total pipeline lengths (from fetch to
commit) of 6, 10 and 14 stages. In all cases the difference in
pipeline length is entirely in the number of stages of the in-
order pipeline front-end (fetch/decode)1.

b) Real branch prediction using a recovery penalty of 0 cycles.
After the detection of the misprediction, instructions from
the correct path are fetched, decoded, renamed, and placed
in the instruction window.

c) The instruction window is filled instantaneously with
instructions from the correct path after a misprediction is
discovered. The fill process is stopped when the first I-cache
miss is produced. Branches found during this process are
also predicted, thus, not all the filled instructions are from
the correct path.

d) Perfect branch prediction.

Assuming linearity among the three components, each
contribution to overall branch misprediction penalty can be
calculated as follows:
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We ran the ten benchmarks from the SPECint95 and
SPECint2000 suites that exhibit the highest branch misprediction
rates. They were compiled with maximum optimizations by a
native Compaq compiler for an Alpha processor. A modified
version of the SimpleScalar’s v3.0 sim-outorder cycle-level
simulator [3] was used with an instruction window of 64 entries.
The branch predictor is an 8 KB gshare whose global history
register is speculatively updated.

Figure 1 shows the average IPC for each evaluated scenario,
whereas Table 1 shows the contributions of each component for
the three evaluated pipeline lengths. As expected, the overall loss
is greatly influenced by pipeline length (25%, 33% and 39% for
pipelines of 6, 10 and 14 stages respectively). Thus, for a pipeline

                                                                

1 The total number of cycles in the branch mispredict path is 5, 9
and 13 respectively, i.e. the number of stages from fetch to
writeback, in addition to the recovery penalty cycles (n=2).

of 14 stages, the most important component in performance
degradation is the pipeline-fill penalty (54% of the total overall
loss), whereas for a pipeline of 6 stages the most important
component is the serialization penalty (65% of the total overall
loss). Finally, the contribution of the window-fill penalty to the
overall performance loss, although less substantial, is still
significant. For a pipeline of 14 stages the window-fill penalty is
responsible of 6% of the performance degradation, going up to
10% when the pipeline of 6 stages is considered.

Summarizing, if we consider both pipeline-fill penalty and
window-fill penalty, the aggregate effect is responsible for 35%,
51% and 60% of the overall loss for pipelines of 6, 10 and 14
stages respectively. Hence, by using only multi-path
fetching/decoding/renaming, and possibly pre-scheduling (but not
execution), approximately half the branch misprediction penalty
can be saved. Furthermore, the fraction of the penalty that can be
saved increases as pipelines become longer, as is the current
trend.

4. DUAL PATH INSTRUCTION
PROCESSING
Dual Path Instruction Processing (DPIP) is a mechanism for
reducing the branch misprediction penalty. Based on the
preceding branch misprediction penalty analysis, one of the
components that most degrades performance is the pipeline-fill
penalty. The DPIP mechanism fetches, decodes, and renames
instructions from the alternative path of some selected low
confidence branches. Unlike previous proposals, DPIP does not
simultaneously execute instructions from both paths. The key
point of our proposal is the balance between complexity, cost, and
performance benefit. In particular, complexity is reduced when
compared with multiple path execution proposals.

Figure 2 depicts a schematic diagram of the DPIP hardware. It
includes a single fetch unit that can be time-shared by two paths.
Thus, at any given cycle, it fetches instructions either from the

Average of selected 10 benchmark
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Real pred., pipe 6 (a1)
Real pred., pipe 10 (a2)
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Overall
loss

Pipeline-fill
penalty

Window-fill
penalty

Serialization
penalty

pipeline 6 25% 25% 10% 65%
pipeline 10 33% 44% 7% 49%
pipeline 14 39% 54% 6% 40%

Figure 1. Branch misprediction analysis

Table 1.  Average performance loss breakdown for three
pipeline lengths of 6, 10 and 14 stages



predicted path or the alternative path. Not all branches are
candidates to be forked, and the selection of those that are
appropriate is critical for performance. This is accomplished by
branch confidence estimation. DPIP can only manage two active
paths at the same time, and no new branches can be forked until
the current forked branch is resolved.

When a branch is forked, a shadow copy of the original register
mapping table (RMT1) is made (this is already done in some
processors such as the MIPS R10000). The fetch unit begins
working alternatively on both paths, using the appropriate register
mapping table: RMT1 or RMT2. The reorder buffer (ROB) and the
load/store queue (LSQ) structures are also duplicated. Thus,
instructions from the predicted path are inserted and into
ROB1/LSQ1 and, after decoding, into the main instruction window
(IW). Instructions from the alternative path are inserted into
ROB2/LSQ2 and, after decoding, into the Alternative Path Buffer
(APBuffer)2. We assume that both IW and APBuffer have the same
number of entries, and half the entries of ROB1 and ROB2. The
duplication of ROB and LSQ queues constitutes the major source
of hardware cost of our proposal. Note that they are accessed in
parallel and independently managed, so it may be assumed that
such accesses are not on the critical path. Furthermore, a dual path
execution implementation would also have to increase these
resources to some extent, and in a way that is on a critical path. In
addition, the use of duplicated queues simplifies data movement
between ROB1/LSQ1 and ROB2/LSQ2 after a branch misprediction
is detected, while at the same time preserves the program order of
the alternative path when using pre-scheduling since the APBuffer
is not implemented as a queue.

Branches from the alternative path are also predicted using the
underlying branch predictor. In order not to interfere, both paths

                                                                

2 Instructions from the alternative path can be pre-scheduled when
entering the APBuffer which provides additional performance
benefit at the cost of some additional hardware complexity, as
section 4.2 shows.

keep a separate copy of the global history register of the branch
predictor. After a branch misprediction, the wrong path
instructions from ROB1 and LSQ1 are flushed and RMT1 is
restored with the RMT2 map. During the penalty cycles dedicated
to recovery actions, the remaining entries from ROB1 and LSQ1

are inserted into ROB2 and LSQ2 respectively. After flushing,
ROB1 and LSQ1 usually have very few useful entries
(experimental results show that, considering a rate of 8
instructions per cycle, up to two cycles will suffice). For the next
forked branch, the predicted path will use ROB2 and LSQ2,
whereas the alternative path will use ROB1 and LSQ1. This is
accomplished by changing the head/tail pointers of these FIFO
structures. When a branch is forked, the fetch unit works on both
paths provided that there is room in both queues ROB1 and ROB2.
If one of them becomes full, the fetch unit continues processing
only the predicted path. This ensures that after the misprediction
there will be enough space in ROB2 to accommodate the
remaining instructions from ROB1.

Once the recovery actions have finished, the instructions stored in
the APBuffer are inserted into the IW in program order. As
instructions enter the IW, they must verify the actual state of their
input registers. This is accomplished by checking the scoreboard
that processors typically use for tracking the availability of
register values. The process continues until all the instructions in
the APBuffer have been introduced in IW. The IW begins issuing
ready instructions to the functional units as soon as the first block
of instructions has been received. In order to reduce complexity,
the fetch and decode stages are stalled during this transferring
process.

4.1 Confidence Estimator
The performance of DPIP strongly depends on the confidence
estimator's accuracy. If the confidence estimator labels a
prediction as low confidence and the prediction turns out to be
correct, DPIP incurs in a twofold performance degradation.
Firstly, the fetch bandwidth is divided between both paths in spite
of the fact that instructions belonging to the alternative path are
useless. Secondly, a subsequent incoming mispredicted branch
will not be forked until the current forked branch has been
resolved. To reduce these situations the confidence estimation
mechanism should have high SPEC and PVN

3 metrics. This led us
to use the confidence estimator proposed for the Branch
Prediction Reversal Unit (BPRU) scheme [1]. This confidence
estimator makes use of predicted data values to assess the
confidence of branch predictions, using different information from
that employed by the branch predictor (usually branch history and
branch PC). This method can be very accurate for branches that
close loops or pathological if-then-else structures. Simulations for
a gshare branch predictor of 8 KB along with the confidence
estimator of 8 KB obtains an average SPEC = 42% and a PVN =
69% for the SPECint2000.

                                                                

3 These metrics were introduced by Grunwald et al [11] in order
to compare the effectiveness of different confidence estimators.
SPEC is defined as the fraction of incorrect predictions labeled
as low-confidence, whereas PVN is defined as the fraction of
low-confidence branches that are finally mispredicted.
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4.2 Pre-scheduling Instructions from the
Alternative Path
As shown in section 3, the window-fill penalty is responsible for a
small part of the overall performance degradation after a branch
misprediction (10% for a pipeline of 6 stages). As a way of
mitigating this penalty, instructions from the alternative path can
be pre-scheduled in a similar but simplified manner as in [4][23].
With pre-scheduling, correct-path instructions following a
misprediction are fed into the instruction window in data-flow
order; that is, the first instructions are free of data dependences.
This leads to a very high issue rate immediately, even as the
window is filling.

Figure 3-(a) shows the DPIP architecture extended with the pre-
scheduling mechanism. The pre-schedule buffer is implemented as
an array of schedule lines, each associated with an estimated issue
cycle. Each instruction is inserted in the pre-schedule buffer
trying to accommodate it in the most convenient slot. The pre-
schedule buffer is implemented as a direct-mapped two-
dimensional array of schedule lines, each one associated with an
issue cycle. The schedule line size is equal to the pipeline issue
width. For every instruction, its schedule line is determined by:

schedule_line = max({reg_availability(input reg1),
   reg_availability(input reg2)})

reg_availability(output register) = schedule_line +
 execution_latency

The register availability is stored in the Register Availability
Table (RAT), which is indexed by the logical register identifier.
The example in Figure 3-(b) shows how instructions are re-
ordered depending on the availability of their input registers. All
entries in the RAT are initialized to 0. Note, for instance, that
instruction B is scheduled to the active line 1 since its input is
produced by the previous instruction. Instructions C and E are
independent of all previous instructions from the alternative path,
thus they can be scheduled at the first active line.

The transfer of instructions from the pre-schedule buffer to the IW
should be as quick as possible. Since just a single line is moved
per cycle, it is good to fill the pre-schedule buffer entries in a
compact way, trying to avoid free issue slots in a schedule line as
well as empty lines. This can be accomplished by simplifying the
proposals in [4][23], by assuming that:

a) All the instructions have an execution latency of 1 cycle
(independent of their actual latency), saving bubbles in the
pre-schedule buffer.

b) All the instructions before the forked branch have been
executed, that is, it is assumed that all live-in registers are
ready. Initializing all RAT entries to 0 does this.

c) Load and store instructions are pre-scheduled when the input
register used to calculate their effective address is ready. The
LSQ keeps all memory instructions in sequential order, and
it enforces memory dependences.

4.3 Optimizations
4.3.1 Delayed forked branches
As stated in [13], branch mispredictions tend to be clustered.
Branch misprediction clustering may limit the performance
obtained by the DPIP, because it is likely to find a new low
confidence branch when the alternative path is already active.
This will prevent the second branch from forking a new path. One
strategy to mitigate this effect is the use of delayed forked
branches, as in [13]. The idea is to save the processor state
(RMT/Free-list and PC) when the second low confidence branch
is encountered. After the resolution of the current forked branch,
when the pre-schedule buffer is empty, the delayed branch can be
forked using the previously saved state. To simplify the
mechanism, only the first low confidence branch fetched by either
the predicted or the alternative path can be delayed. For this
purpose, DPIP uses two RMT/Free-list structures for the main
path and other two for the alternative path, as Figure 2 shows.

4.3.2 Relaxing Confidence Estimation
DPIP performance can also be improved by tuning the confidence
estimator for the dual path application. Preliminary studies
showed us that the alternative path was active only 32% of the
total execution time. We can augment this time by increasing the
low confidence set (labeling more branches as non-confident, i.e.
a higher SPEC), at the expense of forking more branches that
actually are predicted correctly (a lower PVN). This is
accomplished by:

a) Changing the management of the saturating counters of the
Confidence Estimator. These counters assign confidence to
each branch prediction and are incremented by one if a
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branch is mispredicted, and decreased by one otherwise. For
every predicted branch, if the corresponding counter of the
confidence estimator is above a threshold, the branch fork is
initiated. In order to fork more branches, the counters are
increased by two and decreased by one.

b) In order to fork a branch, the saturating counters of the
branch predictor are also considered. Whenever the branch
predictor determines that a branch is either weakly taken or
weakly not-taken, a fork action is initiated.

These changes increment the average SPEC to 68% whereas the
PVN is reduced to 43% for the SPECint2000.

4.3.3 Unbalanced Fetch Distribution
Forking branches that have been correctly predicted may cause
performance degradation due to the limited fetch bandwidth
available to the correct path. The selection of a good fetch policy
can be tricky and can hide the effect of useless fork actions.
Therefore, we choose to categorize the confidence of branches in
three ways rather than using the conventional two (high/low).

a) Strong non-confident predictions: there is a high likelihood
of a misprediction. Thus, both paths should be followed, and
the fetch should be balanced with alternating cycles of full
bandwidth for each path. The confidence estimator indicates
this situation when the counter is above the threshold.

b) Weak non-confident predictions: for these branches we
apply an unbalanced fetch distribution by allocating two
cycles to the predicted path and one cycle to the alternative
path. Branches predicted as weakly taken or weakly not-
taken belong to this category, independent of the confidence
estimator.

c) Confident predictions: these branches are likely to be
correctly predicted. Only the predicted path is followed at
the full fetch bandwidth.

5. EXPERIMENTAL RESULTS

5.1 Simulation Methodology
To evaluate the performance of DPIP, we used the ten
benchmarks from the SPECint95 and SPECint2000 suites that
exhibit the highest branch misprediction rates. All benchmarks
were compiled with maximum optimizations (—O4 —fast) by the
Compaq Alpha compiler and were run using a modified version of
the sim-outorder cycle-level simulator included in the
SimpleScalar/Alpha v3.0 tool set [3]. Due to the large number of
dynamic instructions in some benchmarks, we reduced the input
data set while keeping a complete execution. Table 2 shows the
characteristics of each particular benchmark.

5.2 DPIP Performance
This section presents an evaluation of the proposed DPIP
mechanism in an 8-way superscalar processor. Table 3 shows the
configuration of the simulated architecture. The modeled pipeline
has been lengthened to 14 stages (from fetch to commit),
following the pipeline scheme of the IBM Power4 processor [19].
Section 5.3.4 evaluates the influence of the pipeline depth on the
performance of the DPIP architecture.

Figure 4 shows the IPC obtained by DPIP for the selected
benchmarks as well as the harmonic mean. The underlying branch
predictor is a gshare [22] whose global history register is
speculatively updated. The different experiments performed are:

a) gshare(single-path), which is the baseline single-path
microarchitecture without forked branches;

b) gshare+DPIP, our proposed architecture model using pre-
fetching/decoding/renaming for alternative path instructions;

c) gshare+DPIP+preSched, which also pre-schedules
alternative path instructions;

d) gshare+BPRU+DPIP, which incorporates the BPRU engine
[1] in conjunction with the DPIP architecture4;

                                                                

4 Branch prediction reversal has been demonstrated as a simple
approach to improving prediction accuracy [1][21]. Such
proposals reverse the predicted outcome of the low confidence
predictions, whereas DPIP is based on processing those
alternative paths predicted with low confidence. Therefore, both
mechanisms can be complementary by reversing every branch
predicted with low confidence at the same time they are also
forked.
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compress 40000 e 2231 170 13 9.9%
gcc genrecog.i 145 19 8.0%
go 9 9 146 15 16.7%
ijpeg specmun -qual 45 166 9 8.1%
bzip2 input.source 1 500 43 7.8%
crafty test (modified) 437 38 6.6%
gzip input.source 1 500 52 8.7%
mcf test 259 31 7.4%
twolf test 258 21 9.7%
vpr test 500 45 7.1%

S
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c9
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c2
00
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benchmarks

Fetch engine
Up to 8 instr/cycle, 2 taken branches,
2 cycles of misprediction penalty.

Issue engine
Issues up to 8 instr/cycle, 128-entries
reorder buffer, 64-entries load/store queue.

Pre-scheduling Up to 64 instructions, 8 instr/schedule-line

Functional Units
8 integer alu, 2 integer mult, 2 memports,
8 FP alu, 1 FP mult.

L1 Instr-cache 64 KB, 2-way, 32 bytes/line, 1 cycle hit lat.

L1 Data-cache 64 KB, 2-way, 32 bytes/line, 1 cycle hit lat.

L2 unified cache
512 KB, 4-way, 32 bytes/line, 6 cycles hit 
latency, 18 cycles miss latency.

Memory 8 bytes/line, virtual memory 4 KB pages.

TLB 128 entries, fully associative.

Table 2. Benchmark characteristics

Table 3. Configuration of the simulated processor



e) gshare+DPIP(oracle), assuming a perfect confidence
estimator, that is, only the mispredicted branches are labeled
as low confidence; and finally,

f) Perfect branch prediction.

In all experiments we assume equal total table size of 16 KB,
including the confidence estimator. In this case, the gshare and
the confidence estimator are 8 KB each.

The overall loss due to branch mispredictions (the difference
between the single-path and the perfect branch prediction
experiments) is 35% on average. The DPIP architecture using just
pre-fetching/decoding/renaming, achieves improvements on all
benchmarks over the single-path scheme. On average, the
obtained speedup for the ten selected benchmarks is 7% (up to 9%
for bzip2).

When the pre-scheduling mechanism is also included in DPIP,
additional improvements are obtained. On average, the obtained
speedup for the ten selected benchmarks is 8% (up to 10% for
bzip2). Figure 5 breaksdown speedups considering both
alternatives: a) speedup obtained by pre-fetching/
decoding/renaming, and b) speedup obtained by pre-scheduling.
On average, pre-fetching/decoding/renaming is responsible of
84% of the total speedup, while the benefit provided by pre-
scheduling represents 16% of the total speedup. For the go
benchmark, pre-scheduling accounts for 31% of the total speedup.
Therefore, the major performance benefits are provided by
performing only pre-fetching/decoding/renaming of alternative
path instructions. However, the use of pre-scheduling still

provides additional benefits at the cost of a relatively small
increment in hardware complexity, as previously showed in
section 4.2.

We can also observe in Figure 4 that branch prediction reversal
together with forked branches provides important benefits:
gshare+BPRU+DPIP obtains an average IPC improvement of
10% over the single-path scheme (up to 13% for compress),
which shows that both schemes can be complementary.

Finally, the performance of DPIP depends on the confidence
estimator’s accuracy. For this purpose, the experiment labeled as
gshare+DPIP(oracle), uses an oracle confidence estimator in
order to provide a measure of the potential of DPIP. We can
observe in Figure 4 that a perfect confidence estimator provides
substantial improvements for all benchmarks: an average speedup
of 17% (up to 28% for go). This shows the potential of the DPIP
architecture, and suggests that there is still an opportunity for
improvement by using better confidence estimators or improving
the fetch policies.

5.3 Sensitivity Study
This section studies the performance of the DPIP mechanism
when some architectural parameters of the processor are varied,
and other parameters are maintained as in previous section. We
present average performance results for the single-path scheme,
the proposed DPIP architecture with pre-scheduling, and finally,
DPIP with an oracle confidence estimator.

5.3.1 Branch Predictor and Confidence Estimator
Size
The first group of experiments concerns the size of the gshare
branch predictor and the size of the confidence estimator. The
studied total size ranges from 8 KB to 64 KB. As in the previous
section, the gshare+DPIP experiment devotes half of the total
size to the branch predictor and the other half to the confidence
estimator. The gshare+DPIP(oracle) experiment only uses a
gshare whose size is half of the total size.

The single-path model obtains an average misprediction rate that
ranges from 9.8% (8 KB) to 7.9% (64 KB). Figure 6 shows that
the speedup of DPIP over single-path slightly improves as size
grows, obtaining speedups from 7.8% (8 KB) to 8.5% (64 KB).
When the oracle confidence estimator is considered, these
speedups increase to 17.6% and 15.7% respectively. If we
consider iso-performance lines, a gshare+DPIP of 8 KB
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outperforms the single-path model of 64 KB (IPCs of 2.6 and 2.54
respectively), therefore single-path needs table sizes 8 times larger
to achieve about the same performance.

5.3.2 Using DPIP with Other Underlying Branch
Predictor: Alpha 21264 branch predictor
This experiment shows the performance benefits that the DPIP
mechanism provides when a more sophisticated branch predictor
is used. We use the branch predictor of the Alpha 21264
processor [16] due to its high accuracy5. As in section 5.2, we
always compare configurations with equal total table sizes of 16
KB, including the confidence estimator size.

First, the average misprediction rate is 8.1%, which is better than
the obtained in section 5.2 using a gshare of 16 KB (9.0%). Thus,
the new average overall loss due to branch mispredictions is
reduced to 33%. In Figure 7 we can see that, again, the DPIP
architecture achieves improvements on all benchmarks over the
single-path scheme. On average, the obtained speedup is 5%. The
highest speedup is 8% for bzip2, whereas the lowest improvement
is 4% for go, since this benchmark is the one which experiences
the highest reduction in misprediction rate when the 21264 branch
predictor is used. Finally, when an oracle confidence estimator is
considered, the average speedup increases to 15% (up to 27% for
go), which shows the great potential of DPIP even when better
branch prediction schemes are used.
                                                                

5 The Alpha 21264 branch predictor is composed by a
metapredictor that chooses between the predictions made by a
global GAg predictor and a local PAg predictor.

5.3.3 Instruction Window Size
This group of experiments evaluates the effect of the instruction
window size on the performance of the DPIP architecture. The
studied window sizes ranges from 32 to 256 entries. In all cases
we have considered a reorder buffer whose number of entries
doubles that of the instruction window. Figure 8 shows that the
speedup of DPIP over single-path is almost the same as window
size grows, obtaining speedups from 7.3% (32 IW-entries) to
7.5% (256 IW-entries). In the case of gshare+DPIP(oracle), this
speedups increase to 14.5% and 17.5% respectively. It also can be
observed that performance benefit almost saturates with an IW of
256 entries.

5.3.4 Pipeline Depth
Finally, we evaluated the effect of pipeline depth on the
performance of the DPIP architecture model. As stated in the
branch prediction penalty analysis of section 3, pipeline-fill
penalty is one of component that most degrades performance. We
varied the pipeline depth by changing only the number of stages
of the in-order front-end (fetch/decode). Figure 9 shows the
average IPC for total pipeline lengths (from fetch to commit) of
10, 14, 16 and 20 stages. We can see that the DPIP improvement
over single-path increases as the pipeline depth grows. Thus, for
10-stage pipeline, gshare+DPIP obtains an average speedup of
4.1% over the single-path model, whereas for 20 stages (like the
Pentium 4) the obtained speedup is 12.2%. In the case of
gshare+DPIP(oracle), these speedups are 9.2% and 25.3%,
respectively. Note that, in a superscalar processor after a
misprediction, instructions from the correct path must be fetched
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and decoded, which takes several cycles. With our proposal, these
instructions have been already fetched, decoded and renamed
which effectively hides the pipeline-fill penalty.

6. CONCLUSIONS
One of the major sources of the performance degradation due to
branch mispredictions is the pipeline-fill penalty. We propose
Dual Path Instruction Processing (DPIP), a mechanism that
alleviates the penalties introduced by branch mispredictions by
attempting to maintain a high execution throughput immediately
after a misprediction. We propose fetching, decoding and
renaming instructions from the alternative path for low confidence
predicted branches, at the same time as the predicted path is being
executed. In addition, the window-fill penalty, can be also reduced
by pre-scheduling alternative path instructions and by placing
them in a special buffer in data-flow order. However, the
instructions are not issued for speculative execution.

The key point of our proposal is the balance between complexity,
cost, and performance. Complexity is significantly reduced with
respect to multiple path execution proposals. The performance
obtained by both approaches is well below that provided by
perfect branch prediction. However, previous work [18] reported
an average speedup of 10.4% over a single-path organization for a
pipeline of 10 stages with a dual-ported cache and duplicating the
fetch and decode bandwidth. Using a single-ported cache the
speedup is 0.6%, mainly due to the aggressive confidence
estimator, which was not specially tuned, as mentioned by the
authors. Our proposal obtains a speedup of 4.1% for a pipeline of
10 stages using a single-ported cache, due not only to the
confidence estimator but to the use of delayed forked branches. In
addition, resources such as the register file, the data cache or the
functional units are not wasted on instructions that will be later
discarded, as happens with the multiple path execution
mechanisms.

The DPIP with a gshare of 8 KB and a confidence estimator of 8
KB, shows an average performance improvement of 8% for a 14-
stage superscalar processor over a single-path scheme with a
gshare of 16 KB (up to 10% for some applications). The major
performance benefits are provided by just pre-
fetching/decoding/renaming alternative path instructions: 84% of
the total speedup. On the other hand, pre-scheduling accounts for
16% of the total speedup, providing additional benefits at the cost
of a relatively small increment in hardware complexity.

Finally, the performance of the DPIP is affected by the accuracy
of the confidence estimator: with oracle confidence estimation the

average speedup is 17% (up to 28% for some applications). We
have also shown that the performance of the DPIP is robust
against modifications of some architectural features, being
pipeline depth the one that influences the most in its performance.
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