
Confidence Estimation for Branch Prediction Reversal

Juan L. Aragón1, José González1, José M. García1 and Antonio González2

1Dpto. Ingeniería y Tecnología de Computadores
Universidad de Murcia, 30071 Murcia (Spain)

{jlaragon,joseg,jmgarcia}@ditec.um.es
2Departament d’Arquitectura de Computadors

Universitat Politècnica de Catalunya, 08034 Barcelona (Spain)
antonio@ac.upc.es

Abstract. Branch prediction reversal has been proved to be an effective alter-
native approach to dropping misprediction rates by means of adding a Confi-
dence Estimator to a correlating branch predictor. This paper presents a Branch
Prediction Reversal Unit (BPRU) especially oriented to enhance correlating
branch predictors, such as the gshare and the Alpha 21264 metapredictor. The
novelty of this proposal lies on the inclusion of data values in the confidence
estimation process. Confidence metrics show that the BPRU can correctly tag
43% of branch mispredictions as low confident predictions, whereas the SBI (a
previously proposed estimator) just detects 26%. Using the BPRU to reverse the
gshare branch predictions leads to misprediction reductions of 15% for the
SPECint2000 (up to 27% for some applications). Furthermore, the
BPRU+gshare predictor reduces the misprediction rate of the SBI+gshare by
an average factor of 10%. Performance evaluation of the BPRU in a superscalar
processor obtains speedups of up to 9%. Similar results are obtained when the
BPRU is combined with the Alpha 21264 branch predictor.

1 Introduction

One of the main characteristics of each new processor generation is an increase in the
complexity and in the size of the hardware devoted to predict branches. Two main
factors motivate the necessity of accurate branch predictors:

• In order to exploit more ILP, processors inspect an increasing number of instruc-
tions in each cycle. In such processors, the fetch engine must provide instructions
from the correct path at a high rate. To meet these requirements, complex instruc-
tion caches and powerful branch prediction engines are needed.

• Reducing the clock cycle has been traditionally used to improve the performance
of processors. On a given technology, fewer gates per pipeline stage result in
higher frequencies, leading to longer pipelines. This is a challenge for superscalar
processors since the branch misprediction penalty is increased.

Branch predictor accuracy can be improved by augmenting its size or complexity.
However, traditional misprediction rate figures show that, reached a certain size, the
misprediction rate is scarcely reduced. Confidence Estimation has become an inter-
esting approach to increasing prediction accuracy by means of assessing the quality of

branch predictions [8][10]. The confidence estimator generates a binary signal indi-
cating whether the branch prediction can be considered high or low confidence.

This paper presents a confidence estimator used to reverse the low confidence
branch predictions (Branch Prediction Reversal Unit). The novelty of this estimator is
the inclusion of data values to assign confidence to branch predictions, attempting to
use different information from that employed by the branch predictor (usually branch
history and branch PC). This can be very efficient in different scenarios such as
branches that close loops, list traversals or pathological if-then-else structures, where
the involved branches may not be correlated with previous history but may be corre-
lated with data values. The main contributions of this paper are:

• We propose a generic BPRU that can be used in conjunction with any branch pre-
dictor. The gshare [14] and the 21264 branch predictor [11] are used as test cases.

• The BPRU is compared with a previously proposed confidence estimator, the SBI
[13]. We first use the metrics proposed in that work and show that including data
values as additional information to assign confidence, leads to better confidence
estimation. We also compare both estimators for branch prediction reversal.

• We evaluate the impact of adding the BPRU to traditional branch predictors in a
superscalar processor, and compare it with the impact of adding the SBI.

The rest of this paper is organized as follows. Section 2 presents the motivation of our
proposal and related work. The proposed BPRU is described in Section 3. Section 4
analyzes the accuracy of the BPRU in terms of misprediction rate, as well as its per-
formance in terms of IPC. Finally, Section 5 summarizes the conclusions of this work.

2 Related Work and Background

Different branch prediction strategies have been presented to improve prediction ac-
curacy. Most of previous proposals correlate the behavior of a branch with its own
history [16][17], the history of previous branches [14], or the path [15]. These initial
approaches were later extended with anti-aliasing techniques [3][12] and hybrid pre-
dictors [4][14]. Data values have been also incorporated in the branch prediction pro-
cess. Heil et al [9] use the history of data values to access branch prediction tables.
Value prediction was directly used to compute the branch outcome in [7], by predict-
ing the inputs of branches and compare instructions and speculatively compute the
branch outcome in some dedicated functional units.

Assigning confidence to branch predictions appeared as an orthogonal way of im-
proving accuracy. Jacobsen et al [10] propose different schemes to calculate the like-
lihood of a branch misprediction. They suggest that confidence estimation can be ap-
plied to improve prediction accuracy by means of prediction reversal, although no
particular implementations are presented. Grunwald et al [8] propose different confi-
dence estimators and Manne et al [13] evaluate their usefulness to Selective Branch
Inversion. In [1], we present a branch prediction confidence estimator especially
tuned to improve the Branch Predictor through Value Prediction proposed in [7].
This confidence estimator relies on the fact that many value mispredictions are con-
centrated on a small range of data values. Detecting such critical values and reversing
those branch predictions made according with them improves the BPVP accuracy.

The work we present here differs from previous proposals in the following: a)
branch confidence estimators presented in [8][13] are based on branch history and
branch PC, whereas our confidence estimator is also based on data values; and b) with
respect to our initial proposal [1], we extend here its functionality to make it suitable
for any branch predictor, instead of just focusing on improving the BPVP.

In order to compare different confidence estimators, Grunwald et al [8] defined
four metrics: Sensitivity (SENS) represents the fraction of correct branch predictions
identified as high confidence; Predictive Value of a Positive Test (PVP) identifies the
probability that a high confidence estimation is correct; Specificity (SPEC) is the frac-
tion of incorrect predictions identified as low confidence; and Predictive Value of a
Negative Test (PVN) is the fraction of low confidence branches that are finally mis-
predicted. For the application of branch reversal, we are interested in the last two met-
rics: SPEC and PVN, obtaining a significant potential only if both metrics are high.

3 Branch Prediction Rever sal Mechanism

3.1. Quantitative Analysis of the Branch Reversal Benefit

We have first performed an off-line analysis in order to gain some insight into the
processor parameters that provide a better knowledge of branch mispredictions. We
have examined the following parameters:

1. The predicted value of the branch input.
2. The predicted value of the branch input and the branch PC.
3. The predicted value of the branch input and the PC of the branch input producer.
4. The predicted value of the branch input, the PC of the branch input producer and

the recent path followed to reach the branch.
5. The predicted value of the branch input, the PC of the branch input producer and

the recent history of branch outcomes.

We have run some benchmarks from the SPECint2000 using a modified version of
the sim-safe simulator [2]. The number of branch hits and misses of a baseline branch
predictor have been measured for all the above combinations of processor state pa-
rameters, assuming unbounded storage resources. For those parameter instances
whose number of branch mispredictions is greater than the number of hits, the predic-
tion is reversed. Thus, a new misprediction rate is obtained, showing the potential of
reversing the branch prediction when considering this a priori information.

Fig. 1 shows the new misprediction rate obtained for bzip2, eon, mcf and twolf for
the five evaluated scenarios. We have used the Stride Value Predictor with an unre-
alistic size of 512 KB trying to isolate the potential of our proposal from the perform-
ance of the value predictor. The underlying branch predictor is a 32 KB gshare. It can
be observed that using the predicted value of the branch input together with the PC of
the branch input producer and the history of branch outcomes is the best approach.
These results indicate the potential of branch reversal but are not an upper-bound
since they have been obtained assuming that each instance of the chosen parameters
can be reversed either always or never. In practice, the proposed mechanism will be
able to dynamically reverse the prediction only for a certain part of the execution.

bzip2 eon mcf twolf

M
is

pr
ed

ic
ti

on
 r

at
e

(%
)

0

2

4

6

8

10
baseline gshare 32 KB
only value
val+PCbr
val+PCin
val+PCin+path
val+PCin+history

Fig. 1. Potential misprediction rate for a 32 KB gshare.

3.2. Branch Prediction Reversal Unit (BPRU)

This section presents the implementation of the Branch Prediction Reversal Unit
(BPRU). This unit could be included in any branch predictor, although in this work
we have used the BPRU along with the gshare and the alpha 21264 branch predictors.

predicted input

input PC

input PC

Input
Information
Table (IIT)

Reversal Table (RT)

counter msb

input
register

History Register

correlating branch
prediction

hash
funct.

Value Predictor
(VP)

branch
predictiontag reversal count.

input
information

Branch
Predictor

Branch Prediction
Reversal Unit
(BPRU)

Fig. 2. Block diagram of the Branch Prediction Reversal Unit (BPRU).

Fig. 2 depicts a diagram of the BPRU. It is composed of an Input Information Ta-
ble (IIT), a Value Predictor (VP), a History Register (HR) and a Reversal Table (RT).
The IIT is a simplified version of the one proposed in [7]1. The Value Predictor can
be any known predictor, although in this work we have assumed the Stride Value
Predictor (STP) because of its effectiveness [5][7]. Therefore, the VP provides either
the predicted branch input value for load/arithmetic/logical instructions or the pre-
dicted difference between both inputs for compare instructions. The History Register
collects the outcomes of recent executed branches. Finally, the confidence for each
conditional branch is estimated by the Reversal Table (RT).

Each entry of the RT stores an up-down saturating counter that determines whether
the prediction must be reversed, and a tag. The RT is accessed when the branch is
predicted, by hashing some processor state information. According to the analysis of
the previous section, the most effective approach to reversing branch predictions is to

1 The IIT has the same number of entries as total logical registers. Each IIT entry only has one

field: the PC of the latest instruction that had this register as destination. During decoding,
load/arithmetic/logical instructions store their PC in the corresponding entry of the IIT,
whereas compare instructions first access the IIT to obtain the PC of the producers of both
inputs, and then store a xor-hashed version of both PCs.

correlate with the predicted value, the PC of the branch input producer and the history
of recent branch outcomes. In addition, the prediction bit of the baseline predictor is
used to index the RT, since it is useful for reducing interference in the confidence es-
timator [7][13]. The most significant bit of the counter of the RT entry indicates
whether the branch prediction must be reversed. Once the actual branch outcome is
computed, the RT entry is updated, incrementing the counter if the prediction was in-
correct, and decreasing the counter otherwise.

Conflicts in the RT are one of the major problems that may limit the accuracy of
the BPRU. Experimental results showed that a tagged RT provides higher accuracy
than a non-tagged RT of the same total storage, despite the space occupied by tags.
Besides, the replacement policy of the RT has to be carefully selected. In our case, it
gives priority to entries with lower values in their counters.

Since the BPRU has to perform three table accesses (IIT, VP and RT) to provide the
prediction, its latency may be higher than the latency of the correlating branch pre-
dictor. Thus, during the fetch stage the correlating predictor provides its prediction as
the initial one. Later, if the BPRU changes the initial prediction, the fetched instruc-
tions after the branch are flushed and the fetch is redirected to the new PC.

4 Experimental Results

This section analyzes the performance of the proposed BPRU engine when it is inte-
grated into the gshare and the Alpha 21264 [11]2 branch predictors. For comparison
purposes we have also implemented the SBI confidence estimator [13]. All experi-
ments compare predictors with the same total size, including the space occupied by
tags, counters and any other required storage. We have considered the whole SPE-
Cint2000 suite for the evaluation of our proposed mechanism. All benchmarks were
compiled with maximum optimizations by the Compaq Alpha compiler, and they
were run using the SimpleScalar/Alpha v3.0 tool set [2]. We have reduced the input
data set of the SPEC2000 suite while trying to keep a complete execution for every
benchmark, as showed in Table 1.

Table 1. Benchmark characteristics.

Benchmark Input Set
Total # dyn. Instr.
of Input Set (Mill.)

Total # simulated
Instr. (Mill.)

skipped
Instr (Mill.)

dyn.cond.
branch (Mill.)

bzip2 input source 1 2069 500 500 43
crafty test (modified) 437 437 - 38
eon kajiya image 454 454 - 29
gap test (modified) 565 500 50 56
gcc test (modified) 567 500 50 62
gzip input.log 1 593 500 50 52
mcf test 259 259 - 31
parser test (modified) 784 500 200 64
twolf test 258 258 - 21
vortex test (modified) 605 500 50 51
vpr test 692 500 100 45

2 The Alpha 21264 processor uses a branch predictor composed by a metapredictor that chooses

between the predictions made by a global and a local predictor.

4.1. Confidence Estimator Evaluation

Before analyzing the effect of our BPRU on branch prediction accuracy, we evaluate
its usefulness as a confidence estimator. The total size of the BPRU+gshare is 36 KB
(16 KB for the RT, 16 KB for the gshare and 4 KB for the value predictor) whereas
the total size of the SBI+gshare is 32 KB (16 KB for the confidence estimator and 16
KB for the gshare). Table 2 shows that for both estimators, SENS and PVP metrics are
quite similar and very high, which means that correct branch predictions are correctly
estimated by both schemes. PVN, is also very similar for both schemes, i.e., 70% of
branches estimated as “low confidence” finally miss the prediction. This metric must
be greater than 50% in order to a get a positive inversion benefit. Finally, we can ob-
serve that the BPRU estimator provides a better accuracy for the SPEC metric. On av-
erage, 43% of incorrect predictions are identified as low confidence by our estimator,
whereas just 26% of them are identified as low confidence by the SBI. This metric
gives an insight about the “quality” of the confidence estimation: the BPRU can detect
branch mispredictions much better than the SBI.

Table 2. Confidence estimation metrics for the BPRU+gshare and the SBI+gshare.

Spec PVN Sens PVP Spec PVN Sens PVP

bzip2 53,0% 65,9% 97,7% 96,1% 24,1% 62,3% 98,8% 93,9%
crafty 45,7% 65,4% 98,3% 96,3% 28,1% 77,4% 99,4% 95,2%
eon 19,6% 81,3% 99,7% 95,6% 18,2% 61,2% 99,3% 95,5%
gap 44,7% 74,1% 99,4% 97,9% 25,1% 76,3% 99,7% 97,2%
gcc 47,9% 80,3% 99,3% 96,9% 39,0% 82,3% 99,5% 96,4%
gzip 35,1% 62,9% 99,2% 97,5% 18,3% 65,3% 99,6% 96,9%
mcf 36,2% 62,7% 98,3% 95,1% 17,9% 57,8% 99,0% 93,8%
parser 35,7% 67,6% 98,9% 95,9% 29,5% 73,2% 99,3% 95,6%
twolf 41,7% 66,6% 97,8% 94,0% 20,7% 67,0% 98,9% 92,1%
vortex 71,4% 89,5% 99,9% 99,6% 53,0% 89,3% 99,9% 99,4%
vpr 39,0% 55,5% 97,6% 95,4% 16,6% 53,7% 98,9% 93,9%
AVERAGE 42,7% 70,2% 98,7% 96,4% 26,4% 69,6% 99,3% 95,4%

Benchmark
BPRU+gshare SBI+gshare

4.2. Results for Immediate Updates

The first set of experiments update prediction tables immediately, in order to evaluate
the potential of the selective reversal mechanism when it is isolated from other as-
pects of the microarchitecture (using the sim-safe simulator). The RT is implemented
as an 8-way set-associative table using 13 bits for tags and 3 bits for the reversal
counters. A RT index of k+1 bits is the result of XORing: k bits from the PC of the
branch input producer, 4 bits of history, k-4 bits from the predicted value and finally,
the gshare prediction bit as the most significant bit.

Fig. 3 shows the misprediction rates for the BPRU+gshare, SBI+gshare and
gshare predictors for five selected SPECint2000 programs (those with the highest
misprediction rate) and the arithmetic mean of the whole SPECint2000. Based on ex-
perimental results, the BPRU+gshare allocates 1/9 of the size for the value predictor,
4/9 for the RT and 4/9 for the gshare. The SBI+gshare allocates 1/2 for the confi-
dence estimator and 1/2 for the gshare.

bzip2

8 KB 16 KB 32 KB 64 KB 128 KB

M
is

pr
ed

ic
ti

on
 r

at
e

(%
)

5

6

7

8

9
eon

8 KB 16 KB 32 KB 64 KB 128 KB
3.5

4.0

4.5

5.0

5.5

6.0
gcc

8 KB 16 KB 32 KB 64 KB 128 KB
2

3

4

5

6

7 BPRU+gshare
SBI+gshare
RT Interfer.Free
gshare

mcf

8 KB 16 KB 32 KB 64 KB 128 KB

M
is

pr
ed

ic
ti

on
 r

at
e

(%
)

5

6

7

8
twolf

8 KB 16 KB 32 KB 64 KB 128 KB

6

8

10

12
Whole SPECint2000

AVERAGE

8 KB 16 KB 32 KB 64 KB 128 KB

4

5

6

7

Fig. 3. Branch misprediction rates for the BPRU+gshare, SBI+gshare and gshare predictors.

The BPRU+gshare predictor significantly reduces the misprediction rate of the
gshare of the same total capacity for all benchmarks and all evaluated sizes. For pre-
dictors of around 32 KB, the misprediction rate of the gshare is reduced by an aver-
age of 15% (up to 27% for gcc). It is important to note that the BPRU+gshare with a
total size of 18 KB has the same misprediction rate (5.1%) as the gshare of 64 KB.

Comparing the BPRU and the SBI schemes, the BPRU+gshare outperforms the
SBI+gshare for all benchmarks for sizes greater than 8 KB. On average, the
BPRU+gshare with a total size of 36 KB reduces 10% the misprediction rate of the
SBI+gshare of 32 KB (up to 18% for bzip2). Summarizing, for the whole SPE-
Cint2000 suite, the BPRU+gshare reduces the misprediction rate by a factor that
ranges from 12% (8 KB) to 18% (128 KB) with respect to the gshare, and from 5%
(16KB) to 13% (128 KB) with respect to the SBI+gshare.

Finally, Fig. 3 shows that the interference-free RT provides great improvements for
all benchmarks. For instance, in the twolf application, the misprediction rate of an 8
KB gshare is reduced by a factor of 37%. This shows the potential of the BPRU and
an opportunity for improvement by using better indexing schemes to access the RT.

bzip2

8 KB 16 KB 32 KB 64 KB 128 KB

M
is

pr
ed

ic
ti

on
 r

at
e

(%
)

5.0

5.5

6.0

6.5

7.0

7.5 eon

8 KB 16 KB 32 KB 64 KB 128 KB

4.5

5.0

5.5

6.0

6.5

7.0
gcc

8 KB 16 KB 32 KB 64 KB 128 KB
2

3

4

5

6
BPRU+21264
SBI+21264
RT Interfer.Free
21264

mcf

8 KB 16 KB 32 KB 64 KB 128 KB

M
is

pr
ed

ic
ti

on
 r

at
e

(%
)

5.0

5.5

6.0

6.5

7.0

7.5
twolf

8 KB 16 KB 32 KB 64 KB 128 KB
5

6

7

8

9

10

11
Whole SPECint2000

AVERAGE

8 KB 16 KB 32 KB 64 KB 128 KB

3.5

4.0

4.5

5.0

5.5

6.0

Fig. 4. Branch misprediction rates for the BPRU+21264, SBI+21264 and 21264 predictors.

Fig. 4 shows the same analysis when the 21264 branch predictor is the underlying
predictor. For 32 KB predictors, adding the BPRU reduces misprediction rate by an
average of 9% (up to 19% for bzip2 and gcc). We can also observe that, for these ap-
plications, the SBI hardly provides benefits. Regarding predictor sizes, the BPRU+
21264 of 36 KB obtains a similar misprediction rate as the 21264 branch predictor of
128 KB. Summarizing, average reductions in the misprediction rate provided by the
BPRU+21264 range from 5.1% (8 KB) to 12.1% (128 KB) with respect to the 21264
branch predictor, and from 3.5% (8 KB) to 12.0% (128 KB) over the SBI+21264.

Results presented in this Section show the usefulness of the BPRU as a confidence
estimator for branch prediction reversal, demonstrating that adding the BPRU to a
correlating branch predictor is more effective than simply increasing its size.

4.3. Results for Realistic Updates

This Section presents an evaluation of the proposed BPRU engine in a dynamically-
scheduled superscalar processor. Table 3 shows the configuration of the simulated ar-
chitecture. In addition, the original SimpleScalar simulator pipeline has been length-
ened to 20 stages, following the pipeline scheme of the Pentium 4 processor [6].

Table 3. Configuration of the simulated processor.

Fetch engine Up to 8 instructions/cycle, allowing 2 taken branches. 8 cycles misprediction penalty.

Execution engine Issues up to 8 instructions/cycle, 128-entries reorder buffer, 64-entries loads/store queue.

Functional Units 8 integer alu, 2 integer mult, 2 memports, 8 FP alu, 1 FP mult.

L1 Instruct.-cache 128 KB, 2-way set associative, 32 bytes/line, 1 cycle hit latency.

L1 Data-cache 128 KB, 2-way set associative, 32 bytes/line, 1 cycle hit latency.

L2 unified cache 512 KB, 4-way set associative, 32 bytes/line, 6 cycles hit latency, 18 cycles miss latency.

Memory 8 bytes/line, virtual memory 4 KB pages, 30 cycles TLB miss.

bzip2

32 KB 64 KB 128 KB

IP
C

2.20

2.25

2.30

2.35

2.40

2.45

2.50
eon

32 KB 64 KB 128 KB
2.09

2.10

2.11

2.12

2.13

2.14

2.15

2.16
gcc

32 KB 64 KB 128 KB
1.90

1.95

2.00

2.05

2.10

2.15

BPRU+gshare
SBI+gshare
gshare

mcf

32 KB 64 KB 128 KB

IP
C

1.62

1.65

1.68

1.71

1.74

1.77

1.80 twolf

32 KB 64 KB 128 KB
2.04

2.08

2.12

2.16

2.20

2.24

2.28

2.32 Whole SPECint2000
AVERAGE

32 KB 64 KB 128 KB

2.12

2.16

2.20

2.24

2.28

Fig. 5. IPC obtained by the BPRU+gshare, SBI+gshare and gshare branch predictors.

Fig. 5 shows the IPC obtained by the simulated processor when it incorporates the
gshare, SBI+gshare and BPRU+gshare. The latency of both the gshare and the

SBI+gshare is considered to be one cycle, whereas the latency considered for the
BPRU+gshare is 3 cycles. For 32 KB predictors, and in spite of its higher latency, the
BPRU+gshare provides performance improvements over the gshare of 9% and 8%
for bzip2 and gcc respectively. As the size of the predictors grows, performance im-
provements are also increased, up to 11% for bzip2 (128 KB). Comparing both confi-
dence estimators, the BPRU+gshare outperforms the SBI+gshare for all programs
and predictor sizes, obtaining speedups of up to 6% for 32 KB predictors.

Fig. 6 presents performance results using the underlying 21264 branch predictor.
For 32 KB predictors, the BPRU+21264 outperforms the 21264 branch predictor by
7% and 5% for bzip2 and gcc. Comparing both confidence estimators, the BPRU+
21264 obtains speedups of up to 6% over the SBI+21264, for 32 KB predictors. These
speedups are similar to those obtained when the gshare is the baseline predictor.

bzip2

32 KB 64 KB 128 KB

IP
C

2.25

2.30

2.35

2.40

2.45

2.50

2.55
eon

32 KB 64 KB 128 KB
2.05

2.06

2.07

2.08

2.09

2.10

2.11

2.12
gcc

32 KB 64 KB 128 KB
1.95

2.00

2.05

2.10

2.15

2.20

BPRU+21264
SBI+21264
21264

mcf

32 KB 64 KB 128 KB

IP
C

1.65

1.68

1.71

1.74

1.77

1.80

1.83 twolf

32 KB 64 KB 128 KB
2.04

2.08

2.12

2.16

2.20

2.24

2.28

2.32
Whole SPECint2000

AVERAGE

32 KB 64 KB 128 KB
2.12

2.16

2.20

2.24

2.28

Fig. 6. IPC obtained by the BPRU+21264, SBI+21264 and 21264 branch predictors.

5 Conclusions

In this work, we have presented a new branch prediction confidence estimator, the
Branch Prediction Reversal Unit (BPRU). The key characteristic of this estimator is
the inclusion of predicted data values in the process of assigning confidence to the
predictions. We have shown that the accuracy of conventional correlating predictors
such as the gshare and the Alpha 21264 branch predictor can be effectively correlated
with the predicted data value, the PC of the producers of the branch input and recent
branch history. We have first analyzed the BPRU as a confidence estimator, compar-
ing it with an already proposed scheme, the SBI. Confidence metrics show that the
BPRU is able to label as “low confidence” 43% of branch mispredictions, conversely
to the SBI, which just assigns low confidence to 26% of branch mispredictions.

We have also evaluated the BPRU as a branch prediction reversal mechanism for
the gshare and the 21264 branch predictors. Misprediction reductions are quite simi-
lar for both correlating predictors. Results for immediate updates of the prediction ta-
bles show misprediction reductions of 15% on average for the whole SPECint2000
suite (up to 27% for some applications) when 32 KB predictors are considered. Com-
paring the BPRU and the SBI, we show that, for 32 KB predictors, the BPRU+ gshare

reduces the misprediction rate of the SBI+gshare by an average of 10%. Finally, per-
formance evaluation of the BPRU in a superscalar processor show IPC improvements
of up to 9% over both the gshare and the SBI+gshare, using 32 KB predictors. To
conclude, the BPRU is a cost-effective way of improving branch prediction accuracy,
being more effective than simply increasing the size of the predictor.

Acknowledgements

This work has been supported by the project TIC2000-1151-C07-03 of the Plan Na-
cional de I+D+I and by the Spanish CICYT under grant TIC98-0511.

References

1. Aragón, J.L., González, J., García, J.M., González, A.: Selective Branch Prediction Rever-
sal by Correlating with Data Values and Control Flow. In: Proceedings of the Int. Conf. on
Computer Design. (2001)

2. Burger, D., Austin, T.M.: The SimpleScalar Tool Set, Version 2.0. Technical Report #1342,
University of Wisconsing-Madison, Computer Sciences Department. (1997)

3. Chang, P.Y., Evers, M., Patt, Y.N.: Improving Branch Prediction Accuracy by Reducing
Pattern History Table Interference. In: Proceedings of the Int. Conf. on Parallel Architec-
tures and Compilation Techniques. (1996)

4. Chang, P.Y., Hao, E., Patt., Y.N.: Alternative implementations of Hybrid Branch Predic-
tors. In: Proceedings of the Int. Symp. on Microarchitecture. (1995)

5. Gabbay, F., Mendelson, A.: Speculative Execution Based on Value Prediction. Technical
Report #1080, Technion, Electrical Engineering Department. (1996)

6. Glaskowsky, P.N.: Pentium 4 (Partially) Previewed. Microprocessor Report, Microdesign
Resources. (August 2000)

7. González, J., González, A.: Control-Flow Speculation through Value Prediction for Super-
scalar Processors. In: Proc. of the Int. Conf. on Parallel Arch. and Comp. Tech. (1999)

8. Grunwald, D., Klauser, A., Manne, S., Pleszkun, A.: Confidence Estimation for Speculation
Control. In: Proceedings of the Int. Symp. on Computer Architecture. (1998)

9. Heil, T.H., Smith, Z., Smith, J.E.: Improving Branch Predictors by Correlating on Data
Values. In: Proceedings of the Int. Symp. on Microarchitecture. (1999)

10. Jacobsen, E., Rotenberg, E., Smith, J.E.: Assigning Confidence to Conditional Branch Pre-
dictions. In: Proceedings of the Int. Symp. on Microarchitecture. (1996)

11. Kessler, R.E., McLellan, E.J., Webb, D.A.: The Alpha 21264 Microprocessor Architecture.
In: Proceedings of the Int. Conf. on Computer Design. (1998)

12. Lee, C.C., Chen, I.C.K., Mudge, T.N.: The Bi-Mode Branch Predictor. In: Proceedings of
the Int. Symp. on Microarchitecture. (1996)

13. Manne, S., Klauser, A., Grunwald, D.: Branch Prediction using Selective Branch Inversion.
In: Proc. of the Int. Conf. on Parallel Architectures and Compilation Techniques. (1999)

14. McFarling, S.: Combining Branch Predictors. Technical Report #TN-36, Digital Western
Research Lab. (1993)

15. Nair, R.: Dynamic Path-Based Branch Correlation. In: Proceedings of the Int. Symp. on
Microarchitecture. (1995)

16. Smith, J.E.: A Study of Branch Prediction Strategies. In: Proceedings of the Int. Symp. on
Computer Architecture. (1981)

17. Yeh, T.Y., Patt, Y.N.: A Comparison of Dynamic Branch Predictors that Use Two Levels
of Branch History. In: Proceedings of the Int. Symp. on Computer Architecture. (1993)

