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Abstract. Continuing advances in semiconductor technology and demand for 
higher performance will lead to more powerful, superpipelined and wider issue 
processors. Instruction caches in such processors will consume a significant 
fraction of the on-chip energy due to very wide fetch on each cycle. This paper 
proposes a new energy-effective design of the fetch unit that exploits the fact 
that not all instructions in a given I-cache fetch line are used due to taken 
branches. A Fetch Mask Determination unit is proposed to detect which 
instructions in an I-cache access will actually be used to avoid fetching any of 
the other instructions. The solution is evaluated for a 4-, 8- and 16-wide issue 
processor in 100nm technology. Results show an average improvement in the I-
cache Energy-Delay product of 20% for the 8-wide issue processor and 33% for 
the 16-wide issue processor for the SPEC2000, with no negative impact  
on performance. 

1   Introduction 

Energy consumption has become an important concern in the design of modern high 
performance and embedded processors. In particular, I- and D-caches and TLBs 
consume a significant portion of the overall energy. For instance, the I-cache energy 
consumption was reported to be 27% of the total energy in the StrongArm SA110 
[17]. Combined I- and D-cache energy consumption accounts for 15% of the total 
energy in the Alpha 21264 [9]. In addition, continuing advances in semiconductor 
technology will lead to increased transistor count in the on-chip caches, and the 
fraction of the total chip energy consumed by caches is likely to go up. Other design 
trends such as wider issue, in case of high performance processors, or highly 
associative CAM-based cache organizations, commonly used in embedded processors 
[6][17][27], increase the fraction of energy consumed by caches. This is especially 
true for the I-cache, which is accessed almost every cycle. For these reasons, the 
energy consumption of the fetch unit and the I-cache is a very important concern in 
low-power processor design.  

Several techniques have been proposed to reduce the energy consumption of TLBs 
[7] and caches in general. Many of them proposed alternative organizations, such as 
filter caches [13], way-prediction [11][20][24], way determination [18], way-
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memoization [15], cached load/store queue [19], victim caches [16], sub-banking 
[8][23], multiple line buffers and bitline segmentation [8], the use of small energy-
efficient buffers [4][13], word-line segmentation [22], divided word-lines [26], as 
well as other circuit design techniques that are applicable to SRAM components. 
Some of these proposals provide an ability to access just a portion of the entire cache 
line (e.g. subbanking, wordline segmentation and divided wordlines), which is 
particularly useful when accessing the D-cache to retrieve a single word. The I-cache 
fetch is much wider and typically involves fetching an entire line. However, because 
of the high frequency of branches in applications, in particular taken branches, not all 
instructions in an I-cache line may actually be used.  

The goal of this research is to identify such unused instructions and based on that 
to propose an energy-efficient fetch unit design for future wide issue processors. 
When a N-wide issue processor accesses the I-cache to retrieve N instructions from a 
line, not all N instructions may be used. This happens in two cases, which are 
depicted in Fig. 1: 

1. One of the N instructions is a conditional or an unconditional branch that is taken – 
a branch out case. All instructions in the cache line after the taken branch will not 
be used.  

2. An I-cache line contains a branch target, which is not at the beginning of the N-
word line – a branch into case. The instructions before the target will not be used.  

 
branch out 

unused

       branch into 

unused  

Fig. 1. Branch out and branch into cases 

In this work, Fetch Mask Determination (FMD) is proposed as a technique to 
identify which instructions in the next I-cache line to be fetched are going to be used. 
Based on this information, only the useful part of the cache line is read out. 
Determining the unused words requires identifying the two branch cases described 
above. For the branch into case, a standard Branch Target Buffer (BTB) can be used 
to obtain a word address of the first useful instruction in a next line. For the branch 
out case, a different table is used to track if the next line to be fetched contains a 
conditional branch that will be taken. Finally, both branch into and branch out cases 
may occur in the same line. Therefore, both cases are combined to identify all 
instructions to be fetched in a given access. Once the useful instructions have been 
identified, the I-cache needs the ability to perform a partial access to an I-cache line. 
This may be achieved by using either a subbanked [8][23], wordline segmentation 
[22] or a divided wordline (DWL) [26] I-cache organization. Therefore, this research 
assumes one of these I-cache organizations to be used. The mechanism proposed in 
this paper will supply a bit vector to control the corresponding subbanks, pass 
transistors and drivers, of the underlying I-cache type. 
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The rest of the paper is organized as follows. Section 2 presents the related work. 
Section 3 motivates and describes the proposed Fetch Mask Determination unit. 
Section 4 presents the energy efficiency of the proposed mechanism. Finally, Section 
5 summarizes the main conclusions of this research. 

2   Background and Related Work  

There have been many hardware and architectural proposals for reducing the energy 
consumption of caches in general (some cited above) and in particular the energy 
consumption of the I-cache. In a typical SRAM-based cache organization, an access 
to the I-cache goes through the following steps. A decoder first decodes an address 
and selects the appropriate RAM row by driving one wordline in the data array and 
one wordline in the tag array. Along the selected row, each memory cell is associated 
with a pair of bitlines. Initially, the bitlines are precharged high and one of them is 
pulled down depending on the value stored in the memory cell. Finally, a set of sense 
amplifiers monitors the pairs of bitlines detecting when one changes and determining 
the content in the memory cell. In this organization, an entire cache line is always 
read out even if only some of the instructions are used. Several approaches, that allow 
a partial access of a cache line, have already been applied to D-caches, supporting the 
idea of selectively fetching only the desired instruction words from the I-cache. 

A subbanked I-cache organization divides the cache into subbanks [8][23] and 
activates only the required subbanks. A subbank consists of a number of consecutive 
bit columns of the data array. In the I-cache case, the subbank will be equal to the 
width of an individual instruction, typically 32 bits wide. Such a cache has been 
implemented in IBM’s RS/6000 [1]. The instruction cache was organized as 4 
separate arrays, each of which could use a different row address.  

Divided wordline (DWL) [26] and wordline segmentation [22] are used to reduce 
the length of a wordline and thus its capacitance. This design has been implemented 
in actual RAMs. It typically refers to a hierarchical address decoding and wordline 
driving. In a way, it is or can be made similar to subbanking. 

A related approach is bitline segmentation [8], which divides a bitline using pass 
transistors and allows sensing of only one of the segments. It isolates the sense 
amplifier from all other segments allowing for a more energy efficient sensing.  

A number of other techniques have also been proposed to reduce the I-cache 
energy consumption. Way-prediction predicts a cache way and accesses it as a direct-
mapped organization [11][20][24]. A phased cache [10] separates tag and data array 
access into two phases. First, all the tags in a set are examined in parallel but no data 
access occurs. Next, if there is a hit, the data access is performed for the hit way. This 
reduces energy consumption but doubles a cache hit time. Way-memoization [15] is 
an alternative to way-prediction that stores precomputed in-cache links to next fetch 
locations aimed to bypass the I-cache tag lookup and thus, reducing tag array lookup 
energy. Other proposals place small energy-efficient buffers in front of caches to filter 
traffic to the cache. Examples include block buffers [4][23], multiple line buffers [8], 
the filter cache [13] and the victim cache [16]. Again, these proposals trade 
performance for power since they usually increase the cache hit time. 
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A Trace Cache [21] could produce a similar behavior to the Fetch Mask 
Determination unit proposed in this work. A Trace Cache line identifies a dynamic 
stream of instructions in execution order that are going to be executed, eliminating 
branches between basic blocks. Therefore, the unused instructions due to taken 
branches are eliminated from the trace dynamically. However, a Trace Cache 
introduces some other inefficiencies, such as basic block replication and a higher 
power dissipation, trading power for performance. An energy-efficiency evaluation of 
the Trace Cache is out of the scope of this paper and is part of future work. 

3   Energy-Effective Fetch Unit Design 

3.1   Quantitative Analysis of Unused Fetched Instructions 

In this section, the number of instructions that need not be fetched per I-cache line is 
studied to understand how these extra accesses may impact the energy consumption 
of a wide-issue processor. The SPEC2000 benchmark suite was studied in a processor 
with issue widths of 4, 8 and 16 instructions using a 32 KB, 4-way I-cache with a line 
size equal to fetch width.  

The baseline configuration uses a 32 KB 2-level branch predictor (in particular a 
PAs branch predictor, using the nomenclature from [25], whose first level is indexed 
by branch PC) and assumes a fetch unit that uses a standard prefetch buffer organized 
as a queue. The purpose of the prefetch buffer is to decouple the I-cache from the 
decode unit and the rest of the pipeline, as well as to provide a smooth flow of 
instructions to the decoders even in the presence of I-cache misses. Instructions are 
retrieved from the I-cache one line at a time and then placed in the fetch buffer, as 
long as there is enough space in the buffer to accommodate the entire line. 
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Fig. 2. Unused instructions per I-cache line for SPECint2000 

Fig. 2 and Fig. 3 show the results for integer and floating point applications, 
respectively (see Section 4.1 for details about simulation methodology and processor 
configuration). For integer applications, an average of 16% of all fetched instructions 
are not used for the issue width of 4. This amount increases to 36% and 55% when the 
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issue width is increased to 8 and 16 respectively. These results show that for wide-
issue processors (8-wide and up) the presence of taken branches interrupting the 
sequential flow of instructions is very significant and, consequently, there is a 
significant impact on the energy consumption of the I-cache. 
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Fig. 3. Unused instructions per I-cache line for SPECfp2000 

For the floating point applications (Fig. 3), the impact is not as significant. For the 
8-wide issue processor the average number of unused instructions is 24%. In some 
benchmarks, such as applu, lucas or mgrid, it is less than 5%. The reason is that these 
applications have a high average number of instructions between branches: 200, 61, 
and 86, respectively. Therefore, fewer opportunities exist to locate unused instructions 
due to taken branches than in integer applications. For the 4-wide issue processor the 
average number of unused instructions is only 10%, whereas in the 16-wide issue the 
average is 41%, which is very significant. 

These results show the potential of the proposed Fetch Mask Determination unit to 
reduce the energy consumption of the I-cache due to unused instructions in a cache 
line as the issue width is increased. 

3.2   Fetch Mask Determination (FMD) 

The Fetch Mask Determination (FMD) unit generates a control bit vector used to 
decide which instructions within an I-cache line should be fetched in the next cycle. 
The control vector is a bit mask whose length is equal to the number of instructions in 
a cache line. Each bit in the mask controls either the subbanks to be activated or the 
drivers in the segmented wordline, depending on the underlying I-cache organization, 
in order to access only the useful instructions for the next fetch cycle and, therefore, 
save energy. 

To determine the bit mask for the next fetch cycle, let us consider each of the two 
cases described above: branching into and branching out of a cache line. 

For branching into the next line, it is only necessary to determine whether the 
current fetch line contains a branch instruction that is going to be taken. This 
information is provided by both the Branch Target Buffer (BTB) and the conditional 
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branch predictor. Once a branch is predicted taken and the target address is known, its 
target position in the next cache line is easily determined. For this case, only 
instructions from the target position until the end of the cache line should be fetched. 
This mask is called a target mask. 

For branching out of the next line, it is necessary to determine if the next I-cache 
line contains a branch instruction that is going to be taken. In that case, instructions 
from the branch position to the end of the line do not need to be fetched in the next 
cycle. To accomplish this, a Mask Table (MT) is used which identifies those I-cache 
lines that contain a branch that will be predicted as taken for its next execution. The 
number of entries in the MT equals the number of cache lines in the I-cache. Each 
entry of the Mask Table stores a binary-encoded mask, so each entry has 
log2(issue_width) bits. Every cycle the Mask Table is accessed to determine whether 
the next I-cache line contains a taken branch. This mask is called a mask of 
predictions. When a branch is committed and the prediction tables are updated, we 
can check what the next prediction for this branch will be by looking at the saturating 
counter. This information is used to also update the MT in order to reflect if the 
branch will be predicted as taken the next time. Therefore, there are no extra accesses 
to the branch prediction tables, and thus, no additional power dissipation.  

It is also important to note that there is no performance degradation associated with 
the proposed Fetch Mask Determination unit since it just anticipates the behavior of 
the underlying branch predictor to detect future taken branches, either correctly 
predicted or mispredicted. When that branch is executed again, the corresponding 
entry in MT will provide the correct mask for a branch out case, always in agreement 
with the branch prediction. In this way, the proposed Fetch Mask Determination unit 
is not performing any additional predictions and, therefore, it cannot miss. The FMD 
unit just uses the next prediction for a particular branch (n cycles before the next 
dynamic instance of the branch) to identify a branch out case or the information from 
the BTB to identify a branch into case. In addition, neither the I-cache hit rate nor the 
accuracy of the branch predictor affects the energy savings provided by our proposal, 
only the amount of branches predicted as taken. In case of branch misprediction, all 
necessary recovery actions will be done as usual and the corresponding MT entry will 
be reset to a mask of all 1’s as explained below. 

Finally, it is possible for both branching into and branching out cases to occur in 
the same cache line. In this case, the target mask and the mask of predictions need to 
be combined to determine which instructions to fetch in the next cycle. In order to 
simplify the FMD unit, the number of taken braches per cycle is limited to one. To 
better understand the proposed design, let us consider the following example for two 
different I-cache lines: 

I-cache line1: I1, branch1_to_targetA, I2, I3 
I-cache line2: I4, targetA, branch2, I5 

where Ij (j=1..5) and targetA are non-branching instructions. Assume that line1 is the 
line currently being fetched and that the branch in line1 is predicted to be taken and 
its target is targetA in line2. For this branch into case, target_mask = 0111 for the 
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second cache line. If branch2 from line2 is also going to be predicted as taken1, then 
only the first three instructions from line2 must be fetched. For this branch out case, 
the corresponding MT entry will provide a mask_of_predictions = 1110. When both 
masks are combined by a logical AND operation, the final mask is next_fetch_mask = 
0110. This mask will be used for fetching just the required instructions from line2. 

target mask 

Mask Table  
(MT) 

 

 

 

Branch 
Predictor 

next fetch mask 

branch  
prediction 

 

BTB 

taken 
branch?

next line 

mask of predictions 

PC 

 

Fig. 4. The Fetch Mask Determination unit 

The Fetch Mask Determination unit, depicted in Fig. 4, operates as follows: 

1. Each entry in the MT is initialized to a mask of all 1’s, which means that all 
instructions in the line are going to be fetched.  

2. When an I-cache miss occurs and a line is replaced, the associated mask in the MT 
is reset to all 1’s. 

3. In the fetch stage: 

1) if taken branch in current line 
2) then use branch predictor/BTB to compute target_mask 
3) else target_mask = all 1’s; 
4) mask_of_predictions = MT[next_line]; 
5) next_fetch_mask = target_mask AND mask_of_predictions; 
6) if next_fetch_mask == 0  
7) then next_fetch_mask = target_mask; 

The last test above (line 6) is necessary for the following case: 

I-cache line1: I1, branch1_ to_ targetA, I2, I3 
I-cache line2: branch2, targetA, I4, I5 

If the first line is fetched and branch1 is predicted as not taken, the program will 
continue with line2. If branch2 is taken, the MT will contain for line2 a 
mask_of_predictions = 1000. The second time that line1 is fetched, if branch1 is 

                                                           
1  We are assuming that its last execution changed the 2-bit saturated counter to the predict-as-

taken state. That information was used to update the MT entry with mask = 1110.  
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taken then target_mask = 0111 for line2. The combination of both masks will 
result in zero, which is incorrect. According to steps 6 and 7 above, the next fetch 
mask used for fetching line2 must be equal to target mask, which is the correct 
mask to use. 

4. When updating the branch predictor at commit, also update the MT entry that 
contains the branch. If the branch being updated will be predicted as taken for the 
next execution, then disable all the bits from the position of the branch to the end 
of the line. Otherwise, set all bits to 1. Note that the update of the MT is performed 
only if the line containing the branch is still present in the I-cache. 

5. In case of a branch misprediction, reset the corresponding entry in the MT to all 
1’s. There is no other effect for our proposal in case of misprediction. 

As for the effect on cycle time, note that determining the next fetch mask for cycle 
i+1 is a two-step process. In cycle i the BTB is used to create a target mask for the 
next line. Then, the next line PC is used to access the MT to determine the mask of 
predictions and finally, both masks are ANDed. Since the BTB and MT accesses are 
sequential, the next fetch mask may not be ready before the end of cycle i. If this is the 
case, despite a very small MT size (3 Kbits – see details at the end of Section 4.2), 
time can be borrowed from cycle i+1 while the address decode is in progress, before 
accessing the data array. Note that the decode time for the data array takes about 50% 
of the total access time for a 32 KB, 4-way cache per CACTI v3.2 [22]. In any case, 
for the chosen configurations and sizes of the I-cache, BTB and MT (shown in Table 2 
in Section 4.1), the sequential access time for both the BTB plus MT has been 
measured to be lower than the total access time of the 32 KB, 4-way I-cache (0.95 ns) 
as provided by CACTI. 

4   Experimental Results 

4.1   Simulation Methodology 

To evaluate the energy efficiency of the proposed FMD unit, the entire SPEC2000 
suite was used2. All benchmarks were compiled with highest optimization level (-O4 
-fast) by the Compaq Alpha compiler and were run using a modified version of the 
Wattch v1.02 power-performance simulator [5]. Due to the large number of dynamic 
instructions in some benchmarks, we used the test input data set and executed 
benchmarks to completion. Table 1 shows, for each integer benchmark, the input set, 
the total number of dynamic instructions , the total number of instructions simulated, 
the number of skipped instructions (when necessary) and finally, the number of 
conditional branches. 

Table 2 shows the configuration for the simulated 8-wide issue processor. The 
pipeline has been lengthened to 14 stages (from fetch to commit), following the 
pipeline of the IBM Power4 processor [14]. For the 4- and 16-wide issue processors, 
the L1-cache line width, reorder buffer, load-store queue, and other functional units 
were resized accordingly. 
                                                           
2 A preliminary evaluation of an energy-efficient fetch unit design applied to embedded 

processors with highly associative CAM-based I-caches can be found in [3]. 
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Table 1. SPECint2000 benchmark characteristics 

Benchmark Input set
Total # dyn. instr.
input set (Mill.)

Total # simulated 
instr. (Mill.)

# skipped
instr (Mill.)

# dyn.cond.
branch (Mill.)

bzip2 input source 1 2069 500 500 43
crafty test (modified) 437 437 - 38
eon kajiya image 454 454 - 29
gap test (modified) 565 500 50 56
gcc test (modified) 567 500 50 62
gzip input.log 1 593 500 50 52
mcf test 259 259 - 31
parser test (modified) 784 500 200 64
twolf test 258 258 - 21
vortex test (modified) 605 500 50 51
vpr test 692 500 100 45  

Table 2. Configuration of the 8-wide issue processor. For simplicity, only one taken branch is 
allowed per cycle. 

Fetch engine Up to 8 instr/cycle, 1 taken branch, 2 cycles of misprediction penalty.

BTB 1024 entries, 2-way
Branch Predictor 32 KB PAs branch predictor (2-level)

Execution engine Issues up to 8 instr/cycle, 128-entry ROB, 64-entry LSQ.
Functional Units 8 integer alu, 2 integer mult, 2 memports, 8 FP alu, 1 FP mult.
L1 Instr-cache 32 KB, 4-way, 32 bytes/line, 1 cycle hit lat.
L1 Data-cache 64 KB, 4-way, 32 bytes/line, 3 cycle hit lat.

L2 unified cache 512 KB, 4-way, 64 b/line, 12 cycles hit lat. 
Memory 8 bytes/line, 120 cycles latency.

TLB 128 entries, fully associative.

Technology 0.10µm, Vdd = 1.1 V, 3000 MHz.  

4.2   Cache Energy Consumption Model 

To measure the energy savings of our proposal, the Wattch simulator was augmented 
with a power model for the FMD unit. Since the original Wattch power model was 
based on CACTI version 1, the dynamic power model has been changed to the one 
from CACTI version 3.2 [22] in order to increase its accuracy. It assumed an 
aggressive clock gating technique: unused structures still dissipate 10% of their peak 
dynamic power. The power model was extended to support partial accesses to a cache 
line assuming a sub-banked I-cache organization. 

According to [12][22], the main sources of cache energy consumption are Edecode, 
Ewordline, Ebitline, Esenseamp and Etagarray. The total I-cache energy is computed as:  

Ecache = Edecode + Ewordline+ Ebitline + Esenseamp + Etagarray (1) 

Our proposal reduces the Ewordline, Ebitline and Esenseamp terms since they are 
proportional to the number of bits fetched from the I-cache line. In general, the 
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Ewordline term is very small (< 1%), whereas both Ebitline and Esenseamp terms account for 
approximately 65% of the 32 KB, 4-way I-cache energy as determined by CACTI 
v3.2 (which is comparable with results in [8]). 

With respect to the extra power dissipated by the hardware added by the FMD unit, 
note that the size of the MT table is very small compared to the size of the I-cache. As 
cited in Section 3.2, the MT has the same number of entries as I-cache lines and each 
MT entry has log2(issue_width) bits. For example, for an 8-wide issue processor with 
a 32 KB I-cache, the size of the MT is just 3 Kbits3, which is 85 times smaller than the 
I-cache. In this case, the power dissipated by the MT has been measured to be about 
1.5% of the power dissipated by the whole I-cache, which is not significant in the 
total processor power consumption.  

4.3   Energy Efficiency of Fetch Mask Determination 

This section presents an evaluation of the proposed FMD mechanism in a 4-, 8- and 
16-wide issue processor. Figures 5 and 6 show the I-cache Energy-Delay product 
(EDP)4 improvement for the SPECint2000 and SPECfp2000 respectively. In addition, 
the improvement achieved by an Oracle mechanism is also evaluated. The Oracle 
mechanism identifies precisely all the instructions used within a line in each cycle 
providing an upper bound on the benefits of the design proposed here. 
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Fig. 5. I-cache Energy-Delay product improvement for SPECint2000 

According to the analysis in Section 3.1, integer applications should provide more 
energy savings than floating point applications. As expected, Fig. 5 shows an average 
EDP improvement of just 10% for the 4-wide issue processor in integer codes. 
However, for wider issue processors the improvement increases to 20% for the 8-wide 
issue and 33% for the 16-wide issue. Similar trends are observed in all integer 
applications. Some benchmarks, such as mcf and parser, show an EDP improvement 
of up to 28% and 43% for the 8- and 16-issue width respectively. This high 
improvement is achieved because they have the lowest number of instructions per 
branches (IPB). Therefore, there is an inverse correlation between the IPB and the 
benefits of the design proposed here. 

                                                           
3 This I-cache has 1024 lines, each containing eight 32-bit instructions. So, the MT size is 

1024*3 bits. 
4  Energy savings are identical to the EDP product improvement since there is no performance 

degradation. 
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Fig. 6. I-cache EDP improvement for SPECfp2000 

It is also interesting to note that FMD obtains an EDP improvement very close to 
that of the Oracle experiment in all benchmarks (less than 2%). This shows the 
effectiveness of FMD in determining unused instructions within an I-cache line. 

For floating point applications, Fig. 6 shows an average EDP improvement of 13% 
for the 8-wide issue processor and 24% for the 16-wide issue processor. As in Section 
3.1, some benchmarks such as applu, lucas and mgrid show significantly reduced 
EDP improvement for the 8-wide issue processor (less than 3%) due to the large 
number of instructions between branches. However, other floating-point applications, 
such as equake and mesa, have similar behavior to integer applications, and therefore, 
a similar EDP improvement: 40% and 36% respectively for the 16-wide issue 
processor. 

In summary, the proposed FMD unit is able to provide a significant I-cache 
energy-delay product improvement, by not reading out of the data array in the I-cache 
instructions that will not be used due to taken branches. Its performance is very close 
to the optimal case for all benchmarks. 

5   Conclusions 

A modern superscalar processor fetches, but may not use, a large fraction of instructions 
in an I-cache line due to the high frequency of taken branches. An energy-efficient fetch 
unit design for wide issue processors has been proposed by means of Fetch Mask 
Determination (FMD), a technique able to detect such unused instructions with no 
performance degradation. The proposed FMD unit provides a bit vector to control the 
access to the required subbanks or to control the pass transistors in case of a segmented 
wordline I-cache organization. It has no impact on execution time. 

The proposed design was evaluated for 4-, 8- and 16-wide issue processors. Results 
show an average improvement in I-cache Energy-Delay product of 10% for a 4-wide 
issue processor, 20% for an 8-wide issue processor and 33% for a 16-wide issue 
processor in integer codes. Some floating point applications show a lower EDP 
improvement because of the large number of instructions between branches. In 
addition, the proposed design was proven to be very effective in determining unused 
instructions in an I-cache line, providing an EDP improvement very close (< 2%) to 
the optimal case for all benchmarks. 
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Finally, the FMD unit is a mechanism orthogonal to other energy-effective 
techniques, such as fetch gating/throttling mechanisms [2] and/or way-prediction, and 
it can be used in conjunction with such techniques providing further energy savings. 
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