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Abstract

Cache misses for which data must be obtained from a
remote cache (cache-to-cache transfer misses) account for
an important fraction of the total miss rate. Unfortunately,
cc-NUMA designs put the access to the directory informa-
tion into the critical path of 3-hop misses, which signif-
icantly penalizes them compared to SMP designs. This
work studies the use of owner prediction as a means of
providing cc-NUMA multiprocessors with a more efficient
support for cache-to-cache transfer misses. Our proposal
comprises an effective prediction scheme as well as a co-
herence protocol designed to support the use of prediction.
Results indicate that owner prediction can significantly re-
duce the latency of cache-to-cache transfer misses, which
translates into speed-ups on application performance up
to 12%. In order to also accelerate most of those 3-hop
misses that are either not predicted or mispredicted, the in-
clusion of a small and fast directory cache in every node is
evaluated, leading to improvements up to 16% on the final
performance.

1 Introduction and Motivation

The user’s view of a shared-memory system is elegantly
simple: all processors read and modify data in a single
shared store. This makes shared-memory multiprocessors
preferable to message-passing multicomputers from the
user’s point of view. Most shared-memory multiprocessors
accelerate memory accesses using per-processor caches.
Caches are usually transparent to software through a cache
coherence protocol. Directory-based coherence protocols
(cc-NUMA multiprocessors) offer a scalable performance
path beyond snooping-based ones (SMP designs) by allow-
ing a large number of processors to share a single global ad-
dress space over physically distributed memory. The main
difficulty in such designs is to implement the cache coher-
ence protocol in such an efficient way that minimizes the
usually long L2 miss latencies.

Even with non-blocking caches and out-of-order proces-

sors, previous studies have shown that the relatively long
L2 miss latency found in cc-NUMA multiprocessors con-
stitutes a serious hurdle to performance [21], and, as re-
cently stated by Hill [11], relaxed consistency models do
not reduce this long penalty sufficiently to justify their
complexity. Thus, there are compelling reasons to exam-
ine transparent hardware optimizations.

Several recent research results identify cache-to-cache
transfer misses (also known as 3-hop misses) to account
for more than 60% of the total L2 miss rate in some cases
[2][3][7][13][24]. In most cases, cache-to-cache transfer
misses occur when the home node has a stale copy of a cer-
tain memory line and the most recent copy is dirty in the
cache of the processor last wrote it (the owner node). In
this situation, as illustrated in Figure 1, the home directory
observes the line to be in the Private state and forwards the
request to the corresponding owner node, which, in turn,
sends a copy of the line to the requesting processor as well
as a message reporting this to the home directory (which
also includes a valid copy of the line for load misses) and
properly updates the state of its local copy of the line.
Therefore, current cc-NUMA designs place the access to
the directory information into the critical path of cache-to-
cache transfer misses, which significantly penalizes them
compared to SMP designs, and engineering decisions op-
timizing cache-to-cache transfer misses can be rewarding.
As pointed out in [24], these decisions may include faster
directory checkup, no speculative read of memory in paral-
lel with directory lookup (which will waste memory band-
width anyway), faster interconnection network and cache-
to-cache transfer support.

In this work we propose and evaluate the use of pre-
diction to convert 3-hop misses into a new kind of 2-hop
misses. As shown in Figure 1 (right), if the requesting node
had been able to “guess” where the single valid copy of the
memory line resided, it would have directly sent the miss
to the corresponding owner node, removing the access to
the directory information from the critical path, as is done
in a snooping-based design. As shown in Figure 2, this
would bring significant improvements in the final perfor-
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Figure 1: Coherence operations for a 3-hop miss in a conventional cc-NUMA (left) and in a cc-NUMA including prediction
(right)
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Assuming a conventional sequentially consistent cc-
NUMA multiprocessor implementing a write invalidate co-
herence protocol, such as the state-of-the-art SGI Origin
2000 [17], the objective of our proposal is to eliminate the
access to the directory information from the critical path of
cache-to-cache transfer misses. For this purpose, two main
elements are developed: first, a prediction engine able to
predict both whether a miss is 3-hop or not and if so, the
owner of the line, and second, a coherence protocol de-
signed to support the use of prediction. Our proposal is
based on the observation that 3-hop misses usually present
a repetitive behavior: they are caused by a small number of
instructions and the set of nodes from which the missing in-
struction receives the corresponding memory line is small
(a single node in some cases) and frequently the same. This
way, a well-tuned prediction engine could be successfully
employed to capture this fact.

Additionally, in order to accelerate the directory ac-
cesses for those cache-to-cache transfer misses that are not
predicted (or are incorrectly predicted), we analyze the ef-
fect of placing a small and fast directory cache into every
directory controller to store sharing information only for
those lines in the Private state.

1These speed-up values are obtained with a configuration combining
both an almost-oracle predictor and an unlimited directory cache for lines
in the Private state. See Section 5 for details.

We observe two main contributions of this work:

1. We propose a novel prediction scheme and extend a
four-state MESI coherence protocol to support predic-
tion. The use of prediction can significantly reduce the
latency of cache-to-cache transfer misses up to a rate
of 1.76, which translates into speed-ups on application
performance up to 12% and, in general, these results
can be obtained including a predictor with a total size
of less than 64 KB in every node.

2. We analyze the importance that properly organized di-
rectories have to accelerate those 3-hop misses that
cannot be predicted (or some of those incorrectly pre-
dicted), outlining a directory architecture optimized
for cache-to-cache transfer misses. Improvements of
up to 16% on the final performance can be obtained
combining both prediction and directory caches.

The rest of the paper is organized as follows. Section
3 shows the two-level prediction scheme that we propose.
The extended coherence protocol is presented and justified
in Section 4. Section 5 presents a detailed performance
evaluation of our novel proposals. The related work is
given in Section 2. Finally, Section 6 concludes the work.

2 Related Work

Snooping and directory protocols are the two domi-
nant classes of cache coherence protocols for hardware
shared-memory multiprocessors. Snooping systems (such
as the Sun UE1000 [5]) use a totally ordered network to
directly broadcast coherence transactions to all processors
and memory. This way, lower latencies than directory pro-
tocols are achieved for cache-to-cache transfer misses (for
all sharing misses in general). Unfortunately, the energy
consumed by snoop requests, snoop bandwidth limitations
and the need to act upon all transactions at every processor,
make snooping-based designs extremely challenging, espe-
cially in light of aggressive processors with multiple out-
standing requests. In contrast, directory protocols transmit
coherence transactions over an arbitrary point-to-point net-
work to the corresponding home directories which, in turn,
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redirect them to the processors caching the line. The conse-
quences are that directory systems (such as the SGI Origin
2000 [17]) can scale to large configurations, but they have
higher unloaded latency because of the overheads of direc-
tory indirection and message sequencing. Therefore, many
research efforts have been focused on studying techniques
to reduce the usually long L2 miss latencies that character-
ize cc-NUMA architectures.

Prediction has a long history in computer architecture
and it has proved useful in improving microprocessor per-
formance. Prediction in the context of shared memory was
first studied by Mukherjee and Hill, who showed that it
is possible to use address-based2 2-level predictors at the
directories and caches to track and predict coherence mes-
sages [19]. Subsequently, Lai and Falfasi modified these
predictors to reduce their size and showed how they can be
used to accelerate reading of data [16]. Finally, Kaxiras
and Young [15] used prediction to reduce access latency in
distributed shared-memory systems by attempting to move
data from their creation place to their use points as early as
possible.

Alternatively, Kaxiras and Goodman [14] proposed
and evaluated prediction-based optimizations of migratory
sharing patterns (converting some load misses that are
predicted to be followed by a store-write fault to coher-
ent writes), wide sharing patterns (to be handled by scal-
able extensions to the SCI base protocol) and producer-
consumer sharing patterns (pre-sending a newly created
value to the predicted consumers).

Bilir et al. [4] investigated a hybrid protocol that tries
to achieve the performance of snooping protocols and the
scalability of directory-based ones. The protocol is based
on predicting which nodes must receive each coherence
transaction. If the prediction hits, the protocol approxi-
mates the snooping behavior (although the directory must
be accessed in order to verify the prediction). Performance
results in terms of execution time were not reported and
the design was based on a network with a completely or-
dered message delivery which could restrict its scalability.
Our work focuses on reducing the latency of 3-hop misses
by means of predicting the node that holds the single valid
copy of the memory line. We can take advantage of any
of the current and future high-performance point-to-point
networks and it could be incorporated into cc-NUMA mul-
tiprocessors with minimal changes in the coherence proto-
col.

In [13], Iyer et al. proposed to reduce the latency of the
load misses that are solved with a cache-to-cache transfer
by placing small directory caches in the crossbar switches
of the interconnect to capture and store ownership infor-
mation as the data flows from the memory module to the
requesting processor. However, the fact that special net-
work topologies are needed to keep the information stored
in these switch caches coherent represents its main draw-
back. Our proposal is not constrained to any network topol-

2Address-based stands for predictors whose table is accessed using the
effective memory address.

ogy and it is equally applicable to reduce the latency of
cache-to-cache transfer misses caused by load and store in-
structions.

The Compaq AlphaServer GS320 [7] constitutes an ex-
ample of cc-NUMA architecture specifically targeted at
medium-scale multiprocessing (up to 64 processors). The
hierarchical nature of its design and its limited scale make
it feasible to use simple interconnects, such as a crossbar
switch, to connect the handful of nodes, allowing a more
efficient handling of cache-to-cache transfer misses than
traditional directory-based multiprocessors by exploiting
the extra ordering properties of the switch. On the contrary,
our proposal does not require any interconnection network
with special ordering.

Finally, caching directory information was originally
proposed in [9] and [20] as a means of reducing the mem-
ory overhead entailed by directories. In [1], it is proposed
a two-level directory architecture as a means of obtaining
the performance of a non-scalable full-map directory. Sub-
sequently, we studied the effect that the integration into
the processor die of the small first-level directory cache
has on the final performance [2]. Additionally, Michael
and Nanda [18] proposed to integrate directory caches in-
side the coherence controllers to minimize directory access
time. Our design includes a small and fast directory cache
to also accelerate those 3-hop misses that are either not pre-
dicted or mispredicted.

3 Predictor Design for Cache-to-Cache
Transfer Misses

The first component of our proposal is an effective pre-
diction scheme that allows each node of a cc-NUMA mul-
tiprocessor to answer two key questions: first, is an L2 miss
for certain memory line going to be serviced with a cache-
to-cache transfer?, and second, if this is so, which node is
likely to hold the copy of the line?.

Figure 3 illustrates the anatomy of the prediction
scheme we propose and evaluate in this work. The pro-
posed scheme consists of two prediction levels3. The first-
level predictor is mainly in charge of detecting those L2
misses that are probably being satisfied with a cache-to-
cache transfer. On the other hand, the purpose of the
second-level predictor is to provide, for those misses pre-
dicted as 3-hop misses, a list of the nodes supposed to have
the valid copy of the memory line. Additionally, the No
Predict Table (NPT) is required in order to save the ad-
dresses of those memory lines for which a miss caused by
a store instruction cannot be predicted. This is done to en-
sure the correctness of the coherence protocol, as will be
discussed in Section 4.

The first-level predictor is an example of an instruction-
based predictor [14], that is, this level is indexed using the

3We use the term two-level predictor to mean that our scheme uses
two independent prediction tables but, contrary to the traditional 2-level
predictors, in our case the information obtained from the first-level table
is not used to access the second-level one.
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Figure 3: Anatomy of the two-level predictor

PC of the instruction that caused the miss. We have ob-
served that a few static load/store instructions are responsi-
ble for the majority of the 3-hop misses. As shown in Fig-
ure 3, the Confidence $-to-$ field, which is implemented
as a two-bit saturating counter, along with the information
obtained from the NPT are used to make the first predic-
tion. Additionally, a pointer to a node is also included in
this level (along with its confidence bits). We have ob-
served that, in some cases, the 3-hop misses caused by a
certain instruction almost always receive the memory line
from the same node. In these situations, the first-level pre-
dictor could be used to make both predictions. Each entry
in the first-level table needs (����� ��) bits, for a N-node
system.

The first-level predictor is implemented as a non-tagged
table and works as follows: initially, all entries in the first-
level table have the two saturating counters (Confidence $-
to-$ and Confidence Pointer 1 fields) initialized to 1. On
each L2 cache miss, the predictor is probed and, if the Con-
fidence $-to-$ counter provides confidence (values of 2 or
more) the miss is predicted as 3-hop miss. For store in-
structions, the address of the line must not be contained
in the NPT. Later, on the response, predictions are verified,
incrementing the Confidence $-to-$ counter if the miss was
serviced with a cache-to-cache transfer or decrementing it
otherwise. In case of a 3-hop miss, the Confidence Pointer
1 counter is also updated, incrementing it when the value
stored by the Pointer 1/1 1st Level field agrees with the
owner of the line or decrementing it otherwise. When this
counter reaches 0, the value of the field Pointer 1/1 1st
Level is changed to the identifier of the sender of the line.

However, in most of cases, a more complex structure is
needed to answer the second question. The predictor that
provides the list of potential holders of the line (second-
level predictor) is accessed using both PC and address in-
formation. We have observed that a single static instruc-
tion causes 3-hop misses for different memory lines, held

by different owners. Therefore, the combination of the PC
of the load/store with the effective address provides more
accurate information as well as reduces interference. The
second-level predictor stores the last four nodes that have
had an exclusive copy of the memory line when a miss for
this instruction occurred (each one of the Pointer x/4 2nd
Level fields), with their corresponding valid bits. Again, a
two-bit saturating counter (Confidence 2nd Level field) is
included to reduce mispredictions. Thus, (�� ����� � �)
bits per entry are needed in this case.

This second-level predictor is also implemented as a
non-tagged table and works as follows: initially, all en-
tries in the second-level table have the saturating counter
and the valid bits initialized to 1 and 0, respectively. On
each L2 cache miss that is predicted as 3-hop miss by the
first-level, the second-level predictor is accessed. If the
saturating counter (Confidence 2nd Level field) gives con-
fidence, the miss is sent to the nodes indicated by those
pointers whose valid bits are 1 and to the one indicated by
the Pointer 1/1 1st Level field whenever this node is not
one of the already included (and, of course, if its confi-
dence value is 2 or more). Otherwise, the miss is only sent
to the node provided by the first-level predictor (when its
counter gives confidence) or it is not predicted and is sent to
the home directory as usual. On the responses, predictions
are verified and the second-level predictor is updated. The
owner is searched in the four pointers and the saturating
counter is incremented if it is present, or decremented oth-
erwise. In those cases in which the owner is not contained
in the set of pointers, its identifier is also added using one of
the pointers that are unused (if any) or replacing the pointer
least recently used (when all valid bits are 1).

An important design decision is the maximum number
of nodes per prediction. Too few nodes per prediction
would cause the second-level predictor to frequently miss
for some memory lines (those that are written by several
nodes without a defined pattern). However, an excessive
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number of nodes wastes network bandwidth and could in-
troduce a significant overhead in the directories as well as
in the cache controllers. In our case, we have found that a
maximum of five nodes per prediction constitutes a good
compromise. One node is obtained from the corresponding
first-level predictor entry, while the rest are provided by the
second-level predictor.

4 Coherence Protocol Supporting Prediction

Some modifications must be included into the coher-
ence protocol in order to make use of the above predic-
tion scheme. Our starting point is an invalidation-based,
four-state MESI coherence protocol as the one included in
the SGI Origin 2000 [17]. Two main premises guided our
design decisions: first, to keep the resulting coherence pro-
tocol as close as possible to the original one, avoiding ad-
ditional race conditions, and second, to assume sequential
consistency [11]. As in [6], we use the following terminol-
ogy for a given memory line:

� The directory node is the node in whose main memory
the block is allocated (also known as home node).

� The exclusive node is the node that holds the single
valid copy of the line.

� The requesting node is the node containing the L2
cache that issues a miss for the line.

Requesting Node Operation. When an L2 miss for a cer-
tain memory line occurs, the predictor implemented into
the cache controller is accessed. If the miss is predicted
to be satisfied with a cache-to-cache transfer, a request for
the line is sent to the nodes (or node) predicted to have
the valid copy of the line (exclusive node). Each request
includes the total number of messages sent and a bit iden-
tifying it as predicted. Otherwise, the request is sent to the
directory node, where the miss is satisfied as usual.
Exclusive Node Operation. When a predicted request for
a certain memory line comes to the cache controller, the
line is searched in the L2 cache. If the line is not in the
Exclusive or the Modified states a nack message is sent
to the directory node notifying that the predicted request
cannot be satisfied by this node as well as the identity of
the requesting node. Otherwise, as it would happen in a
non-predicted cache-to-cache transfer miss, the exclusive
node immediately sends a copy of the line to the request-
ing processor as well as an ack message indicating this to
the directory node (which includes a valid copy of the line
for load misses) and properly updates the state of its local
copy of the line. Note that for the first case, a 3-hop miss
would be converted into a 4-hop miss, whereas a new kind
of 2-hop miss is obtained for the second case.
Directory Node Operation. The home directory is re-
sponsible for collecting all the responses from the predicted
nodes (ack or nack messages) of a certain prediction. When

the first of such responses is received, a buffer entry is allo-
cated4 and the number of outstanding responses to the pre-
diction is saved. On every additional response, this number
is decreased. Once all the responses have been received,
one of the following actions will be carried out:

1. In the case of a bad prediction, that is, only nack re-
sponses have been received, the request is converted
into non-predicted and is processed as it would be in
the normal case.

2. In case an ack has been received, two scenarios are
possible:

2.1 If the ack comes from the expected node, that
is, the one codified by the sharing code associ-
ated with the memory line, the state and the shar-
ing code must be updated immediately. In those
cases in which the memory line has a pending
access, the predicted request must be processed
before that access, since the exclusive node has
already serviced the miss. Note that the case in
which the line has a pending access when the
ack is processed is equivalent to having a pend-
ing request for a memory line when a writeback
message for the line is received from the single
cache holding the line. This race condition is al-
ready considered in the original protocol, so ad-
ditional changes are not needed to support this
case.

2.2 When the ack comes from a different node to
the one provided by the sharing code associ-
ated with the memory line, it means that some-
thing preceding this ack took place. Therefore,
a message is sent to the source of the ack, in-
forming that the ack could not be observed at
that time and a re-send for the message must be
performed. The use of retries avoids deadlocks
since it ensures that the message from the ex-
pected node can find an entry in the directory
buffers.

It is important to note that only one ack message can be
received because, in the case of a prediction hit, there is a
single node caching the line and, also, that race conditions
for lines in the Private state are now solved by the owner
cache of the line (not by the directory). Note that mispre-
dictions can only be detected when all the nack responses
from the predicted nodes have been received. This detec-
tion could be done when receiving the first nack response if
the list of the predicted nodes were included in every mes-
sage. However, this would increase the total size of each
message by three additional bytes to the one already added.

Figure 4 summarizes the previous coherence protocol
extended with prediction. As it can be observed, prediction

4If a buffer entry is not available a retry message is returned to the
sender.
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Figure 4: How prediction is included into the original coherence protocol.

could be included in an existing coherence protocol with
minimal changes.

There is an additional situation that must be considered
in order to preserve the correctness of the coherence pro-
tocol. Note that our coherence protocol is based on the
fact that at every moment the directory can find the prece-
dence order between all the events related to a memory line
in the Private state (predicted and non-predicted requests)
as it actually happens. This is possible since the directory
always knows where the single valid copy of the line can
be found and only a message from such node for the line
will be processed. However, when write-write sharing [6]
takes place, prediction can make such a precedence order
be lost. As an example, assume the next scenario: initially,
node A is known to have the single copy of a memory line
M. Then, node B wants to write to the line M. Obviously
an L2 cache miss occurs, and node B predicts node A as
having the single copy of the line. When node A sees the
predicted request, it sends a copy of M to node B, invali-
dates its local copy and sends the ack message to the home
directory. Later on, the processor in node A tries to write
to the memory line M and, again, a miss occurs. Assuming
node A predicts node B as having the line in the Private
state, the same event sequence would take place. Finally,
another node, say node C for example, has a write miss
for line M and predicts node A as having the single copy
of the line. The problem arises when the home directory
sees the second ack from node A before the very first one.
In this situation, the directory assumes the line M to have
been moved first from A to C, so that the desired order-
ing would be lost. This is possible due to: i) we assume
a point-to-point network without ordering properties, and,
ii) even with such an ordered point-to-point network, the
problem can still occur due to the use of retry messages.
Finally, note that if the ack from node B arrived before the
first ack from node A, a retry message would be returned to
B.

To avoid the problem, each time that a cache controller
receives a predicted request that hits in the local L2 cache
and that was caused by a store instruction, it looks for a
free entry in the No Predict Table described in the previous
section. If the NPT were full, the request could not be han-
dled as predicted and the exclusive node would act as if a

miss had taken place. Otherwise, the tag is included into
the NPT of the exclusive node. If the next miss suffered by
this node for the memory line is caused by a store instruc-
tion it will not be predicted, forcing the miss to go through
the directory to ensure the precedence order. In any case,
the miss would free its entry for the memory line in the
NPT. Observe also that the use of the NPT avoids that sev-
eral predicted accesses prevent indefinitely a non-predict
access from obtaining the ownership of the line (that is,
livelock situations).

5 Performance Results and Analysis

In this section, we present a detailed performance eval-
uation of our proposals using extensive execution-driven
simulations. First, we present the simulation environment.
Next, we analyze the ability of our prediction-based tech-
nique to improve performance. Finally, since not all the
3-hop misses can be predicted, we also present results of a
directory architecture optimized for 3-hop misses.

5.1 Simulation Environment

We have used a modified version of Rice Simulator for
ILP Multiprocessors (RSIM), a detailed execution-driven
simulator [12]. RSIM models an out-of-order superscalar
processor pipeline, a two-level cache hierarchy, a split-
transaction bus on each processor node, and an aggressive
memory and multiprocessor interconnection network sub-
system, including contention at all resources. The mod-
eled system is a 16-node cc-NUMA that implements a full-
map, invalidation-based, four-state MESI directory cache-
coherent protocol. Table 1 summarizes the parameters of
the simulated system. These parameters have been cho-
sen to be similar to the latencies given in [10] as common
values for high-performance multiprocessor systems in the
next decade. Second-level caches are assumed to be inte-
grated into the processor chip (as in [10]).

Probing and updating the predictors do not add any cy-
cle. Contrary to the uniprocessor/serial-program context
where predictors are updated and probed continuously with
every dynamic instruction instance, we only update the pre-
diction history and only probe the predictor to retrieve in-
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formation in the case of an L2 miss. Thus, as in [14], we
believe that the predictors neither constitute a potential bot-
tleneck nor add cycles to the critical path, because their
latency can be hidden from the critical path (for example,
by speculatively accessing the predictor in parallel with the
L2 cache lookup). Prediction messages are created one-
per-cycle.

16-Node System Parameters
ILP Processor

Processor Speed 1 GHz
Max. fetch/retire rate 4
Instruction Window 64
Functional Units 2 integer arithmetic

2 floating point
2 address generation

Memory queue size 32 entries
Cache Parameters

Cache line size 64 bytes
L1 cache (on-chip, WT) Direct mapped, 32KB
L1 request ports 2
L1 hit time 2 cycles
L2 cache (off-chip, WB) 4-way associative, 512KB
L2 request ports 1
L2 hit time 15 cycles, pipelined
Number of MSHRs 8 per cache

Memory Parameters
Memory access time 70 cycles (70 ns)
Memory interleaving 4-way

Internal Bus Parameters
Bus Speed 1 GHz
Bus width 8 bytes

Network Parameters
Topology 2-dimensional mesh
Flit size 8 bytes
Non-data message size 16 bytes
Router speed 500 MHz
Router’s internal bus width 64 bits
Channel width 1 bit
Channel speed 10 GHz
Number of channels 4

Table 1: Base system parameters

With all these parameters, the resulting no-contention
round-trip latency of load requests satisfied at various lev-
els of the memory hierarchy is shown in Table 2.

Round Trip Access Latency (Cycles)

Secondary Cache 19
Local 118

Clean Remote 158 � 218
Cache-to-cache Transfer 224 � 296

Table 2: No-contention round-trip latency of load accesses

Table 3 describes the applications we use in this study.
In order to evaluate the benefits of our proposals, we have
selected several scientific applications for which cache-to-
cache transfer misses constitute an important percentage of
the total miss rate (more than 25% in all the cases). MP3D
and Water are from the SPLASH benchmark suite [22],
FFT and Ocean are from SPLASH-2 benchmark suite [23].
EM3D is a shared-memory implementation of the Split-C
benchmark. Unstructured is a computational fluid dynam-

ics application that uses an unstructured mesh. All exper-
imental results reported in this paper are for the parallel
phase of these applications. Data placement in our pro-
grams is either done explicitly by the programmer or by
RSIM which uses a first-touch policy on a cache-line gran-
ularity. Thus, initial data-placement is quite effective in
terms of reducing traffic in the system.

Program Size

EM3D 38400 nodes, degree 2, 15% remote, 50 timesteps
FFT 64K Points

MP3D 48000 nodes, 20 timesteps
Ocean 130x130 array, ���� error tolerance

Unstructured Mesh.2K, 5 timesteps
Water 343 molecules, 4 timesteps

Table 3: Applications and input sizes

5.2 Predictor Accuracy

The main objective of our prediction-based technique is
to directly send those L2 cache misses that are going to
be served with a cache-to-cache transfer to the owner of
the line. Therefore, two predictions must be carried out:
whether or not a certain cache miss is a 3-hop miss and, if
so, the identity of the node owning the line. The two-level
prediction scheme proposed in Section 3 uses the history
stored in the first-level table to detect 3-hop misses (first-
level predictor), whereas the location of the valid copy of
the memory line is determined using both the first- and
second-level tables (second-level predictor). This section
analyzes the potential of our two-level predictor assuming
an unlimited number of entries in each one of the prediction
tables.

Figure 5 illustrates the accuracy of the first-level pre-
dictor. Over the total number of predictions, it shows the
percentage of references that were correctly predicted as 3-
hop misses (Hit), the percentage of misses that were seen
as 3-hop misses but were not (Miss True) and the percent-
age of misses that were incorrectly predicted as non-3-hop
misses (Miss False). For all the applications but EM3D, our
first-level predictor obtains hit rates greater than 80% and,
in several cases, this rate is almost 100% (in FFT, Unstruc-
tured and Water). EM3D constitutes the only application
for which we have observed that the use of address-based
prediction (instead of instruction-based) would increase the
hit rate.

The accuracy of the second-level predictor is presented
in Figure 6. In this case, over the number of accesses to
this predictor level, it shows the percentage of correct pre-
dictions (Hit Conf ), prediction misses (Miss Conf ), hits
that were not predicted since the confidence counter did
not give confidence to the prediction (Hit No Conf ) and
misses that were saved since the counter did not allow the
prediction (Miss No Conf ). As it can be seen, hit rates
of more than 60% are obtained for all the applications but
MP3D. For this application we have observed that the ma-
jority of cache-to-cache transfers occur for a small number
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Figure 6: Second-level Predictor Accuracy

of lines that are accessed by all the nodes, which prevents
the second level from making predictions (because of the
low value of its confidence bits).

Finally, over the total number of 3-hop misses, Figure
7 shows the percentage of those that have been correctly
predicted (Predict), those that could not be predicted due
to the first-level predictor or the second-level one or both
not assigning confidence to the prediction (Non-Confident),
those for which the second-level predictor missed the cor-
rect owner (Miss Predict) and those that were probed as
3-hop misses but they were not (Not $-to-$). The latter is
shown starting from 100%, since it corresponds to misses
that are not 3-hop misses. As it can be seen, a high percent-
age of the 3-hop misses can be successfully predicted for
Ocean and FFT applications (more than 75%). For EM3D,
the hit rate obtained for the first-level predictor negatively
influences the percentage of 3-hop misses that can be cor-
rectly predicted. The irregular behavior observed in MP3D
prevents the second level from predicting a 75% of the 3-
hop misses, although the first-level predictor successfully
identifies them as being serviced with a cache-to-cache
transfer. For this application, the use of confidence bits
reduces the number of mispredictions and, then, saves cer-
tain misses from wasting bandwidth. Finally, for Water and
Unstructured we have found that an important number of 3-
hop misses (13% and 19%, respectively) are not predicted
due to the high number of store misses for which an entry
in the NPT was found. The reason is the significant amount
of false sharing observed in these applications. Note also
that for all the applications the number of 3-hop misses that
could not be predicted (Non-Confident) exceeds those that
were incorrectly predicted (Miss Predict). Non-Confident
and Miss Predict cases will be considered again in Section
5.4. Finally, the percentage of misses incorrectly predicted
as 3-hop (Not $-to-$) is very low, which demonstrates the
high accuracy of the first-level predictor.

5.3 Performance Analysis

In this section we analyze quantitatively the perfor-
mance benefits of our proposal. First, we study how pre-
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Figure 7: Percentage of 3-hop misses predicted

diction affects the average latency of 3-hop misses, then
the effect on the average latency of load and store misses is
presented, and finally, execution time speed-ups are also
reported. For all cases, we compare a base configura-
tion, which does not use prediction, a configuration with an
almost-oracle predictor (AOP), which gives us an approx-
imation of the maximum benefit that could be obtained,
and two configurations using the two-level predictor: UL-
2Level, for which each prediction table has an unlimited
number of entries (and for which accuracy results were pre-
sented in the previous section) and L-2Level, that limits the
size of the prediction tables.

Reductions in the latency of 3-hop misses as well as load
and store misses are seen in terms of the reduction rate,
which is calculated as:

Reduction rate � Base Average Latency
�AOP, UL-2Level, L-2Level� Average Latency

The AOP predictor used in this work accesses the di-
rectory information on every L2 cache miss, to determine
if the line is in the Private state and, if so, which node
is caching the line, and directly sends the miss to the
corresponding node. We have modified RSIM to allow
nodes suffering an L2 cache miss to directly access the
corresponding directory entry without spending any cycle.
However, this only constitutes an approximation of the or-
acle predictor behavior since mispredictions are still possi-
ble. For example, when two different nodes make a predic-
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Figure 8: Reduction Rates for 3-Hop Misses
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Figure 9: Reduction Rates for Load and Store Misses

tion at the same time for the same memory line, one of them
will miss. However, these situations occur infrequently so
that more than 90% of the predictions were correct for all
the applications. Moreover, since the AOP predictor sends
a single message per prediction, misprediction penalty is
always kept very small.

The L-2Level predictor constitutes an example of how
a “realistic” implementation of the UL-2Level predictor
would behave. The total size of this predictor is kept be-
low 64 KB, for which there are 2K entries for the first-
level prediction table (total size of 2 KB), 16K entries for
the second-level prediction table (total size of 48 KB) and
128 entries for the NPT (total size of 512 Bytes), which
is enough, since we have observed that a small number of
entries are used in this table. The first-level table is in-
dexed directly using ten least significant bits of the PC of
the instruction missing in the L2 cache. The access to the
second-level table is carried out from the result of com-
puting the XOR between bits from 5 to 18 of the missing
address and bits from 2 to 15 of the PC. As in [8], we use
XOR-based placement to optimize the use of the entries
in the second-level table. Note that both prediction tables
are non-tagged and aliasing can occur. Finally, due to its
small number of entries, the NPT is organized as a totally
associative buffer structure.

Application AOP UL-2Level L-2Level

EM3D 1.00 1.07 1.47
FFT 1.00 1.02 1.32

MP3D 1.00 3.58 3.61
Ocean 1.00 1.06 1.11

Unstructured 1.00 3.11 3.49
Water 1.00 3.59 3.61

Table 4: Number of nodes included per prediction

Figure 8 presents how the use of prediction accelerates
3-hop misses in AOP, UL-2Level and L-2Level configu-
rations with respect to the base system, whereas Table 4
shows the average number of nodes included in each pre-
diction. As can be observed from AOP results, prediction
has the potential to significantly improve 3-hop misses for
all the applications (3-hop miss average latency is reduced

by half for EM3D and FFT and by a rate of more than 1.6
in all cases). In practice, the latency reduction that could
be reached with a non-oracle predictor is lower since not all
the 3-hop misses can be correctly predicted and, for some
predictions, messages to several nodes must be sent. How-
ever, these benefits are still very important for all appli-
cations but MP3D when using the UL-2Level predictor (re-
duction rates ranging from 1.34 for Unstructured to 1.76 for
FFT) and, what is more important, they could be obtained
with a “realistic” configuration (for all the applications but
one UL-2Level and L-2Level predictors obtain the same re-
sults). The exception is Unstructured for which a slightly
lower reduction rate is found for L-2Level (from 1.34 to
1.26). Remember from last section that for MP3D the two-
level predictor was unable to predict the majority of 3-hop
misses, so performance benefits cannot be expected for this
application. Finally, the non-tagged nature of the L-2Level
predictor makes some of its entries be shared between dif-
ferent predictions which, as shown in Table 4, slightly in-
creases the average number of nodes per prediction when
compared to the UL-2Level scheme.

Application Load Misses Store Misses Total Misses

EM3D 36.49% 0.00% 26.73%
FFT 99.41% 0.00% 54.35%

MP3D 95.34% 4.95% 50.08%
Ocean 77.84% 5.28% 43.98%

Unstructured 80.38% 52.63% 62.92%
Water 91.50% 41.54% 61.03%

Table 5: Percentage of 3-hop misses found in load, store
misses and in the total misses

The important benefits found for 3-hop misses also lead
to reductions in the average latency of load and store in-
structions. As can be observed from Table 5, for all
the applications but EM3D the most important fraction of
the load misses is serviced with a cache-to-cache trans-
fer which, as shown in Figure 9, translates into significant
reductions on load miss latencies when compared to the
base system. Again, UL-2Level and L-2Level obtain vir-
tually identical improvements for all the applications but
Unstructured (reduction rates of 1.18 for EM3D, 1.76 for
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Figure 10: Application speed-ups
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Figure 11: Application speed-ups obtained when directory
caches for 3-hop misses are used

FFT, 1.40 for Ocean and 1.42 for Water). For this applica-
tion reduction rates of 1.55 and 1.36 are obtained for UL-
2Level and L-2Level, respectively. On the other hand, the
benefits found for store misses are not so significant (less
than 1.10 for all cases) and even a small slow-down is ob-
served for MP3D. These results can be expected for EM3D,
FFT, MP3D and Ocean due to, as illustrated in Table 5, a
very small percentage of the 3-hop misses was caused by
store misses (0% in some cases). On the contrary, the frac-
tion of store misses serviced with a cache-to-cache transfer
is substantial for Unstructured and Water. However, and
as previously seen, the false sharing experienced in these
applications forces the majority of the store misses not to
be predicted, explaining the low potential obtained in Fig-
ure 9 for these applications. Therefore, two-level predic-
tors could be simplified (eliminating the need of having the
NPT) without significantly hurting the final performance
by not predicting store misses. Note also that for all the
applications but MP3D, UL-2Level and L-2Level configu-
rations obtain improvements near to those found for AOP.

The ultimate metric for application performance is the
execution time. Figure 10 shows the speed-ups in exe-
cution time for AOP, UL-2Level and L-2Level configura-
tions normalized with respect to the base system. We find
that, as expected, negligible improvements are obtained for
MP3D when both UL-2Level and L-2Level predictors are
used (speed-up of 1%), although important benefits could
be obtained (speed-up of 13% for AOP). For the rest of the
applications, UL-2Level and L-2Level configurations reach
more than 50% of the performance benefits obtained for
AOP. For EM3D, FFT, Ocean and Water speed-ups of 5%,
6%, 7% and 3%, respectively, are found for UL-2Level
and L-2Level, while for Unstructured the improvements
reached differ in a 2% (speed-ups of 12% for UL-2Level
and 10% for L-2Level).

5.4 Including a Directory Cache into the Final
Design

One way to also accelerate non-predicted and some of
the mispredicted 3-hop misses is by reducing the time

needed to obtain the identity of their destination node. For
this, we study the case of adding a small and fast directory
cache to every directory controller. This directory cache
stores sharing information only for those lines in the Pri-
vate state. Thus, each one of its entries contains only a 1-
pointer sharing code to keep the identity of the single node
caching the line (as well as some tag information). The la-
tency of the directory cache is assumed to be 10 cycles (1
directory cycle), while 70 cycles must be spent when ac-
cessing to the main directory (which is the latency of the
main memory).

In this way, those 3-hop misses that could not be pre-
dicted and for which the directory cache contains their cor-
responding directory entries will be quickly routed to their
owner node, saving the cycles needed to access the slow
DRAM directory. Observe that, on the contrary, those mis-
predictions for which several messages are sent cannot take
any advantage from the use of the directory cache, since the
miss is detected once all the nack responses from the pre-
dicted nodes arrive to the directory. For predictions with
more than one message involved, we assume that the ac-
cess to the main directory begins when the ack or the first
nack for the predicted request reaches the directory, and
finishes when receiving the last one.

Figure 11 shows how the improvements obtained with
the L-2Level predictor could be even increased if a small
directory cache were used in every node (L-2Level+DC).
Results for L-2Level and for AOP are also included for
comparison purposes. The directory caches modeled in
these simulations are fully associative, 512-entry structures
which use a LRU replacement policy5. As derived from
Figure 11, adding a directory cache to the final design
would bring performance benefits close to those obtained
with the AOP predictor for all the applications but MP3D.
Even these benefits outperform the ones observed for the
AOP case in Unstructured and Water. Remember that an
important percentage of the 3-hop misses observed in these
applications was caused by a store instruction for which an
entry in the NPT table was found and, consequently, that

5Practical implementations can be set-associative, achieving similar
performance at lower cost [18].
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could not be predicted even with the AOP scheme. On the
other hand, for MP3D prediction was shown to bring negli-
gible improvements in execution time, so that the speed-up
of 7% is mainly due to the use of the directory cache.

6 Conclusions

Several recent studies have observed cache-to-cache
transfer misses to constitute an important fraction of the
total miss rate (more than 60% in some cases), so that op-
timizations to reduce the usually long latencies associated
with these misses have become the subject of important re-
search efforts. In this work, we propose the use of pre-
diction to directly send 3-hop misses to the corresponding
node where the single valid copy of the line resides. This
would eliminate the significant number of cycles needed to
access the directory information from the critical path of
3-hop misses.

The prediction-based technique proposed in this work
consists of two main components. The first one is a novel
two-level prediction scheme achieving high hit rates and
the second is a coherence protocol, similar to the one used
in the SGI Origin 2000, properly extended (with minimal
changes) to support the use of prediction. The use of pre-
diction can significantly reduce the latency of cache-to-
cache transfer misses up to a rate of 1.76, which translates
into speed-ups on application performance up to 12% and,
in general, these results can be obtained including a predic-
tor with a total size of less than 64 KB in every node.

In addition, we found that a substantial number of 3-
hop misses remained non-predicted (or mispredicted) and
showed how including in every node a first-level direc-
tory cache made up of a small number of 1-pointer entries
helped to increase the benefits of using prediction (speed-
ups on application performance up to 16%).

Additional optimizations for 3-hop misses could be de-
rived from the results of this work. For example, the high
hit rates observed for the first-level predictor suggest that
small predictors could be introduced in every node to avoid,
when detecting a 3-hop miss, the speculative read of mem-
ory that, otherwise, would be done in parallel with the ac-
cess to the directory (which wastes memory bandwidth).
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