
Future Generation Computer Systems 18 (2002) 317–333

MPI–Delphi: an MPI implementation for
visual programming environments and

heterogeneous computing

M. Acacio∗, O. Cánovas, J.M. Garcı́a, P.E. López-de-Teruel
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Abstract

The goal of a parallel program is to reduce the execution time, compared to the fastest sequential program solving the
same problem. Parallel programming is growing due to the widespread use of network of workstations (NOWs) or powerful
PCs in high-performance computing. Because the hardware components are all commodity devices, NOWs are much more
cost-effective than custom machines with similar technology. In this environment, the typical programming model used has
been message-passing and the MPI library has become the standard in the distributed-memory computing model. On the
other hand, visual programming environments try to simply the task of developing applications. They provide programmers
with several standard components for creating programs. Delphi constitutes one of the most popular visual programming
environments nowadays in the Windows market place. In this paper, we present MPI–Delphi, an implementation of MPI for
writing parallel applications using Delphi visual programming environment. We show how MPI–Delphi has been developed,
and how it makes possible to manage a cluster of homogeneous/heterogeneous PCs. Two examples of use of MPI–Delphi
in a heterogeneous cluster of workstations with a mixture of Windows and Linux operating systems are also included. The
MPI–Delphi interface is suitable for some specific kinds of problems, such as monitoring parallel programs of long execution
time, or computationally intensive graphical simulations. In addition, MPI–Delphi has proven to be a good tool for research, as
the development of new algorithms can be carried out quickly and, therefore, time spent on the debugging of such algorithms
is reduced. Finally, we conclude by explaining some of the tasks we think MPI–Delphi is suitable for. © 2002 Elsevier Science
B.V. All rights reserved.
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1. Introduction

In recent years, parallel systems and paral-
lel programming have increasingly made use of
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message-passing paradigm, in order to solve com-
plex computational problems. Although the notion of
network of workstations (NOWs) is not new, NOWs
or PoPCs are currently being considered as a cost-
effective alternative to the use of expensive, dedicated
high-performance systems. In fact, the increasing
performance and availability of general-purpose mi-
croprocessors and networks has fostered the spread
of NOWs, either with shared or distributed-memory,
as an alternative to customized massively parallel
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systems (MPPs). So, a cluster of powerful PCs in-
terconnected with a fast network could be seen as
a reasonable and cost-effective alternative approach
[7,23] for exploiting parallelism.

Due to the rapid advance in performance of
these commodity computers, when such clusters are
upgraded by addition of other nodes, they become
heterogeneous. We use heterogeneous in two senses:
(a) computers with different classes of properties, such
as microprocessors, memory RAM size, and so on,
and (b) computers with different OS, mainly UNIX
(with its variants) and Windows NT/2000. Currently,
many organizations have large and heterogeneous
collections of networked computers. Therefore, the
question of managing these computers efficiently is
now a major problem.

Traditionally, Linux/UNIX has been used as the
operating system in clusters of PCs. However, Win-
dows 95/98/NT is currently perhaps the most widely
used operating system. Moreover, the Intel Pentium
II/III, together with its Windows 98/NT/2000 oper-
ating system (the Wintel model), provides enough
overall capacity to also displace the RISC/UNIX
workstation in the engineering and scientific market-
place. As a result, there are more and more clusters of
PCs using Windows 95/98/NT/2000 as their operat-
ing system [5,21,26]. The advantage of this operating
system over Linux/UNIX is greater ease of use, and
a larger number of developed applications. Among
these applications, programming environments are
not an exception.

Lately, some software distributed shared-memory
(SDSM) systems have appeared allowing shared-
memory parallel programming in NOWs with Linux/
UNIX [3,11] and Windows [12,27] operating system.
However, the main problem in this configuration is the
high cost of access to shared-memory. This cost pre-
cludes these systems from being widely used in this
environment. Therefore, message-passing paradigm
continues to be the preferred paradigm in NOWs.

With the advent of the MPI [10] standard, parallel
programming using the message-passing style has at-
tained a certain level of maturity. However, in terms
of convenience and productivity, this programming
model suffers from low performance of the generated
code, due to the lack of high-level development tools.
Although, in recent years a wide range of tools of
this type have been developed, the situation is still not

satisfactory for users, since most of these tools can
only be used in isolation and cannot work in hetero-
geneous environments.

The major obstacle to program applications for par-
allel systems is the programmer’s ability to deal simul-
taneously with the complexity and parallelization of
the algorithms under consideration, and the details of
communications between processors. We believe that
it is necessary to devise appropriate visual program-
ming environments to overcome this difficulty.

Nowadays, most programming projects are de-
veloped using visual environments. There is a great
variety of programming environments available for
Windows. Visual programming environments consti-
tute one of the most interesting development tools.
They make the creation of programs easier for the
programmer, as they provide programmers with the
components necessary for developing applications.
The work of the programmer is to adapt these com-
ponents to the specific applications. In this way, the
creation of certain parts of the application (such as
the user interface) is greatly simplified.

Delphi2 constitutes one important visual program-
ming environment. Unlike other visual programming
environments, Delphi is a real compiler, which gen-
erates very efficient executable code, with no need to
distribute runtime additional files with the application.
So, it is of great interest to implement parallel applica-
tions with Delphi, in order to take advantage of visual
programming facilities. This would not only acceler-
ate the implementation of parallel programs, providing
programmers with an easy way of showing graphical
information, but may also be used for debugging new
computation-intensive algorithms.

The first and most obvious problem that we en-
countered was the lack of an MPI implementation for
Delphi. This visual programming environment uses
Object Pascal (an object-oriented version of Pascal)
as its native programming language, while available
Windows MPI versions were accessible only from
Visual C++ 1 and Borland C++. 2

In this paper, we describe an implementation of
MPI for Delphi named MPI–Delphi. Our central
objective was to give MPI functionality within this

1 Visual C++ is a trademark of Microsoft.
2 Delphi and Borland C++ are trademarks of Inprise (formerly

Borland).
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popular environment, using one of the existing Win-
dows MPI implementations. So, MPI–Delphi allows
us to develop parallel applications using Delphi and
making good use of the facilities that it provides
for applications with many user interactions and/or
complicated graphical requirements. A preliminary
publication of this paper can be found in [2].

MPI–Delphi has two main features. Firstly, it gives
us an MPI implementation for Delphi; this is, to date,
the only implementation for Pascal-style language we
know. MPI–Delphi is a visual programming environ-
ment that allows the user to manage a large clus-
ter of homogeneous/heterogeneous PCs. In this way,
MPI–Delphi — due to the fact that it is based in the
MPI standard — is a powerful tool for developing and
executing parallel applications, which can have diverse
computational requirements.

We have structured this paper as follows: first, we
describe how MPI–Delphi was created (the problems
we encountered in its development, and how these
were solved), and then we describe the parallel envi-
ronment that we propose. For this purpose, we show a
sample application created using MPI–Delphi, along
with the visual results obtained for it. The application
consists of the implementation of the well-known
Jacobi relaxation method, applied to solve the prob-
lem of the heat diffusion in a body. We called this
program Visual Jacobi, as it incorporates a good user
interface, in which we can easily modify the values
of the input parameters, as well as observe the evo-
lution of the state in the body. The main goal of this
sample is to visualize the evolution of the tempera-
ture. This graphical information was easily shown,
thanks to Delphi’s graphical components. In the next
section, we study the use of MPI–Delphi to develop
a scientific application: the parallel visual version of
the EDR algorithm, a new method for estimation of
probability density functions from uncertain samples.
In this case, we employed MPI–Delphi to assist us
in debugging the heuristics of this new algorithm.
Thanks to MPI–Delphi, we were able to use the visual
components to validate the heuristics, and to reduce
the debugging time. Moreover, for this algorithm we
show an MPI–Delphi performance analysis. The re-
sults are very promising, both in terms of debugging
time of the algorithm and in terms of the overhead
introduced by the MPI–Delphi environment itself. We
then mention some related work. The final part of this

paper is an outline of the conclusions of our work,
and several future possibilities.

2. The development of MPI–Delphi

MPI–Delphi is the name of the implementation of
MPI for Delphi we have developed. We have tried to
keep our implementation as close to the C specification
as possible, but some minimal modifications have been
introduced.

Currently, several MPI implementations for Win-
dows can be found. There are implementations of
these libraries for Windows 3.1, 95/98 and NT/2000
systems. The common characteristic we have found
in all these versions is that the language they have
been created for is C (or C++), and the environments
from which they can be used are Visual C++ or
Borland C++. Moreover, there is a proposal, named
mpiJava[4], which provides MPI capabilities to Java
developers (mpiJavaoffers a suitable class hierarchy
based on MPI-2 standard). However, we are not aware
of any implementation of MPI available for Delphi
developers, despite the great capabilities that this IDE
(Integrated Development Environment) offers.

We have used WMPI v.0.9b3 as the basis to de-
velop a mechanism to provide MPI functionality to
Delphi. We made this selection taking into account
several factors such as reliability, cost, and rapid de-
velopment of new improved versions. WMPI is a full
MPI standard implementation for Microsoft Win32
platforms. It is completely compatible with MPICH
1.0.134 (which is also a free MPI implementation
from the Argonne National Laboratory) and it uses
P4 message-passing as its underlying protocol. Con-
nectivity between WMPI and other clusters running
MPICH 1.0.13 with distinct operating systems (sev-
eral UNIX and Linux versions, as well as Windows
32-bit platforms) is accomplished through a common
TCP/IP network. So, by using the MPI standard, clus-
ters of heterogeneous computers can be managed as a
single image in an easy way.

As we commented above, WMPI is available
for Visual C++ and Borland C++ environments.

3 WMPI: http://dsg.dei.uc.pt/∼fafe/w32mpi/intro.html (currently,
the 1.5 beta version is available).

4 MPICH/NT: http://WWW.ERC.MsState.Edu/labs/hpcl/projects/
mpi/mpiNT-download.html.
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Although, Delphi and Borland C++ are products
from the same company, programming libraries for
Delphi are not compliant for C++, and vice versa.
For this reason, it is necessary to provide a mech-
anism to offer Delphi programmers a way to use
WMPI libraries. This section describes the way we
carried out the implementation of this mechanism.

2.1. First step: providing Delphi with MPI
capabilities

Initially, the first problem was to find a way to
communicate programs developed with Delphi and
the WMPI library. In order to solve this first problem,
we evaluated several mechanisms, paying attention
to certain criteria, such as feasibility, efficiency, com-
modity, transparency and scalability. Thus, in the
implementation of MPI–Delphi, we set ourselves two
main objectives:

1. To adapt C or FORTRAN definitions of MPI func-
tions to Pascal syntax, given that MPI has been de-
fined for C and FORTRAN languages.

2. To carry out an implementation in which the func-
tionality of W32MPI was offered to Delphi in an
easy way. Delphi programmers should be able to
make use of the MPI functionality in a simple,
transparent way, without having to worry about the
internal details of the implementation. Users should
only need to know how to use the MPI standard
functions.

The first objective is related to the MPI specifica-
tion. C programming language could be considered
nearer to Pascal than FORTRAN, so we used the C
specifications of MPI as our basis. However, indepen-
dently of the mechanism used to connect Delphi with
WMPI, there is an obvious problem when trying to
translate C to Pascal: the differences between C and
Pascal. They are two very different languages in some
aspects such as data types. This problem is outlined
in the next section.

In order to deal with the second objective, two so-
lutions were analyzed:

1. The use of DDE (dynamic data exchange) to com-
municate W32MPI and Delphi.

2. Creating a DLL (dynamic link library) providing
MPI functionality.

DDE is a message-based protocol that allows in-
formation interchange between Windows applications.
DDE uses a client/server model in which the applica-
tion requesting data is considered the client and the
application providing data is considered the server.

DDE applications use a three-tiered identification
system to distinguish each one from other DDE appli-
cations.

• Application Namesare at the top of the hierarchy
and refer to a server application.

• Topic Namesfurther define the server application.
A server can support more than one topic.

• Item Namesidentify details within a topic name,
and each topic can have more than one item.

The DDE Application Name is almost always the
executable filename for the server application (without
the EXE extension). The DDE Topic typically identi-
fies a group or category of data in the server applica-
tion, and each data item that a server can provide has
a unique DDE Item Name. Thus, Application Name,
Topic, and Item Name identify the exact source of the
data in a server application.

The data communication is carried out using blocks
of global memory. Servers send to their clients a
pointer to those memory blocks, not the information
itself. There are three different ways data exchange
can occur.

1. A client application can request data all at once
from a server application.

2. A server application can send data to a client ap-
plication.

3. A server application can advise the client applica-
tion that an item has changed its value.

A DDE-based solution would involve a server ap-
plication written in C++, offering MPI functionality
to client applications written in Delphi. Delphi clients
would establish connections with this server appli-
cation, which should run before Delphi parallel pro-
grams, in order to gain access to WMPI functionality.
This scheme corresponds to Fig. 1.

This proposal has several drawbacks.

• First, the client must be able to send information
to the server, and with DDE this is not possible
(clients can only specify notification modes and
application/topic/item). In order to carry out such
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Fig. 1. Communication between the elements of DDE-based solution.

communication, client applications must be both
clients and servers.

• Second, if we considered the large range of data
types and functions supported by MPI, a structure
based on topics and items would be extremely com-
plex and impractical.

• Third, as an additional application is necessary
(DDE Server), parallel Delphi programs are over-
loaded with DDE functionality, and MPI–Delphi
scalability is compromised.

Therefore, we turned our attention to the other al-
ternative. DLLs are Windows-based program modules
that can be loaded and linked at runtime. They can
contain commonly used routines and resources that
Windows and Windows applications call up when they
need them. Some benefits of DLLs are the following:

1. Minimize the application’s resource requirements.
2. Make code distribution more flexible.
3. Give the code a form of language independence,

which means that a DLL created in C++ (or an-
other language) can be accessed by most other pro-
gramming languages, such as Delphi.

Our final choice was determined by feasibility, effi-
ciency, commodity, transparency and scalability. Thus,
we concluded that the option based on DLLs repre-
sented the most suitable solution. This option also in-
volves using C++ in order to create the DLL.

Thus, we have implemented a DLL using Borland
C++ 5.0 which integrates almost all the functionality
present at WMPI. This DLL can be accessed from any
Delphi application, paying attention to the conversion
between Delphi and C variables.

This approach constitutes an elegant solution, and it
represents a simple and structured way to carry out the
communication between Delphi applications and MPI.

Delphi programmers only have to learn how to use the
DCU (Delphi compiled unit) which provides access to
our DLL (in a transparent way for such developers).
The programmer simply uses the functions contained
in the DCU in the same way as when using any other
DCU.

2.2. Second step: development of the DLL

As we have just seen, a DLL is the best option to
accomplish our task. Thus, we have developed a DLL
in Borland C++ 5.0 nameddllmpi.dll. This section
describes the most important issues related to the im-
plementation ofdllmpi.dll, such as specification of ex-
ported functions, and compatibility of data types. This
last issue is a complex task, given the important dif-
ferences between the flexible data-typing system of C
language and Delphi’s strict system.

Firstly, it must be noted that this DLL does not of-
fer a full MPI implementation, i.e. it does not export
the whole functionality provided by the MPI standard:
communicators have been omitted in this first version
of MPI–Delphi. The reason is that the main goal of
this version is to determine the possibilities of parallel
programming using Delphi, more than to implement
the whole functionality of the standard. Therefore,
and for the sake of simplicity, the communicator ar-
gument was eliminated in the implemented DLL. In
any case, MPI–Delphi supports completely all the
operations related to point-to-point communications
and collective communications, initialization and
termination, control, error management, and so on.

All of the exported functions in our DLL have three
common elements (words in bold):
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• FAR. It is a scope modifier which specifies that
functions containing it could be invoked from an-
other memory segment.

• export. It is used to export the function.
• beta. It is a suffix added to avoid name conflicts

(there is a function called MPIFinalize in WMPI,
anddllmpi.dll includes WMPI library). In our DLL
all the functions have this suffix.

The body of some functions indllmpi.dll is very
simple, consisting only of an invocation to the WMPI
original function. However, in most cases it is not so
simple. The serious drawback of DLLs is that they lack
type checking. When a DLL is created, its functional-
ity is exposed. Then, the developer’s compiler using
a function from our DLL is faced with two problems:
how to verify the correct number of parameters; and
how to check the parameter types.

To design this DLL, we began with a complete study
of the MPI standard. It was necessary to understand the
kind of functions, data types and other aspects related
to MPI standard. Using the MPI standard definition
[10] and WMPI headers (.H files), we determined the
elements that our DLL must offer.

However, in order to implement some functions,
we have used a technique based on the definition of
intermediate data types. There are some functions

Fig. 2. Data exchange between original and intermediate data types.

which work with complicated data types, or data
types not clarified after our preliminary study of the
MPI standard. In these cases, we define intermediate
data types inside the DLL, to carry out assignments
between these new data types and such unknown
data types. Assignments are performed using the
well-known fields, not copying the whole structure of
data types as occurs in functions where there are no
problems with the data types involved. Some exam-
ples of these exceptional data types areMPI Status,
MPI Op, andMPI Datatype. In order to illustrate this
concept, Fig. 2 includes the definition of a well-known
data type, and an exchange of information with an
unknown type.

2.3. Third step: development of the DCU

Once the DLL is implemented, we must decide
how Delphi programmers can to carry out MPI ap-
plications. One possibility is to use our DLL directly,
i.e., including it in their projects. As we commented
above, the Delphi compiler has no way of checking
whether the exported functions are named with the
correct number and type of parameters. The way
to solve this problem is by providing a mechanism
to hide the existence of DLL. There are several
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Fig. 3. Communication between the elements of MPI–Delphi.

alternatives, which Delphi supports, and which could
accomplish this task, ranging from components to
DCUs. We decided to develop a DCU including data
types and functions related to MPI standard. The
DCU offers Delphi programmers a similar way of
writing applications to that found in the MPI API
for C language. Delphi programmers include in their
projects a unit (library or DCU) which provides MPI
functionality.

Another important decision in the DCU design is
not to modify the way a programmer uses MPI. Our
DCU could have offered a set of classes in order to
give an object-oriented approach to MPI [9,18]. How-
ever, we preferred to develop a unit as close to MPI
standard as possible, trying to keep Delphi and UNIX
programming of parallel applications as similar as pos-
sible. As we shall see in the next section, we propose
a scheme based on a mixture of Linux/UNIX and Del-
phi processes collaborating on the same parallel prob-
lem, i.e. a heterogeneous system.

Fig. 3 shows the elements involved in the cre-
ation of MPI–Delphi. For example, if a program
written in Delphi invokes MPI Finalize function
(contained in the DCU), this, in turn, invokes
MPI Finalize beta included into thedllmpi.dll file.
Finally, MPI Finalize beta calls up MPI Finalize
from WMPI. Thus, Delphi programmers have access
to WMPI functionality with no direct knowledge of
the intermediate DLL.

However,MPI Finalize is a function with no pa-
rameters, and it is very easy to make it available
to Delphi. There are other functions, which have
more complex parameters of MPI data types. In such
cases, our DCU defines data types with a structure
based on the original MPI standard definition for C
language of corresponding data types. This is possi-
ble because Delphi incorporates primitive data types

identical to primitive C data types, such assingle
(float), double, integer(int), longint (long int) and so
on. In this way, we have a correspondence between C
and Pascal data types, and thus it is possible to inter-
change information between Delphi and WMPI, using
the DLL.

There is a further question related to MPI program-
ming from Delphi. Delphi developers are accustomed
to following a particular style of programming: Del-
phi style. For this reason, our DCU introduces three
small modifications:

1. MPI Init (int argc, char ∗argv): argc andargv ar-
guments are passed directly inside the DCU, so we
free the Delphi programmer from this task.

2. Some modifications regarding data types. Many
MPI–C functions return a value representing a
Boolean as an integer value (i.e.MPI Test). In Ob-
ject Pascal, a Boolean data type is available, so it is
used as the returned type in this kind of functions.

3. Terminology applied to pointers. Our DCU re-
places (void∗) parameters byPointerdata types.

Finally, it is important to mention that paral-
lel programming of MPI-based applications using
MPI–Delphi is very close to C specification for MPI.
Given the fact that differences are minor, developers
do not have to spend much time adapting existing
MPI applications written in C.

3. The MPI–Delphi visual environment

In this section, we introduce the MPI–Delphi vi-
sual environment. This environment allows the user to
manage a cluster of homogeneous or heterogeneous
computers. First, we show how MPI–Delphi must be
configured, and then we use a well-known scientific
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application to describe the exact management of our
environment.

3.1. The MPI–Delphi structure

MPI–Delphi can be used in a cluster of worksta-
tions using Windows 95/98/NT/2000 in each PC of
the cluster (homogeneous system). However, W32MPI
v.0.9b, and therefore MPI–Delphi, is compatible with
MPICH v.1.0.13 for Linux/UNIX and Windows, so
it is possible to combine processes in execution in
all these operating systems. We propose a solution to
take advantage of both aspects: performance, in terms
of speed, of Linux/UNIX/NT (both in communication
and processing tasks), and programming facilities of
Windows.

The MPI–Delphi structure is based on two kinds of
processes:

1. A single Windows process constituting the user in-
terface, and which would contain all the graphical
part of the parallel application. This process should
be written using Delphi and MPI–Delphi. Its func-
tion is the distribution of the data involved in the
problem to the rest of the processes, and to show,
in a visual way, the evolution of computations car-
ried out by the processes. In addition, it can be used
to illustrate some statistical data, such as execution
time, start-up time, etc.

2. The rest of the processes, written in C language,
and used to perform the computations. First, these
processes receive the problem configuration, and
periodically must send the intermediate results of
their computations to the Windows process. These

Fig. 4. The structure of the MPI–Delphi visual environment.

processes are executed under Linux/UNIX/Windows
NT/2000 operating systems, depending on speed
performance criteria.

Note that this way of developing applications in-
volves using two different programming languages:
C and Object Pascal. However, the proposals for the
two types of processes are very different: the first one
(Delphi programmed) has to manage the graphical in-
terface and the user interaction, while the rest of the
processes (C programmed) manage the heaviest com-
putational load (and therefore suitable for parallelism)
of the specific algorithm implemented. So, it is per-
fectly appropriate to develop them in different lan-
guages, each one suitable for each kind of task. Fig. 4
shows the MPI–Delphi structure.

3.2. An example of use: Visual Jacobi

Visual Jacobi implements the classic parallel
Jacobi relaxation algorithm [15] (body division by
rows, with these groups of rows being calculated by
different processes), but in addition, it also shows
graphically the evolution of the body. Fig. 5 shows
the two parts of the application code, both using MPI:
on the left, written in C language, the main code to
implement the parallel Jacobi relaxation algorithm, in
a Linux/UNIX/NT environment; on the right, written
in Object Pascal language, the code of the process
that starts the parallel execution, and shows the results
graphically.

The main advantage of the Delphi process is that
interaction is user-friendly, allowing us to observe
the evolution of the partial results obtained through
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Fig. 5. The parallel Jacobi relaxation algorithm coded in our MPI–Delphi interface.

Fig. 6. Initial (left) and final (right) pictures of the Visual Jacobi relaxation algorithm.
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iteration of the algorithm when implemented in par-
allel. Moreover, the user can easily introduce the val-
ues of the temperatures on the four boundaries, the
initial temperature of the body and the convergence
factor.

One problem that we found with this application
was the fact that in order to observe the evolution in
each iteration, each calculation process (Linux or NT)
must send its portion of the body to the graphical Win-
dows process. Doing this would need a great amount
of data communication in every iteration, with the re-
sult that the parallel version is not scalable (e.g. when
the number of processors reaches a certain quantity,
the parallel version performs worse than the sequen-
tial one).

To solve this problem, our parallel program period-
ically displays the temperature of each internal point
of the body. The period is user-defined, and we have
named it as theλ parameter. It represents the num-
ber of iterations between two successive displays of
intermediate results. If we want to see the partial re-
sults more frequently, then we will have to reduce the
value of λ. If, on the other hand, we want the sim-
ulation to operate faster, then we can increase this
value, but then the graphical animation will contain
fewer frames (intermediate images). Severalλ values
were used in our simulations, in order to determine
the value of this parameter which gives both good
user visualization of the evolution of temperature, and
optimum performance. Fig. 6 illustrates the first and
last windows of the application. Higher values of the
temperature are displayed with brighter light intensity
values.

4. Using MPI–Delphi in a scientific application:
Visual P-EDR

In this section, we show the use of the MPI–Delphi
environment for a scientific, data-intensive applica-
tion: the P-EDR algorithm. We first give details of the
foundations of this algorithm. Then, we describe how
the P-EDR algorithm was implemented, and how we
divided the work between the two kinds of processes
comprising the application (one graphical Windows
process and several calculation processes). This sec-
tion ends with a performance analysis of our algorithm
for a cluster of PCs.

4.1. Foundations of the algorithm

EDR is a new iterative algorithm for non-parametric
density estimation [25]. It was designed to solve a clas-
sic statistical problem, that of density estimation from
samples, but with an important extension: the treat-
ment of uncertainty. With this algorithm, traditional
kernel density estimation methods are extended to
accept uncertain observations modeled by likelihood
functions. A variable kernel approximation scheme is
derived, where the locations and widths of the com-
ponents are obtained from the likelihood functions of
the samples in an iterative procedure. Our algorithm
can be considered as an improvement of the classic
rectification method proposed by Lucy [17] using a
well-known regularization tool, Parzen’s method.

P-EDR (which stands for parallel empirical decon-
volution by regularization) constitutes the parallel im-
plementation of the EDR algorithm. It was designed
following the SPMD model (e.g. single program, mul-
tiple data) in which a single user process runs on each
processor in the system, using different data style [15].
Distributed resources are optimally exploited, making
the system capable of estimating densities from large
databases of uncertain samples. The aim is an efficient
treatment of the distribution of this structure among
processors, together with a low communication cost
scheme, in order to obtain a highly scalable parallel
algorithm.

Initially, P-EDR uses a database ofN elements,
which represents the original means and deviations
(theN input samples with uncertainty). Then, the algo-
rithm generates, after the necessary iterations,Nmeans
and deviations (referred asµ andσ ). From these val-
ues, the new density estimation function (p(x)) can be
calculated.

Fig. 7 summarizes the data flow in the P-EDR im-
plementation.

At each iteration the new values of means and
deviations are recalculated. In order to obtain these
values, a table ofN × N elements must be filled in.
This table stores the temporal values participating in
the calculation of such means and deviations. This
algorithm structure is ideal to take advantage of par-
allelism. We parallelized the algorithm in the follow-
ing manner: means and deviations can be calculated
without the need for communications by distribut-
ing columns of this table among the processes. Each
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Fig. 7. Data flow in P-EDR implementation.

process is assigned a set of columns of the table, and
it has to obtain the values of means and deviations for
these columns. However, some communications are
needed, due to the fact that every process must know
the values of means and deviations worked out by the
rest of processes from the previous iteration, in order
to compute the new ones, and also to carry out the
convergence test. Therefore, when a process obtains
its local values, it must transmit them to the rest of
the processes. Here, there is a first synchronization
point of the algorithm.

Furthermore, the convergence test can also take
advantage of parallelism. This test is based on the
calculus of theL1 norm, the value that measures the
difference between two successive estimations ofp(x).
It is obtained by splitting a sufficiently wide interval
(which captures the whole set of examples, with some
margin at the extremes) intoI small subintervals, and
subsequently performing a numerical integration by
the trapezoids method. Thus, these subintervals can

be distributed between all the processes, so each of
them calculates a local value of theL1 norm. Never-
theless, calculation of theL1 norm requires means and
deviations to be obtained, because these values are
obviously used in the estimate of this rule. Moreover,
the parallel calculus of theL1 norm must be initiated
only when every process has obtained the values of
means and deviations corresponding to the columns
of the table assigned to it, and it has sent these to the
rest of processes. Once each process has computed the
numerical value of the integral in the subintervals as-
signed to it, the globalL1 norm is obtained as the sum
of the local values calculated by every process. There-
fore, there is here a second point of synchronization.

4.2. The implementation using MPI–Delphi

Visual P-EDR is an implementation of P-EDR with
a graphical interface used to show how the algorithm
progressively converges within each iteration, and to
supervise when the solution has reached a fixed (sta-
ble) point.

Fig. 8 shows the two parts of the application
code, both using MPI, in the same way as we have
done before. On the left, written in C language, the
main code to implement the P-EDR algorithm, in a
Linux/UNIX/NT environment using the standard MPI
API for C language; on the right, written in Pascal
language, the code of the process which initiates the
parallel execution and shows the results graphically.

One interesting use of this graphical version was to
refine the EDR algorithm’s heuristics quickly in the
development stage. With the help of the graphical in-
terface, we could see when we obtained a good so-
lution, in order to establish the stop condition. This
possibility saved us a considerable amount of time
(due to the parallel nature of the implementation) and
it represents one of the most useful capabilities of
MPI–Delphi.

Fig. 9 illustrates the first and last windows of the
application. True (original unknown density) and
P-EDRs estimated probability densities are drawn.
As we show in this picture, the proposed method was
able to efficiently recover the true density of moder-
ately degraded data at a remarkably fast convergence
rate. The next section introduces some execution
times obtained from a performance evaluation. We
include this information to justify the benefits that
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Fig. 8. Visual P-EDR algorithm coded in our MPI–Delphi interface.

Fig. 9. Initial (left) and final (right) pictures of the Visual P-EDR algorithm.
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we have obtained by debugging the EDR algorithm’s
heuristics using Visual P-EDR.

The details of the parallel implementation are de-
scribed in [16] and an exhaustive performance anal-
ysis of P-EDR can be found in [1]. This point is
beyond the scope of this paper. We merely wish to
show how MPI–Delphi has been used in the solution
of a real and computationally expensive problem, in
which graphical user interaction was needed.

4.3. The MPI–Delphi performance analysis

At the time of writing this paper, our research group
had a cluster of PCs with a mixture of Linux and
Windows NT operating systems. We carried out these
experiments in a cluster of Intel Pentium 200 MHz
processors with 32 MB main memory and 256 KB L2
cache memory. The communication between the pro-
cesses was achieved using a Fast Ethernet local area
network. We used a Fast Ethernet 3Com 905-network
adapter as the communication channel. In this com-
puter configuration, we noted that Windows sockets
are slower than TCP/IP sockets on Linux [24,26].
Therefore, we used a homogeneous cluster of Linux
computers in this performance evaluation. Windows
NT Server v.4.0 was used as the operating system in
the graphical Windows processor. The rest of them
were equipped with Red Hat Linux 5.0, which pro-
vides the Linux 2.0.32 kernel version. However, in
other experiments we have carried out, the heteroge-
neous configuration was used with similar results.

As we stated above, the Windows’ side of the
application has been developed using Delphi plus
MPI–Delphi. Specifically, we used the Delphi 3.0 pro-
gramming environment. C language was used when
developing the Linux components of the application,

Table 1
Execution times of Visual P-EDR

Processes Size 400 Size 800 Size 1000 Size 1500

Time (s) Speed-up Time (s) Speed-up Time (s) Time (s)

Sequential 13.50 1 36.27 1 – –
2 13.50 1 33.11 1.09 43.00 –
3 6.96 1.94 17.41 2.08 21.87 58.40
4 5.73 2.36 12.86 2.82 15.87 41.36
5 5.00 2.70 10.31 3.52 12.89 31.77
6 5.00 2.70 9.42 3.85 10.80 26.24
7 4.79 2.81 9.20 3.94 9.63 22.68

Fig. 10. Execution time.

and these components were compiled using the GNU
GCC compiler.

Finally, it is important to note the compiler options
related to code optimizations. They constitute an im-
portant factor which must be taken into consideration
in order to obtain good results. We have compiled Del-
phi program with the best optimization options pro-
vided by the IDE. C programs were compiled using
the GCC compiler with the –O2 optimization option.

Visual P-EDR was tested using samples of 400, 800,
1000 and 1500 unidimensional items, and adequate
values ofh and the accuracy factor for convergence.
Table 1 summarizes the results obtained with each
sample size and using different numbers of processors
(one process per processor). Fig. 10 also shows these
results graphically.

We can observe that a sequential version of EDR
algorithm was not executed with samples of 1000 or
1500 items. In these cases more than 32 MB of RAM
were needed to solve the problem, thus involving a
large amount of swapping. This fact illustrates one of
the main advantages of clusters of workstations: the
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Table 2
Execution times of non-Visual and Visual P-EDR

Processes Time (size 1000, non-visual P-EDR) (s) Time (size 1000, visual P-EDR) (s)

3 20.80 21.87
4 15.69 15.87
5 12.95 12.89
6 11.16 10.80
7 9.53 9.63

exploitation of distributed-memory resources (RAM).
Though, it is not possible to obtain the speed-up for
these cases, we can appreciate that time employed to
solve the problem with seven processors is less than
half the time needed to do it with three processors,
indicating very good scalability in the implementation.

Evidently, an interface for parallel programming of-
fers low performance levels. Thus, in order to be fair,
it is necessary to give some performance results to
evaluate the overheads introduced by our interface re-
lated to MPICH 1.0.13. This performance analysis was
accomplished by comparing Visual P-EDR execution
times with the running times of the P-EDR algorithm
written in C using the MPICH standard library, in order
to evaluate the overhead introduced by MPI–Delphi.

In order to evaluate the overheads introduced by
MPI–Delphi, we have implemented a pure C version
of P-EDR. We have executed this non-Visual P-EDR
implementation with the 1000 element sample. Table 2
shows the execution times obtained for the non-visual
and visual version of P-EDR. It can be seen that the
overhead introduced by our MPI–Delphi implementa-
tion is very low (only 1 s in the worst case). Thus, we
pay a very low price for the visualization of the results
using MPI–Delphi.

5. Related work

Visualization has played a role in parallel and dis-
tributed computing for many years, from paper-based
diagrams for understanding parallel computation,
to program animation and visual debugging aids
[8,13].

Recently, several tools have been created to improve
software development in high-performance comput-
ing. There are some programming environments for
developing, porting and tuning of parallel applications,

such as [14]. Wismüller [29] describes a set of inte-
grated tools the aim of which is to write parallel pro-
grams efficiently; Maier and Stellner [19] describes
another tool to manage the distributed resources in a
heterogeneous NOW. Similarly, off-line tools for per-
formance analysis (monitoring, trace data, visualiza-
tion) in NOWs have appeared, as is described in [6].
Several visual parallel programming languages also
exist, such as CODE [22] and HENCE. These lan-
guages are more oriented to the representation of par-
allel programs as a directed graph, in which nodes
with certain icons represent sequential computations
and the graph as a whole represents the parallel struc-
ture of the program. These research projects are not
directly related to our work, as we have centered on
the user interface, but the basic goal is the same: a
simple way of developing parallel programs.

The MPI standard has been implemented in a great
variety of systems and languages. We would like to
mention some varieties of MPI:

• OOMPI [18] and MPOOL [9] provide object-ori-
ented definitions of MPI. Due to the fact that Object
Pascal is an object-oriented programming language,
we could have adopted one of these specifications
in order to provide message-passing functionality
to Delphi. However, we preferred to implement
MPI–Delphi following the MPI standard.

• mpiJava is one of the implementations of MPI
for Java programming environments now avail-
able [4]. This work was undertaken in order to
offer MPI functionality to one of the most popu-
lar programming languages, Java, but adopting an
object-oriented methodology.

At present, there are some implementations of MPI
for the Windows NT/2000 operating system. Our work
was based on one of them, specifically [20], as this
version is frequently updated. There are also other
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implementations of MPI for Windows versions5 [21].
We have heard no reports of any other implemen-
tation of MPI standard for the Delphi programming
environment.

6. Conclusions

With the increasing popularity of distributed sys-
tems as a cost-effective means for high-performance
computing, efficient and portable visual program-
ming interfaces become increasingly important. Our
work has focused on offering the possibility of easily
programming parallel applications with a graphical
interface. In such environments, programming is sim-
plified by providing a set of standard components,
which are adjusted by the programmer to his/her
particular application. In this way, the creation of a
user interface is a simple task, using graphical com-
ponents provided by Delphi. Thus, the programmer
saves time and effort when implementing a parallel
algorithm. The Delphi visual programming environ-
ment provides this capability, but the main problem
is related to the possibility of creating parallel appli-
cations within this environment, given that, until now,
there has been no implementation of standard MPI
parallel programming libraries for Delphi.

MPI–Delphi constitutes, therefore, the first ap-
proach for Delphi programmers to parallel program-
ming within a message-passing paradigm. Extending
the parallel programming to a visual programming
environment entails many advantages, such as high
level debugging tools or automatic creation of a user
interface. These additional advantages are achieved
at very low cost, as was shown in Section 5, when
comparing execution times of Visual P-EDR with a
pure C and MPICH implementation of P-EDR.

The MPI–Delphi interface is suitable for some
specific kinds of problems, such as monitoring par-
allel programs of long execution time, or computa-
tionally intensive graphical simulations. In addition,
MPI–Delphi has shown itself to be a good tool for
research, as the development of new algorithms can
be carried out quickly and, therefore, time spent on
the debugging of such algorithms is reduced. The

5 In the NHSE (National HPCC Software Exchange) there are
available several implementations (http://www.nhse.org).

P-EDR algorithm constitutes a good example of this
last affirmation.

The inter-machine communication software pro-
vided by standard workstation operating systems,
such as TCP/IP, incurs an overhead that is at least
one order of magnitude larger than the communica-
tion overheads on multicomputers. This performance
difference is mainly attributed to the generality of
communication behavior that a generic operating
system is required to support. There are several im-
plementations which seek to reduce this latency [28].
As part of our future work, we will try to apply some
of these ideas to our MPI–Delphi implementation.

Currently, we are working on the application of
the MPI–Delphi interface in several fields, such as
medium- and high-level computer vision, memory and
calculus intensive machine learning algorithm, and
several classic statistical problems.
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