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Abstract The Cell Broadband Engine (Cell BE) is a heterogeneous chip-multiproc-
essor (CMP) architecture to offer very high performance, especially on game and
multimedia applications. The singularity of its architecture, nine cores of two differ-
ent types, along with the variety of synchronization and communication primitives
offered to programmers, make the task of developing efficient applications very chal-
lenging. This situation gets even worse when dual Cell-based blade platforms are
considered, where two separate Cells can be linked together through a dedicated
high-speed interface. In this work, we present a characterization of the main syn-
chronization and communication primitives provided to programmers in the context
of a dual Cell-based blade under varying workloads through our CellStats tool. In
particular, we focus on the DMA transfer mechanism, the mailboxes, the signals, the
read-modify-write atomic operations, and the time taken by thread creation. Our per-
formance results expose the bottlenecks and asymmetries of these platforms, which
must be taken into account by programmers for choosing the most adequate primi-
tives to improve the efficiency of their applications.
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1 Introduction

As the number of transistors in a single chip increases, following the well-known
Moore’s law, it becomes harder and harder to translate such increased potential into
effective computational power through the exploitation of just the instruction-level
parallelism (ILP) that is presented in applications [1]. This tendency that had been
followed until very recently by most commercial microprocessor developers, has
been replaced lately by others that try to exploit coarser grained parallelism (besides
ILP), in particular thread-level parallelism (TLP). This new class of architecture has
been named as CMP (or chip-multiprocessor) and integrates several processor cores
in a single chip, allowing that as many threads as cores can be executed in parallel
in a particular instant. Although in most cases, each of the processor cores in chip-
multiprocessors are lower frequency and simpler than their contemporary single-core;
they improve overall performance and are more energy efficient.

Nowadays, CMP (or chip-multiprocessor) architectures are omnipresent and can
be found in all market segments. In particular, they constitute the CPU of many em-
bedded systems (for example, the last generation video game consoles), personal
computers (for example, the latest developments from Intel [2] and AMD [3]), servers
(for example, the IBM Power6 [4] or Sun UltraSPARC T2 [5]) and even super-
computers (for example, the CPU chips used as building blocks in the IBM Blue-
Gene/P [6]). Nowadays, among all contemporary CMP (or chip-multiprocessor) ar-
chitectures, there is one that is currently concentrating an enormous attention due to
its architectural particularities and tremendous potential in terms of sustained perfor-
mance: the Cell Broadband Engine (Cell BE from now on). The Cell BE is the result
of a collaborative effort between IBM, Sony, and Toshiba to develop a new micro-
processor able to offer very high performance, especially on game and multimedia
applications. In fact, the Cell BE is the heart of the Sony Playstation 3 (PS3).

From the architectural point of view, the Cell BE can be classified as a heteroge-
neous CMP. In particular, the first generation of the chip integrates up to nine cores
of two distinct types [7]. One of the cores, known as the Power Processor Element
or PPE, is a 64-bit multithreaded Power-Architecture-compliant processor with two
levels of on-chip cache that includes the vector multimedia extension (VMX) instruc-
tions. The main role of the PPE is to coordinate and supervise the tasks performed
by the rest of cores. The remaining cores (a maximum of 8) are called Synergistic
Processing Elements or SPEs and provide the main computing power of the Cell BE.
Each SPE is a RISC processor especially designed to accelerate media and streaming
workloads that implements a new 128-bit SIMD instruction set. Each SPE includes a
local memory for keeping instructions and data which is not coherent with the PPE
main memory. Data transfers to and from the SPE local memories must be explicitly
managed by using a DMA engine. Finally, all these cores are interconnected with
memory using the Element Interconnect Bus or EIB [8].

The Cell BE provides programmers with a broad variety of communication and
synchronization primitives between the threads that comprise parallel applications,
which were evaluated in [9]. At the end, the performance achieved by the applications
running on the Cell BE will depend in great extent on the ability of the programmer
to select the most adequate primitives as well as their corresponding configuration
values.
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In this work, we describe CellStats, a tool aimed at characterizing the performance
of the main synchronization and communication primitives provided by the Cell BE
under varying workloads. In particular, the current implementation of CellStats al-
lows to evaluate DMA transfers (Gets and Puts), lists of DMA transfers, the read-
modify-write atomic operations, the mailboxes, the signals and the time taken by
thread creation. For the DMA transfers or lists of DMA transfers, we consider both
transfers between main memory and an SPE’s LS, and between LSs. Similarly, for
the signals and mailboxes we distinguish the case in which the PPE and the SPEs
are involved, and that in which two SPEs are the participants. Finally, for the read-
modify-write atomic operations the remote memory locations reside in main mem-
ory. All the primitives can be evaluated for different number of intervening SPEs, and
when applicable, with varying memory sizes and address ranges. From this charac-
terization, we extract some recommendations that can help programmers to identify
the most appropriate primitive in different situations.

The rest of the paper is organized as follows. In Sect. 2, we provide a revision
of the architecture of the Cell BE and a dual Cell-based blade, and a description
of some of the communication and synchronization primitives provided to program-
mers. Next, in Sect. 3, we introduce our CellStats tool, for characterizing these prim-
itives. The results obtained after executing CellStats on a dual Cell-based blade are
presented in Sect. 4. From the previous characterization, some recommendations to
programmers are summarized in Sect. 5. Finally, Sect. 6 gives the main conclusions
of the paper.

2 Dual cell-based blade

2.1 Architecture

The Cell BE architecture [7, 10, 11] is a heterogeneous multicore chip composed of
one general-purpose processor, called PowerPC Processor Element (PPE), eight spe-
cialized coprocessors, called Synergistic Processing Elements (SPEs), a high-speed
memory interface controller, and an I/O interface, all integrated in a single chip. All
these elements communicate through an internal high-speed Element Interconnect
Bus (EIB) (see Fig. 1).

The latest version of the Cell BE processor, running at 3.2 GHz, has a theoreti-
cal peak performance of 204.8 Gflop/s (single precision) and 14.63 Gflop/s (double
precision). The EIB supports a peak bandwidth of 204.8 Gbytes/s for intrachip data
transfers among the PPE, the SPEs, and the memory and the I/O interface controllers.
The memory interface controller (MIC) provides a peak bandwidth of 25.6 Gbytes/s
to main memory. Finally, the I/O controller provides peak bandwidths of 25 Gbytes/s
inbound and 35 Gbytes/s outbound.

The PPE is the main processor of the Cell BE, and is responsible for running the
operating system and coordinating the SPEs. It is a traditional 64-bit PowerPC (PPC)
processor core with a VMX unit (Vector/SIMD Multimedia Extension), a 32 KByte
L1 instruction cache, a 32 KByte L1 data cache, and a 512 KByte L2 cache. The PPE
is a dual issue, in-order execution, 2-way SMT processor. The PPE comprehends
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Fig. 1 Cell broadband engine

Fig. 2 Types of cores of a cell broadband engine

two different units, namely PowerPC Processor Unit (PPU) and PowerPC Processor
Storage Subsystem (PPSS) (see Fig. 2(a)).

Each SPE is a 128-bit RISC processor designed for high-performance on stream-
ing and data-intensive applications [12]. Each SPE consists of a Synergistic Process-
ing Unit (SPU) and a Memory Flow Controller (MFC). The SPUs are in-order proces-
sors with two pipelines and 128 128-bit registers. All SPU instructions are inherently
SIMD operations that the proper pipeline can run at four different granularities: 16-
way 8-bit integers, 8-way 16-bit integers, 4-way 32-bit integers, or single-precision
floating-point numbers, or 2-way 64-bit double-precision floating point numbers. As
opposed to the PPE, the SPEs do not have a private cache memory. In contrast, each
SPU includes a 256 KByte LS memory to hold both instructions and data of SPU
programs, that is, the SPUs cannot access main memory directly. The MFC contains
a DMA Controller and a set of memory-mapped registers called MMIO Registers.
Each SPU can write its MMIO registers though several Channel Commands. The
DMA controller supports DMA transfers among the LSs and main memory. These
operations can be issued by the owner SPE, which accesses the MFC through the
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Fig. 3 Dual Cell-based Blade

channel commands, or the other SPEs (or even the PPE), which access the MFC
through the MMIO registers (see Fig. 2(b)).

A dual Cell-based Blade is composed of two separate Cell BEs linked together
through the EIB [7]. This results in a maximum theoretical computation performance
of 409.6 Gflop/s for single-precision and 29.26 Gflop/s for double-precision, which
is very interesting for emerging scientific, game, and multimedia applications. The
main components of a dual Cell-based blade are shown in Fig. 3. In this architecture,
the two Cell BEs operate in SMP mode with full cache and memory coherency. Main
memory is split into two different modules, namely XDRAM0 and XDRAM1, that
are attached to Cell0 and Cell1, respectively. In turn, the EIB is extended transpar-
ently across a high-speed coherent interface running at 20 Gbytes/s in each direc-
tion [8]. Each Cell BE processor includes 512 MBytes of XDR DRAM for a total of
1 GByte of main memory.

2.2 Programming

The Cell BE has been specifically designed to exploit multiple levels of parallelism
at the same time: (a) each SPE executes a different thread, (b) an SPE can overlap
computation and communication by using nonblocking DMA operations, (c) SIMD
instructions perform the very same operation on multiple data simultaneously, and
(d) SPEs have two pipelines that can execute two instructions concurrently. Never-
theless, the main advantage also becomes the major drawback: Cell BE programming
is as flexible as complex. Flexibility stems from the possibility to use a number of
programming models depending on the application domain. Complexity is due to the
fact that threads must communicate and synchronize across program execution. To
do that, the PPE and the SPEs can use a variety of mechanisms provided by the Cell
BE architecture: DMA Transfers, Mailboxes, Signals, and Atomic Operations.

The SPEs use DMA transfers to read from (GET) or write to (PUT) main memory.
DMA transfer size must be 1, 2, 4, 8 or a multiple of 16 Bytes up to a maximum
of 16 KByte. DMA transfers can be either blocking or nonblocking. The latter allow
overlapping computation and communication: there might be up to 128 simultaneous
transfers between the eight SPE LSs and main memory. In addition, an SPE can is-
sue a single command to perform a list of up to 2,048 DMA transfers, each one up
to 16 KByte in size. In all cases, peak performance can be achieved when both the
source and destination addresses are 128-Byte aligned and the size of the transfer is
an even multiple of 128 Bytes [13]. Mailboxes are FIFO queues that support exchange
of 32-bit messages among the SPEs and the PPE. Each SPE includes two outbound
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mailboxes, called SPU Write Outbound Mailbox and SPU Write Outbound Interrupt
Mailbox, to send messages from the SPE; and a 4-entry inbound mailbox, called SPU
Read Inbound Mailbox, to receive messages. Every mailbox is assigned a channel
command and a MMIO register. The former allows the owner SPE to access the out-
bound mailboxes. The latter enables remote SPEs and the PPE to access the inbound
mailbox. In contrast, signals were designed with the only purpose of sending notifi-
cations to the SPEs. Each SPE has two 32-bit signal registers to collect incoming no-
tifications. A signal register is assigned a MMIO register to enable remote SPEs and
the PPE to send individual signals (overwrite mode) or combined signals (OR mode)
to the owner SPE. For us, atomic operations are simple read-modify-write transac-
tions on single words residing in main memory. For example, the atomic_add_return
atomic operation adds a 32-bit integer to a word in main memory and returns its value
before the addition.

Cell BE programming requires separate programs, written in C/C++, for the PPE
and the SPEs, respectively. We refer the reader to [14, 15] for additional details.
The PPE program can include extensions (e.g., vec_ add), to use its VMX unit;
and library function calls [16], to manage threads and perform communication and
synchronization operations (e.g., spe_context_run, spe_in_mbox_write
and spe_signal_write). The SPE program follows an SPMD model (Sin-
gle Program Multiple Data). It includes extensions [17], to execute SIMD in-
structions, and communication and synchronization operations (e.g., spu_add,
spu_read_in_mbox and spu_ mfcdma32); and function calls to the SDK li-
brary [18], to carry out complex tasks of different nature (matrix, FFT, filters, etc.).

Programming of a dual Cell-based blade is equivalent to that of an independent
Cell from a functional point of view. However, there are two important differences.
First, dual Cell-based blades have 16 SPEs at programmer’s disposal rather than 8
SPEs. This feature involves doubling the maximum theoretical performance but also
making much more difficult to extract thread-level parallelism from applications.
Second, from an architectural point of view, any operation crossing the Cell-to-Cell
interface results in significantly less performance than those that stay on-chip (see
Sect. 4). These facts must be taken into account by programmers to avoid unexpected
and undesirable surprises when parallelizing applications for a dual Cell-based blade
platform.

3 CellStats

3.1 Functionality

CellStats aims at characterizing all the main primitives (see Sect. 2.2) which proba-
bly any programmer has to use when developing applications on the Cell BE. Thus,
our tool allows to evaluate: the thread creation (in Sect. 3.1.1); the mailboxes (in
Sect. 3.1.2); the signals (in Sect. 3.1.3); the DMA transfers (in Sect. 3.1.4): GETs,
PUTs and lists; and finally, the read-modify-write atomic operations (in Sect. 3.1.5).
In more detail, for the mailboxes and signals, we distinguish the case in which the
PPE and the SPEs are involved, and that in which two SPEs are the participants. For
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the DMA transfers or lists of DMA transfers, we consider both transfers between
main memory and an SPE’s LS, and between SPEs’ LSs. For the read-modify-write
atomic operations, the remote memory locations reside in main memory. All the prim-
itives can be evaluated for different number of intervening SPEs, and when applica-
ble, with varying buffer sizes and access patterns. Eventually, due to the fact that our
study comprises a dual Cell-based blade, we have to deal with SPEs belonging to
Cell0, Cell1, or even both when dealing with more than 8 SPEs, and DMA transfers
to/from XDRAM0 and XDRAM1 memory modules (see Sect. 2.1).

From the user’s point of view, CellStats is a command-line tool which admits
parameters in function of the described primitives. In this way, our tool supports
a different primitive depending on the -f FUNCTION parameter. Thus, FUNC-
TION can take the following values: mkthread for the thread creation; mail-
box for the mailboxes; signal for the signals; regarding the atomic operations:
fetchadd/fetchsub for adding/subtracting a remote memory word, fetch-
inc/fetchdec for increasing/decreasing a remote memory word, and fetchset
for setting a remote memory word (remote memory locations refer to main memory);
and finally the DMA transfers can be: dmaget/dmaput for transfers to/from LS
and dmalistget/dmalistput which involve transfers by using lists. In addi-
tion, other parameters are needed in order to specify the number of involved SPEs
(-n NSPE), the Cell which the SPEs belong to (-c CELL) and the XDRAM mem-
ory module where buffers are allocated (-m XDRAM) through the NUMA policy li-
brary.

All experiments are executed in a loop in order to report average statistics. In this
way, the user must specify a number of iterations through the parameter -i ITER.
In particular, all results shown in Sect. 4 are the arithmetic mean of one million rep-
etitions, but also we have applied a warm-up of one thousand iterations before each
experiment. To do that, we use the parameters -w 1k and -i 1m, respectively (nu-
meric parameters admit the use of multipliers k and m). In light of our performance
results, we would like to point out that there is a negligible variance, what implies
reliable arithmetic means.

Next, we take a closer look to the above described operations with command-line
examples of using our tool.

3.1.1 Thread creation

In a multithreaded application on the Cell BE, programmers have to create threads
running on the PPE and also on the SPEs. A well-known programming model for
this processor lies in dividing an application into independent tasks, and devoting a
single PPE’s thread to create and orchestrate all the SPEs’ threads which run those
tasks. In this context, measuring the time of creating SPEs’ threads is a great asset to
programmers in order to determine the overhead which it introduces in their appli-
cations. Thus, we have used an empty SPE’s task that returns immediately once it is
launched. Consequently, we measure not only the time to create the thread, but also
the time needed to detect its finalization. For example,

$ CellStats -f mkthread -n 1 -i 100k

creates a thread in an SPE one hundred thousand times.
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3.1.2 Mailboxes

Once a task is spawned into an specific SPE, it commonly requires to perform a PPE-
to-SPE or even an SPE-to-SPE synchronization during its execution. As explained
in Sect. 2.2, there are primarily two primitives to implement synchronization mech-
anisms: mailboxes and signals. In this section, we deal with the former. To perform
a synchronization, the PPE/SPE writes a message in the incoming mailbox (SPU
Read Inbound Mailbox) of the receiver SPE. Next, the receiver SPE reads the mes-
sage and replies with another message written to its outgoing mailbox (SPU Write
Outbound Mailbox). When the initiator SPE/PPE reads the message, the synchro-
nization process is complete. In the former case, the PPE uses a runtime management
library function involving a system call (spe_write_in_mbox [16]) which ex-
plains higher latency as we will explain in Sect. 4. Nevertheless, the PPE can also
write directly into the corresponding SPE’s MMIO register using a regular assign-
ment. For example,

$ CellStats -f mailbox -n 1 -i 1m -c 0
$ CellStats -f mailbox -n 1 -i 1m -c 1

repeat the PPE-to-SPE synchronization cycle between the PPE and one SPE from
Cell0 (SPE0 as default value) or from Cell1 (SPE8 as default value) one million
times, respectively.

$ CellStats -f mailbox -n 2 -i 1m -c 0 -s
$ CellStats -f mailbox -n 2 -i 1m -c 1 -s

Do the same between two SPEs: both from Cell0 or one SPE from Cell0 and another
SPE from Cell1, respectively. The -s parameter specifies that the operations will be
performed between SPEs, and the -n parameter specifies the number of SPEs. SPE0
is always selected as default value and the remaining SPEs belong to Cell specified
by the parameter -c.

3.1.3 Signals

As we mentioned in last section, the second method to perform a PPE-to-SPE or an
SPE-to-SPE synchronization is based on using signals. The process is as follows.
The initiator SPE/PPE signals the destination SPE by writing to the corresponding
MMIO register (SPU Signal Notification). If the initiator is an SPE, the destination
SPE signals in turn the source SPE, thus finishing the synchronization cycle. Oth-
erwise, the destination SPE sends the reply to the PPE using its outgoing mailbox
(SPU Write Outbound Mailbox). Like mailboxes, it is possible to write directly into
the SPE’s MMIO register instead of using the runtime management library function
called spe_write_signal [16]. For example,

$ CellStats -f signal -n 1 -i 1m -c 0
$ CellStats -f signal -n 1 -i 1m -c 1

repeat the PPE-to-SPE synchronization cycle between the PPE and one SPE from
Cell0 (SPE0 as default value) or from Cell1 (SPE8 as default value) one million
times, respectively.
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$ CellStats -f signal -n 2 -i 1m -c 0 -s
$ CellStats -f signal -n 2 -i 1m -c 1 -s

Do the same between two SPEs: both from Cell0 or one SPE from Cell0 and another
SPE from Cell1, respectively.

3.1.4 DMA operations

Commonly, any SPE’s task collects data from main memory into its LS, computes
them, and writes them back to main memory. However, for the sake of efficiency, it
is also common to transfer data to/from other LSs. These transfers are accomplished
through DMA operations, as explained in Sect. 2.1. Because of this, we have studied
DMAs between main memory and the local LS, and even also between a remote LS
and the local LS. In current version of CellStats, these operations are blocking, mean-
ing that a read of an empty channel command or a write to a full channel command
causes the SPU to block until the operation is completed. When evaluating the perfor-
mance of DMA operations, the size of the DMA buffer is an important factor. Hence,
the Cell BE can handle buffers between 1, 2, 4, 8, or a multiple of 16 Bytes up to a
maximum of 16 KByte. In this way, CellStats supports different buffer’s sizes via the
-b SIZE parameter. As we will explain in Sect. 4.4, shared or private buffers report
different performance statistics. With a shared buffer, we mean a buffer on which sev-
eral SPEs can perform the DMA operations, and on the other hand, a private buffer is
that on which only one SPE (its owner) can perform the DMA operations. Besides, to
know how the EIB behaves under high-load conditions, we do not only consider the
case in which several SPEs perform DMA operations on a single shared buffer simul-
taneously, but also that in which every DMA operation uses its own private buffer.
In the latter case, we define the distance between two consecutive private buffers,
namely stride. To do that, the -n and -N parameters indicate whether the source
buffer (GETs) or the destination buffer (PUTs) is shared or private. Like mailbox or
signal operations, the -s parameter indicates whether the memory location is in main
memory (if this parameter is omitted) or in SPE 0’s LS (default value) and the para-
meter -m indicates if memory location resides in XDRAM0 or XDRAM1. Finally,
the -t STRIDE parameter specifies the stride. For example,

$ CellStats -f dmaget -n 3 -i 1m -b 1k -c 0 -m 0
$ CellStats -f dmaput -n 6 -i 1m -b 1k -c 0 -m 1

create three or six threads from Cell0, that execute one million dmaget or dma-
put operations, each over a shared 1024 Bytes buffer from XDRAM0 or XDRAM1,
respectively.

$ CellStats -f dmaget -N 3 -b 1k -i 1m -t 2k -c 1 -m 0
$ CellStats -f dmaput -N 6 -b 1k -i 1m -t 2k -c 1 -m 1

create three or six threads from Cell1, that execute one million dmaget or dmaput
operations, each over three or six different 1024-Bytes buffers separated by 2,048
memory locations from XDRAM0 or XDRAM1, respectively. Moreover, when using
-s parameter:
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$ CellStats -f dmaget -N 6 -b 32 -t 128 -i 1m -c 1 -m 1 -s

creates five threads from Cell1 and one from Cell0 (SPE 0 as default value), that
execute one million dmaget operations, each over five different 32-Bytes buffers
separated by 128 memory locations from SPE 0’s LS.

In addition, for lists of DMA operations, the -l parameter sets the number of
elements of the list. For example,

$ CellStats -f dmalistget -n 6 -l 16 -b 64 -i 1m -c 1 -m 1

creates six threads from Cell1, that execute one million data transfers from one
1,024 Bytes shared memory buffer residing on XDRAM1. Therefore, each data trans-
fer consists of 16 DMA operations of 64 Bytes each.

3.1.5 Atomic operations

Atomic operations are commonplace in multicore architectures in order to set sec-
tions in the code that have to be processed as an uninterrupted unit by a single core.
In this work, these operations enable sequences of read-modify-write instructions
on main memory locations in an atomic fashion. Like DMA operations, the atomic
operations admit the same set of parameters: -N SPEs, -m XDRAM, -b SIZE,
-t STRIDE, -n and -N parameters. However, these operations are performed only
on buffer’s sizes up to 128 Bytes due to hardware restrictions (PPE’s cache memory
line size is 128 Bytes [16]). In the current version of CellStats, these operations can
only be performed in main memory locations. For example,

$ CellStats -f fetchadd -n 3 -i 1m -c 0 -m 0
$ CellStats -f fetchsub -n 6 -i 1m -c 0 -m 1

create three or six threads from Cell0, that execute one million fetchadd or
fetchsub atomic operations, each over a shared 32-bit (default size) main memory
variable in XDRAM0 or XDRAM1, respectively.

$ CellStats -f fetchinc -N 3 -t 2k -i 1m -c 1 -m 0 -b 128
$ CellStats -f fetchset -N 6 -t 2k -i 1m -c 1 -m 1 -b 128

create three or six threads from Cell1, that execute one million fetchinc or
fetchset atomic operations, each over three or six different 128-bytes main mem-
ory variables separated by 2,048 memory locations from XDRAM0 or XDRAM1,
respectively.

3.2 Architecture

In order to have a clear understanding of how CellStats implements the functionality
aforementioned, we explain its architecture succinctly. In this sense, our tool carries
out the following steps to characterize all the primitives. First, the PPE marshals an
structure called control block. The control block contains all the information needed
by each SPE to complete the operation demanded by the user. Next, the PPE creates
as many threads as specified by the user and synchronizes them using mailboxes.
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In turn, SPEs transfer the control block from main memory to their private LSs, re-
port control block transfer completion to the PPE, and wait for PPE’s approval to
resume execution. Then each SPE performs the task entrusted by the user in a loop.
In order to measure the time to complete the loop, the SPE utilizes a register called
SPU_Decrementer which decrements at regular intervals or ticks (duration of every
tick for the dual Cell-based blade is 70 ns). Upon completion of the loop, the SPE
sends to the PPE the number of elapsed ticks through its outgoing mailbox. In this
way, the PPE can compute not only the elapsed time from the go-ahead indication
given to the SPEs, but also the time taken by each individual SPE to complete the
task.

4 Evaluation

4.1 Testbed

To develop CellStats, we used the IBM SDK v3.0 for the Cell BE architecture in-
stalled atop Fedora Core 7 on a regular PC [19]. This development kit includes a
simulator, named Mambo, that allows programmers to execute binary files compiled
for the Cell BE architecture. To obtain the experimental results, we installed the same
development kit atop Fedora Core 6 on a dual Cell-based IBM BladeCenter QS20
blade which incorporates two 3.2 GHz Cell BEs v5.1, namely Cell0 and Cell1, with
1 GByte of main memory and a 40 Gbytes hard disk.

4.2 Thread creation

The average latency to launch each new thread is considerably high, around 1.68 ms.
It is explained since this operation implies to perform the following three library
calls from the PPE (see [14]): the spe_context_create call to create a context
for the SPE thread which contains the persistent information about a logical SPE;
the spe_program_load call to load the code of the SPE’s tasks; and finally, the
spe_ context_run call to execute the SPE context. As described in Sect. 3.1.1,
this latency also includes the time needed to detect thread finalization.

4.3 Mailboxes and signals

In Table 1, the average latencies, measured in nanoseconds, for PPE-to-SPE syn-
chronization using mailboxes or signals are shown. In both cases, the PPE can either
invoke a system call (Mailbox-sc or Signal-sc) or write directly into the correspond-
ing SPE’s MMIO register (Mailbox or Signal). Besides, we consider that the selected
SPE can be placed on either Cell for comparison (PPE-SPEc0 for Cell0 and PPE-
SPEc1 for Cell1). As we can see, the latency is shorter when writing directly into the
SPE’s MMIO registers, as defined in file cbe_mfc.h, instead of using the runtime
management library function calls spe_write_signal or spe_write_in_
mbox [16]. In the former case, it is worth noting that the synchronization latency
doubles when the destination SPE resides on Cell1 in both cases. In addition, Ta-
ble 2 summarizes the average SPE-to-SPE synchronization latency, measured in
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Table 1 Average latency for
PPE-to-SPE synchronization Primitive PPE-SPEc0 PPE-SPEc1

Mailbox-sc 10,000.0 10,000.0

Mailbox 779.7 1,678.2

Signal-sc 18,000.0 18,000.0

Signal 503.8 1,182.3

Table 2 Average latency for
SPE-to-SPE synchronization Primitive SPEc0-SPEc0 SPEc0-SPEc1

Mailbox 158.1 589.9

Signal 160.1 619.4

nanoseconds, using mailboxes or signals when both SPEs are located on the same
Cell (SPEc0-SPEc0) or on different Cells (SPEc0-SPEc1), respectively. In the former
case, the latency is almost four times shorter because the synchronization messages
stay on-chip and do not need to cross the Cell-to-Cell interface.

4.4 DMA operations

There are three different scenarios for data movement: data transfers between main
memory and an SPE’s LS (GETs), data transfers between an SPE’s LS and main
memory (PUTs) and data transfers between SPEs’ LSs (MOVs).

In Figs. 4 and 5, latency and bandwidth figures for GETs and PUTs on shared
buffers using XDRAM0 and XDRAM1 are shown. As we can see, two general trends
can be identified. First, latency is constant for message sizes smaller than or equal to
the cache line, that is 128 Bytes. Second, latency grows proportionally to the message
size for messages larger than the cache line until the available bandwidth is exhausted.
In addition, a more in depth analysis provides other interesting conclusions. Latency
is constant, but proportional to the number of SPEs for message sizes up to 128 Bytes
(see Figs. 4(a), 4(b), 5(a), and 5(b)) regardless of the XDRAM module. For messages
larger than 128 Bytes, GETs and PUTs from or to XDRAM1 memory module report
higher latency, because these operations must cross the Cell-to-Cell interface. In ad-
dition, GETs outperform PUTs under stress [13] which explains higher latencies in
Figs. 5(a) and 5(b).

Moreover, Figs. 4(c), 4(d), 5(c), and 5(d) present the same results in terms of
bandwidth achieved by each DMA operation. There are three important trends to be
considered. Firstly, when 8 SPEs are involved, GETs on XDRAM0 memory module
obtain an aggregate bandwidth of 24.6 Gbytes/s (close to the peak memory band-
width), while GETs on XDRAM1 memory module reach an aggregate bandwidth of
13.6 Gbytes/s because of crossing the Cell-to-Cell interface, limiting the maximum
achievable aggregate bandwidth. Secondly, when 16 SPEs are considered both Cells
are involved, thus the figures report the benefits of transferring data from the clos-
est XDRAM memory module (XDRAM0 for SPEs within Cell0 or XDRAM1 for
SPEs within Cell1), and also report the drawback of going through the Cell-to-Cell
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Fig. 4 Latency and bandwidth of DMA GETs on shared main memory buffers for a variable number of
SPEs and packet sizes using Cell0 and Cell1

Fig. 5 Latency and bandwidth of DMA PUTs on shared main memory buffers for a variable number of
SPEs and packet sizes using Cell0 and Cell1



260 J.L. Abellán et al.

Fig. 6 Latency and bandwidth of DMA GETs on private main memory buffers for a variable number of
SPEs and packet sizes using Cell0 and Cell1

interface (XDRAM1 for SPEs within Cell0 and XDRAM0 for SPEs within Cell0).
Finally, because of higher latencies in Figs. 5(a) and 5(b), PUTs reports lower band-
widths than GETs operations.

In Figs. 6 and 7, latency and bandwidth figures for GETs and PUTs on private
buffers using XDRAM0 and XDRAM1 are shown (stride is larger than or equal to
the cache line size in all cases). As we can see, the same trends are shown than figures
with shared buffers. But a more in depth analysis provides the following conclusions.
Latency is constant, around 300 ns, for message sizes up to 512 Bytes regardless of
the XDRAM memory module is used (see Figs. 6(a), 6(b), 7(a), and 7(b)). Moreover,
the aggregate bandwidth grows faster for message sizes up to 1 KByte because of
exploiting simultaneous transfers to different buffers. After that, the aggregate band-
width figures converge to the same values as for shared buffers.

In turn, latency and bandwidth figures for MOVs using Cell0 and Cell1 are shown
in Figs. 8 and 9. In particular, Figs. 8(a), 8(b), 9(a), and 9(b) correspond to DMA
MOVs in Cell0, while Figs. 8(c), 8(d), 9(c), and 9(d) correspond to DMA MOVs be-
tween Cell0 and Cell1. In the former case, SPEs approach the maximum available
bandwidth of the EIB-to-SPE interface. In the later case, the Cell-to-Cell interface
bandwidth is the limiting factor. Nevertheless, the latency is much longer than ex-
pected resulting in an aggregate bandwidth shorter than that of GETs from XDRAM1
memory module.
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Fig. 7 Latency and bandwidth of DMA PUTs on private main memory buffers for a variable number of
SPEs and packet sizes using Cell0 and Cell1

Fig. 8 Latency and bandwidth of GETs on shared LS buffers for a variable number of SPEs and packet
sizes using a single Cell and both Cells
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Fig. 9 Latency and bandwidth of PUTs on shared LS buffers for a variable number of SPEs and packet
sizes using a single Cell and both Cells

4.5 Lists of DMA operations

Finally, in Figs. 10 and 11 latency and aggregate bandwidth figures for lists of GETs
and PUTs on shared buffers using XDRAM0 and XDRAM1 are shown. As we can
see in X-axis, we adjust the size of lists and the size of transfer per list element to
always transfer 16 kbytes.

In latency figures, three important trends can be identified. Firstly, the latency
obtained up to 64 element per list is equal to the latency obtained with one 16 kbytes
DMA transfer (without list mechanism). Secondly, when the number of elements per
list is larger than 64, the latency grows quickly because of the overhead introduced
by the list mechanism (see almost 140 µs for 1024 elements of 16 Bytes). Finally,
the same trends under stress presented in Figs. 4(a) and 5(a) for GETs and PUTs, are
illustrated in Figs. 10(a) and 10(c) for lists of GETs and PUTs.

Regarding aggregate bandwidth figures there are three important conclusions.
Firstly, as we expected, when the number of elements per list ranges from 1 to 64,
the same trends as DMA transfers without list mechanism are presented. Secondly,
Figs. 11(a) and 11(b) for lists of GETs, and 11(c) and 11(d) for lists of PUTs, illustrate
the effects of crossing the Cell-to-Cell interface limiting the maximum achievable ag-
gregate bandwidth. Finally, when the number of elements per list is larger than 64,
the overhead introduced by the list mechanism reduces considerably the achievable
aggregate bandwidth (almost 3 Gbytes/s in all 1024 × 16 Bytes experiments).
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Fig. 10 Latency for lists of DMA operations (16 KByte packets) on shared main memory buffers for a
variable number of SPEs and packet sizes using Cell0 and Cell1

Fig. 11 Aggregate bandwidth for lists of DMA operations (16 KByte packets) on shared main memory
buffers for a variable number of SPEs and packet sizes using Cell0 and Cell1
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Fig. 12 Latency of atomic operations on shared and separate variables (128-Bytes stride)

4.5.1 Atomic operations

The average latency of the fetch&add atomic operation is shown in Fig. 12. It
depends on the size of the variable, the variable’s memory location (XDRAM0 or
XDRAM1), whether the SPEs belong to Cell0 or Cell1 and whether operations are
on private variables or on a shared variable. For example, Shared-C1-M1 means
that a shared variable is used, the SPEs belong to Cell1 (if there are more than
8 SPEs, the remaining SPEs belong to the other Cell) and the variable’s memory
location is XDRAM1. In order to select the variable’s memory location (XDRAM0
or XDRAM1), we have used the NUMA policy library. In addition, for Private-
CX-MX, X means either Cell or either variable’s memory location.

There are two types of figures: Figure 12(a) is for variables of 4-to-64 Bytes and
Fig. 12(b) is for variables of 128 Bytes (size of PPE’s cache line). In both figures,
the latency remains constant, at approximately 111 ns, when the variable is privately
accessed by the SPEs. However, the latency grows linearly, up to 9 µs (Fig. 12(a))
or 8 µs (Fig. 12(b)) when the variable is shared by all intervening SPEs. This is due
to the fact that shared variables serialize the execution of atomic operations, but also
in latter case it is used the variable’s size of PPE’s cache line. Results for the rest
of the atomic operations are similar and, therefore, have been omitted. Notice that,
the XDRAM memory module selected has negligible effect on performance results.
Nevertheless, from 10 to 15 SPEs the Shared-C1-MX experiments are 1 µs greater
than the others Shared-C0-MX.

5 Recommendations for Cell BE programmers

5.1 Thread creation

Due to the high overhead of thread creation, we should create threads with the utmost
care. For that, programmers could create SPE threads at startup and keep them alive
until the application finishes. In this way, instead of creating a thread per SPE task,
each SPE could store the code of all tasks in its LS. Then the SPE thread receives task
identifiers from the PPE, through mailboxes or signals, and finally the SPE executes
the associate task. The main drawback of this method is the limited size of the LS
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(only 256 kbytes). However, in [20], the authors demonstrate that this approach is
more efficient than creating as many threads as tasks in several orders of magnitude,
and they implement an overlay-based technique to solve the LS limitation.

5.2 Mailboxes and signals

In light of latency results, it is clear that programmers should use direct writes to the
SPEs’ MMIO registers through library functions which do not involve a system call
(see Sect. 4.3), and they should try to reduce inter-Cell communications. To clarify
the last recommendation, we show a real example from [21]. In that work, we imple-
ment three common collective operations: barrier, reduce and broadcast. For each of
them, we explore several alternatives ranging from the naive approach to well-known
algorithms coming from the cluster arena. In particular, we focus on two versions of
the All-To-One barrier implemented by means of signals operations (we consider the
case in which 16 SPEs participate in a barrier). The first one is a naive approach in
which all SPEs perform an SPE-to-SPE synchronization with an specific SPE from
Cell0, namely root. The second approach is more sophisticated since two SPEs, be-
longing to each Cell, are set as roots. In this case, each root gathers intra-Cell signals,
sends a signal to the other root and finally, sends intra-Cell signals to complete the
synchronization. Consequently, only two signals are sent through the inter-Cell inter-
face. As a result, latency of the first approach is around 2700 ns, whereas the second
one takes only around 700 ns.

5.3 DMA operations

To optimize their applications, multicore programmers should design several data
layouts of their applications, and choose the best mapping according to their target
architectures [20]. In case of the Cell BE, this situation becomes much harder than
conventional multicores due to the explicit control of DMA transfers and its hetero-
geneity. In this sense, we believe that our evaluation is of paramount importance,
because programmers must tackle with the tradeoff between computing granularity
vs. message size when designing their data layouts. Therefore, to obtain the maxi-
mum peak performance, they should take into account that: private buffers are more
efficient than shared buffers, but only up to 1 kB, because for messages larger than
1 kB the latency is identical in both cases; for list of DMA transfers, programmers
should be aware of the overhead of the list mechanism, for instance when the num-
ber of elements per list is larger than 64 to transfer 16 kbytes; finally programmers
should be aware of the Cell-to-Cell interface, which determines the maximum achiev-
able bandwidth, and also the asymmetries that arise when memory locations are in
the furthest XDRAM memory module. Hence, programmers should use the NUMA
policy library in order to control memory locations to always transfer data from the
closest XDRAM memory module.

5.4 Atomic operations

Similarly to DMA operations, whenever possible, programmers should use private
buffers because latency grows linearly with the number of involved SPEs when shared
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buffers are used. However, it depends on the tradeoff between performance and pro-
gramming complexity. For instance, atomic operations on a shared buffer are com-
monly used in the context of dynamic load-balancing [22, 23]. This is due to the fact
that they introduce negligible overhead with respect to the granularity of the load to
balance. Moreover, this approach is much easier to program than using private buffers
because it does not need to gather partial results from private buffers.

6 Conclusions

The Cell BE is a heterogeneous multicore processor specifically designed for emerg-
ing scientific, game and multimedia applications. Programming the Cell BE is a great
challenge, because it involves dealing with multiple threads and with a number of
communication and synchronization primitives. This situation gets even worse when
dual Cell-based blades are considered, what means up to 16 SPEs at programmer’s
disposal and asymmetries when crossing the Cell-to-Cell interface. Hence, program-
ming is as flexible as complex because efficient programs relies primarily on the abil-
ity to select the most appropriate primitive as well as their corresponding configura-
tion values. In this context, we have performed a characterization of those primitives
on a dual Cell-based blade platform. To do so, we have developed a command-line
tool, namely CellStats, which supports different configurations per primitive in order
to explore its performance (i.e., average latency or bandwidth) under varying work-
loads. As a result of our work, we highlight the real potential of the Cell BE but
also we give some recommendations that can help programmers identify the most
appropriate primitive in different situations.
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