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Abstract

Barrier synchronization in shared memory parallel ma-
chines has been widely implemented through busy-waiting
on shared variables. However, typical implementations of
barrier synchronization tend to produce hot-spots in terms
of memory and network contention, thus creating perfor-
mance bottlenecks that become markedly more pronounced
as the number of cores or processors increases. To over-
come such limitations, we present a novel hardware-based
barrier mechanism in the context of many-core CMPs. Our
proposal is based on global interconnection lines (G-lines)
and the S-CSMA technique, which have been recently used
to enhance a flow control mechanism (EVC) in the context
of networks-on-chip. Based on this technology, we have de-
signed a simple and scalable G-line-based network that op-
erates independently of the main data network, and that is
aimed at carrying out barrier synchronizations efficiently.
In the ideal case, our design takes only 4 cycles to perform
a barrier synchronization once all cores or threads have ar-
rived at the barrier. As a proof of concept, we examine the
benefits of our proposal by comparing it with one of the best
software approaches (a binary combining-tree barrier). To
do so, we run several kernels and scientific applications on
top of the Sim-PowerCMP performance simulator that mod-
els a 32-core CMP with a 2D-mesh network configuration.
Our proposal entails average reductions in terms of execu-
tion time of 68% and 21% for kernels and scientific appli-
cations, respectively. Additionally, network traffic is also
lowered by 74% and 18%, respectively.

1 Introduction

Multicore architectures (chip-multiprocessors or CMPs)
constitute nowadays the best way to take advantage of the
increasing number of transistors available in a single die.

In particular, they provide higher-performance and lower-
power consumption than more complex unicore architec-
tures. This is due to the fact that these architectures mainly
focus on exploiting thread-level parallelism (TLP) rather
than instruction-level parallelism (ILP).

Following the well-known Moore’s Law, it is clear that
more and more cores will be integrated in future CMP lay-
outs even reaching hundreds of them all integrated in the
same chip. In fact, in 2007 Intel introduced a prototype
with 80 cores (Intel Polaris), very simple each, but reach-
ing a total peak performance higher than one teraflop. In
addition, the latest developments of Intel include a research
microprocessor containing 48 cores, intended to scale up to
100 cores and beyond, namely the Single-chip Cloud Com-
puter [1]. CMPs of this kind are commonly referred to as
many-core CMPs.

If current trends continue, future many-core CMPs will
implement the hardware-managed, implicitly-addressed,
coherent caches memory model [14]. With this memory
model, all on-chip storage is used for private and shared
caches that are kept coherent by hardware. Communication
is directly supported by hardware because it occurs implic-
itly as a result of conventional memory access instructions
(i.e. loads and stores). In addition, to guarantee the integrity
of shared data structures, synchronization is typically sup-
ported by a combination of hardware (through atomic in-
structions such as test&set, LL/SC or fetch&op), and soft-
ware (those atomic instructions are used to implement the
higher-level mechanisms such as: lock/unlock, for mutual
exclusion; and barrier, for global synchronization among
threads) [10].

Typical implementations of barrier synchronization are
based on a busy-wait process on atomically updated shared
variables. However, it is well-known that busy-waiting con-
stitutes one of the major obstacles to scalability [15]. In
more depth, busy-waiting involves the CMP’s cache coher-
ence protocol which leads to significant levels of contention
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at the memory and the interconnection network. Hence-
forth, barrier synchronizations of this kind will be referred
to as software-based barriers.

To overcome the limitations imposed by software-based
barrier implementations, there have arisen a lot of proposals
that include additional hardware support to perform barrier
synchronizations or implement barriers entirely in hardware
(see Section 2). In fact, since CMP applications exhibit
finer-grained parallelism than conventional multiprocessor
applications, a very recent work [17] concludes that barri-
ers for many-core CMPs should be implemented entirely in
hardware. Henceforth, barrier synchronizations of this kind
will be referred to as hardware-based barriers.

In this paper, we present and evaluate a new hardware-
based barrier mechanism in the context of many-core
CMPs. Our proposal leverages existing G-lines technology
and S-CSMA technique [27] to deploy a dedicated on-chip
G-line-based network. The use of a very simple synchro-
nization process over this network provides an extremely
efficient implementation for barrier operations. To show the
benefits derived from our proposal, we run several kernels
and scientific applications on top of a performance simu-
lator (Sim-PowerCMP) that models a 32-core CMP with a
2D-mesh network. As we will show, our proposal provides
hardware and software simplicity, moreover it meets very-
low latency and scalability. For example, Kernel 2 or EM3D
achieve reductions of 70% and 54% in execution time, re-
spectively. In addition, since we remove all barrier-related
traffic and coherence activity from the interconnection net-
work, network traffic is significantly reduced. For instance,
Kernel 2 and EM3D show reductions of 68% and 51% in
network traffic, respectively. From this traffic reduction,
we believe that our method will also lead to significant im-
provements in power consumption.

The rest of the paper is organized as follows. Section 2
discusses the related work. We detail our hardware-based
barrier mechanism in terms of its architecture and pro-
grammability in Section 3. Section 4 describes our simula-
tion environment and presents the benefits of our approach
in terms of reductions in execution time and network traffic.
Finally, Section 5 presents our main conclusions and plans
for future work.

2 Related Work

A variety of hardware-based barrier implementations
have been around for a long time. We make an attempt at
categorizing some of them in terms of the part of the sys-
tem they improve or augment. Therefore, we distinguish the
following categories: memory-based approaches, network-
based approaches, global lines approaches, and special-
purpose hardware.

2.1 Memory-based Approaches

The Horizon and Tera MTA [18, 22] use full/empty bits
in memory at word level to implement synchronized mem-
ory references in a cache-less system. To do so, when a
processor reads a word its corresponding bit is set to 0 and,
when it is written, the bit is set to 1. It implies an efficient
synchronization mechanism in terms of a consumer/pro-
ducer model among processors. Goodman et al. [13] pro-
pose a set of efficient primitives for process synchroniza-
tion based on the use of synchronization bits (syncbits).
Syncbits are logically associated with each line in mem-
ory to provide a simple mechanism for mutual exclusion.
The T3E multiprocessor [24] augments the memory in-
terface of the DEC 21164 microprocessor with a set of
explicitly-managed external registers (E-registers). All re-
mote communication and synchronization is done between
these registers and memory. Moreover, a set of 32 synchro-
nization units (BSUs), accessible as memory-mapped reg-
isters, are provided per processor to perform barrier/eureka
synchronization. Monchiero et al. [20] introduce a hard-
ware module to optimize busy-waiting synchronization for
CMPs. This module is integrated in the memory controller,
namely the Synchronization-operation Buffer (SB). The SB
manages locally the polling on shared variables, avoiding
traffic network and memory accesses. Zhu et al. [30] pro-
pose a small buffer attached to the memory controller of
each memory bank, called the Synchronization State Buffer
(SSB). This buffer provides an illusion that the entire mem-
ory is tagged at word-level such as full/empty bits based sys-
tems do. To do so, the SSB records and manages the states
of frequently synchronized data.

2.2 Network-based Approaches

Several proposals are based on modifications of the main
data network. For instance, the NYU Ultracomputer [4]
uses an enhanced message switching network which com-
bines fetch&add synchronization primitives by including
adders in the memory network interface. Moreover, Hsu
and Yew [29] propose a multistage shuffle-exchange net-
work to efficiently handle synchronization traffic of soft-
ware barriers by combining packets in the switches in or-
der to relieve hot-spot congestion from the network. Ol-
nowich [11] presents an efficient technique for handling
barriers by using a special hardware at the network adapter
level. This architecture enables all processors to both drive
and receive data at the same time such as multi-drop bus
and broadcast communications.

Other implementations are based on including a ded-
icated interconnection network to carry out synchroniza-
tions. For example, the network architecture of the Connec-
tion Machine CM-5 [7] contains a dedicated network (con-
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trol network) to perform synchronizations of an entire set of
processors through specific messages interchanged between
outgoing and incoming FIFO queues at the network inter-
face level. In addition, the Blue Gene/L [21] also contains a
dedicated interconnection network for barrier synchroniza-
tion.

J. Sartori and R. Kumar [17] indicate that dedicated in-
terconnection networks are the most efficient way to imple-
ment barrier synchronizations, at the expense of introduc-
ing prohibitive area overheads in some cases. In particular,
they analyze the area cost of dedicated links and prove that
it may become even worst in the context of CMPs, since
die area is a precious resource as it can translate into higher
throughput or yield. In fact, the authors propose three bar-
rier implementations, that are hybrid of software and hard-
ware, in order to achieve closer approximation to the per-
formance of a dedicated interconnection network but at a
fraction of the cost. These promising proposals use con-
ventional load and store instructions on memory mapped
addresses to detect the arrival and completion of the barrier,
which implies network traffic overhead in the main data net-
work. However, the authors do not characterize this over-
head. On the contrary, our approach does not entail that
overhead since it is based on a dedicated G-line-based net-
work.

2.3 Global Lines Approaches

Proposals belonging to this category include lines visible
to all processors (global lines), used to transfer messages or
signals to perform barrier synchronizations. Our hardware-
based barrier mechanism could be included in this category,
because it also uses global lines to perform barrier synchro-
nizations. The Sequent Balance system [5] uses chips at-
tached to processors to provide support for interrupt distri-
bution, low-level mutual-exclusion, and configuration and
error control (the System Link and Interrupt Controllers, or
SLICs). For that, two specific global lines from the system
bus are used to communicate SLICs by means of commands
from a simple message-passing protocol, not affecting bus
bandwidth. SLIC commands implement test&set instruc-
tions which also give support to classic higher-level syn-
chronization primitives such as locks and semaphores. Kr-
ishnan and Torrellas [28] propose a hardware mechanism
to support communication and synchronization of registers
between on-chip processors for an efficient consumer/pro-
ducer model. To do so, a Synchronized Scoreboard (SS)
is provided per processor. The SSs are connected with a
broadcast bus on which register values are transferred. On
the contrary, our method does not need any command to
perform synchronizations, which are performed by means
of signals transmitted through special global lines. More-
over, our hardware approach is much simpler than SLICs,

and it is integrated in the context of many-core CMPs.
Shang and Hwang [26] present a distributed and

hardwired barrier architecture for fast synchronization in
cluster-structured multiprocessors. Moreover, they develop
a set of synchronization primitives for explicit use of dis-
tributed barriers dynamically. To do so, they use a dis-
tributed wired-NOR architecture to detect the asynchronous
arrivals of different processes at the barrier. Makhaniok
and Männer [19] propose a method to synchronize mas-
sively parallel processes in distributed multiprocessor sys-
tems. This scheme is based on a synchronizer that uses three
bus lines P, Q and R. Each synchronization unit is connected
to these lines and can assert onto them its individual binary
signals p, q and r. Thus every line carries the wired-OR
of the signals asserted by the synchronization units, and all
synchronization units read back this value. This involves
a synchronization protocol which is composed of different
steps depending on the different values of lines P, Q and R.
Cyclops [6] is a highly parallel processor-and-memory sys-
tem on a chip. This architecture implements a fast hardware
barrier through a special purpose register (SPR), which is
actually implemented as a wired-OR for all threads on the
chip. In this way, each thread writes its SPR independently
and reads the ORed value of all threads’ SPRs waiting for
resuming execution. In contrast, our method does not entail
any wired-OR or wired-NOR logic to detect the arrivals at
the barrier, but it implements a S-CSMA technique in a more
distributed fashion.

Finally, our proposal is based on G-lines technology to
deploy a dedicated on-chip G-line-based network, and the
use of a S-CSMA technique. Every G-line is basically a
shared wire that broadcasts 1-bit messages (signals from
now on) across one dimension of the chip in only one clock
cycle. G-lines enable a S-CSMA technique to calculate
how many cores are trying to send a message simultane-
ously. So far, this technology has been used in the con-
text of networks-on-chip (NoC) to enhance a flow control
mechanism (EVC) in terms of latency and power consump-
tion [27]. In particular, G-lines have been used to broad-
cast the control signals used in EVC to communicate the
availability of free buffers and virtual channels much more
accurately (original EVC uses thresholds to communicate
available resources conservatively). Furthermore, the au-
thors employ a S-CSMA technique to calculate how many
virtual channels or free buffers are demanded at any time in
order to grant requests accordingly.

2.4 Special-Purpose Hardware

Beckmann and Polychronopoulos [8] present a hardware
scheme specifically designed for fast barrier synchroniza-
tion. This architecture is scalable and supports a large num-
ber of concurrent barriers. In more detail, the actual barrier
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is a single-bit register BR which is visible to all processors.
When BR is set to 1, processors are blocked at the barrier.
When BR is set to 0, the barrier is clear and processors may
proceed to execute. In case of a multiprocessor with P pro-
cessors, there is also a P-bit wide R register associated with
the barrier register BR. Then, each processor has its own
bit from R which is set to 0 in case of arrival at the barrier.
The R register is connected to a zero-detect logic, which
determines when all bits of R are 0 (i.e. all processors are
waiting at the barrier). In latter case, BR is set to 0 and all
processors resume execution. Sampson et al. [16] present
barrier filters, a mechanism to implement fast barrier syn-
chronization on CMPs. The key idea is that they ensure that
all threads arriving at a barrier require an unavailable cache
line to proceed. Then, the barrier filter starves their requests
until they all have arrived.

3 A G-line-based Barrier Synchronization

In this section we present our proposal for an efficient
and scalable hardware-based barrier synchronization in the
context of many-core CMPs. We start by describing the ar-
chitecture of the G-line-based network. As a case study, we
choose a CMP with a 2D-mesh data interconnection net-
work, although our proposal is not restricted to this topol-
ogy. Next, we show how a barrier synchronization would
be carried out. We discuss the interface with programmers.
And finally, we give details about the implementation of the
G-line controllers required by our proposal.

3.1 Architecture

Our hardware-based barrier mechanism relies on a
G-line-based network as can be observed in the example in
Figure 1. For simplicity, we concentrate on a version of the
proposed network providing support for one barrier. As can
be observed, the G-line-based network is made up of two
kind of components. G-lines (horizontal and vertical finer
black lines), that are used to transmit the signals required
by the synchronization process; and controllers (M and S),
that actually implement the synchronization process.

As discussed in Section 2, every G-line is a wire that
enables the transmission of 1 bit of information across one
dimension of the chip in a single cycle. Our proposal needs
two G-lines per every row and two more for the first col-
umn. In this way, for any 2D-mesh layout the total num-
ber of G-lines per barrier that would be needed is equal to
2× (

√
NumCores+1), where NumCores is the number

of cores of the CMP (e.g. 10 G-lines for the 16-core CMP
shown in Figure 1). It is worth noting that our proposal is
aimed at providing this kind of hardware support just for a
few number of barriers, which makes that the total amount

Figure 1. G-lines architecture for a 16-core
CMP and 2D-mesh network.

of G-lines that would be required keeps lower than, for ex-
ample, the 168 used in [27]. Since low power consump-
tion and low area overhead are reported for the latter, we
believe that our implementation introduces negligible over-
head. Moreover, considering that power consumption in the
interconnection network has been recently reported to con-
stitute a significant fraction (approaching 40% in the Raw
processor [12]) of the total energy consumed in many-core
CMPs, our proposal should bring important savings in terms
of energy consumption (we remove all barrier-related traffic
and coherence activity from the interconnection network).

In addition of the G-lines, our proposal also incorporates
a set of controllers. In particular, we distinguish two types
of controllers: Master and Slave controllers (see M and S in
Figure 1, respectively). Each controller is attached to two
G-lines: one of them is used to transmit signals, while the
other one is employed to receive signals. That is, from the
Master standpoint the G-line used to receive signals from
the Slaves, is used to send signals from the Slaves stand-
point, and vice versa. Moreover, the Master controller is
responsible for carrying out the count of signals across its
G-line. To do that, the Master controller contains a de-
vice which implements the S-CSMA technique. In addition,
there are a number of counters and registers such as Scnt,
Mcnt, flag and bar reg that will be detailed in the following
subsections.

Finally, as in [27], we assume in this work that every
G-line can support up to six transmitters and one receiver,
resulting in a CMP configuration with up to 7×7 cores. In
any case, it is worth noting that our hardware-based bar-
rier mechanism could be easily extended to support higher
number of cores either by assuming longer latency G-lines,
or by using groups of G-line-based networks linked together
through additional G-lines.
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3.2 Synchronization Process

Next, we describe an example of using our barrier mech-
anism. Without loss of generality, we assume that all cores
execute the same barrier at the same time, and we describe
the explanation on a 2×2 mesh layout (see Figure 2). For
that, we distinguish between horizontal and vertical con-
trollers depending on the couple of G-lines they are attached
to. In this setting, there are four horizontal G-lines and two
vertical G-lines. Thus, there are two horizontal Master con-
trollers (see Mh in cores 0 and 2), two horizontal Slave
controllers (see Sh in cores 1 and 3), one vertical Master
controller (see Mv in core 0) and one vertical Slave con-
troller (Sv in core 2). Furthermore, Figure 2 also shows two
types of counters belonging to each Master controller: Sc-
ntH or ScntV, which stores the number of signals (obtained
through the S-CSMA technique) received from the horizon-
tal Slaves (cores 1 or 3) or vertical Slaves (just one in this
case) attached to the horizontal or vertical G-lines, respec-
tively; and Mcnt, that stores 1 if the corresponding core (0
or 2) arrives at the barrier, and 0 otherwise. Notice that,
Scnt counters would not be necessary in this particular case,
because only one Slave transmit signals as much. Neverthe-
less, we include them for the sake of completeness.

The process is as follows. At cycle 0, the horizontal
Slaves (Sh) signal, through their corresponding transmis-
sion G-lines, the arrival of cores 1 and 3 at the barrier and
wait until their horizontal Masters (Mh) command to re-
sume execution, by monitoring the reception horizontal G-
lines. Then, the horizontal Masters count the number of re-
ceived signals and update their counters ScntH=1 (because
there is just one Slave for each), besides they also set the
counter Mcnt to 1 due to the arrival of cores 0 and 2 at the
barrier. At cycle 1, upon each horizontal Master updates
both counters to its maximum values, its corresponding ver-
tical Slave (Sv) repeats the process. In particular, the verti-
cal Slave writes into its G-line, and the vertical Master (Mv)
updates the counter ScntV=1, but also sets the counter Mcnt
to 1 because their corresponding horizontal Master (in core
0) have updated its Mcnt=1. At cycle 2 the release stage
starts in order to resume execution by using the unused G-
lines. To do so, the vertical Master signals its vertical Slave
and resets all counters. Finally at cycle 3, the horizontal
Masters do the same on their corresponding horizontal G-
lines to wake up the horizontal Slaves. We will give a more
detailed explanation in Subsection 3.4.

3.3 Programmability Issues

A very important objective for us was to provide pro-
grammers the mechanism in the simplest possible way. To
do so, we deal with both the programmer and architectural
points of view. Regarding the former, the use of our bar-

Figure 2. Steps for our barrier synchroniza-
tion.

rier mechanism is as simple as illustrated in Figure 3. Pro-
grammers should use an special register, called bar reg,
to notify the arrival at the barrier (by assigning it a value
greater than zero). Then, each core enters in a loop waiting
for the rest of cores. Once all cores have done the same,
our hardware mechanism resets all registers bar reg, and
all cores can resume execution. Finally, regarding the ar-
chitectural standpoint, we augment the register file of each
core with the bar reg register and enable the interplay be-
tween controllers and these registers. That is, switching on
the controllers, when the registers are assigned, and once
all controllers have finished the synchronization (cycle 3 in
Figure 2), resetting the registers and switching off the con-
trollers. In this way, we also limit the power consumed by
the controllers.

G L B a r r i e r ( ) {
asm {

# A r r i v a l a t t h e b a r r i e r
mov 1 , b a r r e g

# Wait u n t i l a l l c o r e s a r r i v e
loop :

bnz b a r r e g , l oop
# Resume e x e c u t i o n

}
}

Figure 3. Programming our barrier mecha-
nism.
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Figure 4. Finite State Automata that implement the G-line controllers.

3.4 G-line Controllers Implementation

Finally, we take a closer look at the implementation of
the G-line controllers in order to have a more clear under-
standing of the above subsections (see Figure 4). As we can
see, there are four automata corresponding to each of the
four controllers aforementioned: Sh, Mh, Sv and Mv for
horizontal slave and master, and vertical slave and master
controllers, respectively. Furthermore, over each transition,
we also depict the event that motivates the transition to the
next state, and the action that may produce a new event.
It follows the pattern: [ EVENT ] / [ ACTION ]. In more
depth, we distinguish the following events and actions:

• A core writes the register bar reg: Core(bar reg=1).

• A G-line controller writes a G-line: XglineY=ON,
where X identifies the controller (M for Master, and
S for Slave), and Y identifies the G-line (V or H, for
Vertical or Horizontal G-lines respectively).

• Update of registers: Mcnt=1, or X(flag=1), where X
identifies the controller that updates the register in
parenthesis. This is treated as an special case in which
the controller waits for an specific value of the register
updated by the other controller belonging to the same
core. For example, in the transition from the state Wait-
ing to the state Accounting of the MasterV automaton,
there is an event MasterH(flag=1). It means that the
MasterV controller has to perform that transition when
the MasterH controller sets the register to 1, both be-
longing to the same core (e.g. the core 0 in Figure 2).

• Finally, no event or action: [].

The SlaveH begins in the state Signaling waiting for the
arrival of the corresponding core at the barrier. Upon arrival,
the core writes its register bar reg which triggers the event
Core(bar reg=1) and performs the action SglineH=ON, be-
cause this horizontal slave controller writes into the hori-
zontal G-line. Then, the automaton switches to the Wait-
ing state until the release phase is reached. The MasterH
begins in the state Accounting in order to count the sig-
nals from the SlaveH controllers in the horizontal G-line
(the event SglineH=ON), and then updates the register Scnt
(the action Scnt++) properly. Notice that, through the S-
CSMA technique is possible to account for more than one
signal at the same cycle. Moreover, in this state the con-
troller waits until the corresponding core arrives at the bar-
rier. Upon the arrival, the core writes its register bar reg
which triggers the event Core(bar reg=1) and performs the
action Mcnt=1. Next, once all SlaveH controllers have sig-
naled through the G-line SglineH, and the register Mcnt is
set to 1, the action MasterH(flag=1) is performed. Finally,
the automaton switches to the Waiting state until the release
phase is reached. The SlaveV begins in the state Signal-
ing until the register flag is set to 1 by the MasterH con-
troller (the event MasterH(flag=1)). Once the last condition
is satisfied, the SlaveV writes into the vertical G-line (the
action SglineV=ON). Then, the automaton switches to the
Waiting state until the release phase is reached. Finally, the
MasterV begins in the state Accounting in order to count
the signals from the SlaveV controllers in the vertical G-
line (the event SglineV=ON), and update the register Scnt
properly (the action Scnt++). Next, once all SlaveV con-
trollers have signaled through the G-line SglineV (the event
Scnt=Max), the automaton switches to the Waiting state un-
til the release phase is reached. Finally, upon MasterH sets
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Table 1. CMP baseline configuration.
Number of cores 32
Core 3GHz, in-order 2-way model
Cache line size 64 Bytes
L1 I/D-Cache 32KB, 4-way, 1 cycle
L2 Cache (per core) 256KB, 4-way, 6+2 cycles
Memory access time 400 cycles
Network configuration 2D-mesh
Network bandwidth 75 GB/s
Link width 75 bytes

the register flag to 1, the release phase starts which implies
all the transitions from the right state to the left state in all
the automata, following the order: MasterV, SlaveV, Mas-
terH and SlaveH.

4 Evaluation

In this section we present the details of our experimen-
tal methodology and performance results. We describe the
simulation environment in Section 4.1 and the set of bench-
marks that we have used in Section 4.2. The performance
results are given in Section 4.3.

4.1 Testbed

We have extended Sim-PowerCMP [3] performance sim-
ulator to support our hardware-based barrier mechanism.
In short, Sim-PowerCMP is a detailed architecture-level
power-performance simulation tool that simulates tiled-
CMP architectures with a shared L2 cache on-chip and a
directory-based cache coherence protocol. Moreover, our
CMP configuration has up to 32 cores and an aggressive
2D-mesh network. Table 1 summarizes the values of the
main configurable parameters assumed in this work.

4.2 Benchmarks

In order to estimate performance improvements, we have
considered the following benchmarks: a synthetic bench-
mark, various kernels from Livermore Loops [2] (Kernels 2,
3 and 6); and three scientific applications: OCEAN, that be-
longs to the SPLASH-2 benchmark suite [23], UNSTRUC-
TURED [25], and finally, EM3D [9]. The set of bench-
marks is summarized in Table 2. As we can see, we il-
lustrate for each one: the input size, the total number of
barriers (#Barriers), and the estimated barrier period (the
number of cycles in average between two consecutive bar-
rier executions). The latter is calculated by dividing the total
number of execution cycles by the total number of barriers
in every case.

The synthetic benchmark is intended to measure the la-
tency of barriers themselves. Hence, it helps us provide
some insight into the benefits obtained by our approach.
To do that, we follow the methodology described in [10]:
performance is measured as average time per barrier over
a loop of four consecutive barriers with no work or de-
lays between them, with the loop being executed 100,000
times. Livermore loops have long been used as a tough test
for compilers and architectures. They present a wide ar-
ray of challenging kernels where fine-grain parallelism is
present but is hard to extract and exploit efficiently. By the
same recommendations given in [16], we focus on Kernels
2, 3 and 6. In short, Kernel 2 is an excerpt from an in-
complete Cholesky conjugate gradient code. Kernel 3 is
a simple inner product. Finally, Kernel 6 is a general lin-
ear recurrence equation. Regarding the applications used,
UNSTRUCTURED is a computational fluid dynamic ap-
plication; EM3D is a shared memory implementation of
the Split-C benchmark; and, OCEAN studies large-scale
ocean movements based on eddy and boundary currents.
We would like to point out that OCEAN is the application
with more barrier executions from the SPLASH-2 bench-
mark suite [23]. However, it presents in average one barrier
for every 205,206 cycles (see Table 2). This high barrier
period that SPLASH-2 features has been already discussed
in other works such as [16].

4.3 Performance Results

To obtain the performance results, we compare our
hardware-based barrier (GL from now on) with two
software-based implementations. On the one hand, a cen-
tralized sense-reversal barrier based on locks (or CSW),
where each core increments a centralized shared counter
as it reaches the barrier, and spins until that counter indi-
cates that all cores are present. On the other hand, a binary
combining-tree or distributed barrier (DSW), where there
are several shared counters distributed in a binary tree fash-
ion. Thus all cores are divided into groups assigned to each
leaf (variable) of the tree. Each core increments its leaf and
spins. Once the last one arrives in the group, it continues
up the tree to update the parent and so on towards the root.
Finally, the release phase is similar but in the opposite di-
rection (towards the leaves).

In this scenario, the implementation of a barrier can be
split into three typical stages: the notification stage (S1),
when each core indicates its arrival at the barrier; the busy-
wait stage (S2), to wait the arrival of the remaining cores;
and the release stage (S3), in order to resume execution. At
first glance, our approach should improve all three stages
because they are executed without involving any network
transaction, but just by means of operations on a G-line-
based network taking only 4 cycles in the best case. How-

273



Table 2. Configuration of the benchmarks used in this work.
Benchmark Input Size #Barriers Barrier Period
Synthetic 100,000 iterations 400,000 2,568
Kernel 2 1,024 elements, 1,000 iterations 10,000 3,103
Kernel 3 1,024 elements, 1,000 iterations 1,000 2,862
Kernel 6 1,024 elements, 1,000 iterations 1,022,000 4,908
OCEAN 258x258 ocean 364 205,206
UNSTRUCTURED Mesh.2K, 1 time step 80 67,361
EM3D 38,400 nodes, degree 2, 15% remote, 25 time steps 198 3,673

Figure 5. Average times for three different
barrier mechanisms.

ever, we can identify two typical situations in which our
approach may entail negligible improvement: applications
containing a reduced number of barriers; and when barrier
latency is dominated by the stage S2. The former helped
us to pick the most significant benchmarks for our propos-
als (e.g. OCEAN from SPLASH-2 benchmark suite). The
latter may suggest that the application is under workload
imbalance. We will take these conclusions in mind when
analyzing the performance results in the two following sub-
sections.

4.3.1 Execution Time

As explained above, to measure the latency of barriers
themselves, we use the synthetic benchmark. From the re-
sults presented in Figure 5, we can derive two appreciations.
First, the distributed software-based barrier is much more
efficient than the centralized software-based barrier. And
second, it is clear that our mechanism highly outperforms
the others in both efficiency and scalability. However, we
noticed an slight overhead in the times obtained for GL: 13
cycles instead of the theoretical 4 cycles (see Figure 2). This
is due to the overhead introduced by the simulator when ap-
plications call our barrier implementation, because it must
be accomplished through its application library.

Figure 6 shows the average normalized execution times
over a 32-core CMP layout for the rest of applications un-
der study. In particular, for Kernels 2, 3 and 6, and the

scientific applications: UNSTRUCTURED, OCEAN and
EM3D. Furthermore, we depict the breakdown of execu-
tion time depending on the best software-based barrier im-
plementation (DSW) and our hardware barrier mechanism
(GL). Execution time is further broken down into several
categories: Barrier is the time spent in barriers (sum of the
time taken in the S1, S2 and S3 stages explained above);
Write and Read are the times spent for operations on mem-
ory; Lock is the time for lock synchronizations; finally, Busy
is the time for computational work (e.g. arithmetic opera-
tions). In addition, we also illustrate the average times of
all kernels and applications for each barrier implementation
(see AVG K and AVG A).

Regarding the kernels results, we can see that our pro-
posal involves a reduction in execution time of 68% (see
AVG K). In more depth, Kernels 2, 3 and 6 present reduc-
tions of 70%, 88% and 47%, respectively. These reductions
stem from the barrier period described in Table 2 (3,103,
2,862 and 4,908 cycles, respectively). Since our mecha-
nism does not need any load or store instruction on mem-
ory to perform the barrier synchronization, the kernels also
present a reduction in the categories Write and Read. Be-
sides, although Kernel 3 shows 4% in column DSW for the
category Write, its code [2] does not contain any instruction
that motivates that value (its iterations do not contain any
store instruction on memory). It means that this is due to
the overhead introduced by the software-based barrier im-
plementation (DSW). As a result, our mechanism reduces to
zero that category. In addition, Kernel 3 presents a barrier
period almost equal to the ideal case (the synthetic bench-
mark): 2,862 cycles vs. 2,568 cycles. That explains its huge
reduction in execution time.

On the contrary, the applications show a lesser reduction
in execution time of only 21% (see AVG A). This is due
to the very high barrier period of the scientific applications
UNSTRUCTURED and OCEAN (67,361 and 205,206 cy-
cles, respectively). As a result, it implies reductions of only
3% and 5% respectively. On the other hand, significant re-
ductions in execution time (54%) are observed for EM3D
due to its very low barrier period (3,673 cycles).
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Figure 6. Average normalized times for the
benchmarks used in this work over a 32-core
CMP.

Figure 7. Average normalized number of mes-
sages across the network for the bench-
marks used in this work over a 32-core CMP.

4.3.2 Network Traffic

As aforementioned, our proposal entails neither coherence
activity nor barrier traffic in the main interconnection net-
work. Therefore, we analyze the network traffic over the
main data network for the same experiments as before.
Then, Figure 7 depicts the average normalized number of
messages across the network. Moreover, each column is
broken down into three categories: Coherence is the traffic
generated by the coherence protocol; Request stems from
store or load operations to send or receive data from the sys-
tem memory, respectively; finally, Reply involves the traffic
which contains the data requested by the last category.

Regarding the kernels, notice that there is an important
reduction in network traffic (see 74% in AVG K) according
to the reductions in time for the categories Barrier, Write
and Read presented in the last subsection. We would like
to point out the vast reduction in network traffic for Kernel
3 (99.82%) because, as we mentioned in Subsection 4.3.1,
almost all the traffic generated in this benchmark is due to
the barrier.

Finally, regarding the scientific applications, we can see
a slight reduction in network traffic (see 18% in AVG A). It
is explained from the negligible reductions in time for the
categories Barrier, Write and Read given for the applica-
tions UNSTRUCTURED and OCEAN in the last subsec-
tion. We could expect more than 1% reduction in network
traffic for both applications, due to the 3% and 5% reduc-
tion in execution time, respectively. However, we noticed
that the latency of barriers is dominated by the S2 stage
and, as we mentioned, this implies workload imbalance. In
DSW, this stage involves negligible network traffic because,
once shared variables are loaded in cache, busy-waiting is
performed locally. As a consequence, our method reports
this low traffic reduction. Finally, as we expected, EM3D
presents a considerable reduction in network traffic (51%)
because of its low barrier period.

5 Conclusions and Future Work

We have presented a novel hardware-based barrier mech-
anism for many-core CMPs. Our architecture has not any
influence on the conventional memory system to conduct
the synchronization, since we remove all coherence activ-
ity and barrier-related traffic from the interconnection net-
work. Instead, it relies on one-bit messages across a G-line-
based network that interconnects all cores, which is inde-
pendent of the main data network, along with the use of the
S-CSMA technique. We have measured the benefits of our
approach by means of several benchmarks running on top
of Sim-PowerCMP: a synthetic benchmark, kernels 2, 3 and
6 from Livermore loops suite, and three scientific applica-
tions: OCEAN, UNSTRUCTURED and EM3D. In light of
our performance results, we would like to point out that our
mechanism meets efficiency in terms of execution time and
reduction of traffic in the main data network. For instance,
the kernels and the scientific applications under study show
average reductions of 68% and 21% in total execution time,
and 74% and 18% in network traffic, respectively. More-
over our proposal meets hardware and software simplicity
because of the little and scalable hardware logic needed, and
due to its easy programmability.

As future work, we will extend the use of our approach
to a more general context by multiplexing in space and time,
in which several barrier executions can coexist. Moreover,
we will design efficient and scalable schemes to intercon-
nect G-line-based networks, in order to overcome the limi-
tation in the number of cores supported by this technology
(a many-core CMP with more than 7×7 2D-mesh). Finally,
we will measure the efficiency of our method in terms of
power consumption.
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