
Characterizing the Basic Synchronization and
Communication Operations in Dual Cell-Based

Blades�

José L. Abellán, Juan Fernández, and Manuel E. Acacio

Dept. de Ingenieŕıa y Tecnoloǵıa de Computadores, Spain
{jl.abellan,juanf,meacacio}@ditec.um.es

Abstract. The Cell Broadband Engine (Cell BE) is a heterogeneous
chip-multiprocessor (CMP) architecture to offer very high performance,
especially on game and multimedia applications. The singularity of its
architecture, nine cores of two different types, along with the variety of
synchronization and communication primitives offered to programmers,
make the task of developing efficient applications very challenging. This
situation gets even worse when we consider Dual Cell-Based Blade ar-
chitectures where two separate Cells can be linked together through a
dedicated high-speed interface. In this work, we present a characteriza-
tion of the main synchronization and communication primitives provided
by dual Cell-based blades under varying workloads. In particular, we fo-
cus on the DMA transfer mechanism, the mailboxes, the signals, the
read-modify-write atomic operations, and the time taken by thread cre-
ation. Our performance results expose the bottlenecks and asymmetries
of these platforms which must be taken into account by programmers for
improving the efficiency of their applications.

1 Introduction

Nowadays, among all contemporary CMP (or chip-multiprocessor) architectures,
there is one that is currently concentrating an enormous attention due to its
architectural particularities and tremendous potential in terms of sustained per-
formance: the Cell Broadband Engine (Cell BE from now on). From the archi-
tectural point of view, the Cell BE can be classified as a heterogeneous CMP.
In particular, the first generation of the chip integrates up to nine cores of two
distinct types [1]. One of the cores, known as the Power Processor Element
or PPE, is a 64-bit multithreaded Power-Architecture-compliant processor with
two levels of on-chip cache that includes the vector multimedia extension (VMX)
instructions. The main role of the PPE is to coordinate and supervise the tasks
performed by the rest of cores. The remaining cores (a maximum of 8) are called
Synergistic Processing Elements or SPEs and provide the main computing power
of the Cell BE.
� This work has been jointly supported by the Spanish MEC and European Comis-

sion FEDER funds under grants “Consolider Ingenio-2010 CSD2006-00046” and
“TIN2006-15516-C04-03”.

M. Bubak et al. (Eds.): ICCS 2008, Part I, LNCS 5101, pp. 456–465, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Characterizing the Basic Synchronization and Communication Operations 457

The Cell BE provides programmers with a broad variety of communication
and synchronization primitives between the threads that comprise parallel ap-
plications, which were evaluated in [2]. At the end, the performance achieved
by the applications running on the Cell BE will depend in great extent on the
ability of the programmer to select the most adequate primitives as well as their
corresponding configuration values. The main purpose of this work is to expose
the performance bottlenecks and asymmetries of those primitives under varying
workloads on a dual Cell-based blade.

The rest of the paper is organized as follows. In Section 2 we provide a short
revision of the architecture of the Cell BE and a dual Cell-based blade, and a de-
scription of some of the communication and synchronization primitives provided
to programmers. Next, in Section 3 we introduce our tool, which is called Cell-
Stats, for characterizing these primitives. The results obtained after executing
CellStats on a dual Cell-based blade are presented in Section 4. Finally, Sec-
tion 5 gives the main conclusions of the paper and some of the lessons learned
that can help programmers to identify the most appropriate primitive in different
situations.

2 Dual Cell-Based Blade

2.1 Architecture

The Cell BE architecture [1] is a heterogeneous multi-core chip composed of
one general-purpose processor, called PowerPC Processor Element (PPE), eight
specialized co-processors, called Synergistic Processing Elements (SPEs), a high-
speed memory interface controller, and an I/O interface, all integrated in a single
chip. All these elements communicate through an internal high-speed Element
Interconnect Bus (EIB) (see Figure 1(a)).

Each SPE is a 128-bit RISC processor designed for high-performance on
streaming and data-intensive applications [3]. Each SPE consists of a Syner-
gistic Processing Unit (SPU) and a Memory Flow Controller (MFC). The SPUs
are in-order processors with two pipelines and 128 128-bit registers. All SPU
instructions are inherently SIMD operations that the proper pipeline can run
at four different granularities. As opposed to the PPE, the SPEs do not have
a private cache memory. In contrast, each SPU includes a 256 KB LS memory
to hold both instructions and data of SPU programs, that is, the SPUs cannot
access main memory directly. The MFC contains a DMA Controller and a set
of memory-mapped registers called MMIO Registers. Each SPU can write its
MMIO registers though several Channel Commands. The DMA controller sup-
ports DMA transfers among the LSs and main memory. These operations can
be issued by the owner SPE, which accesses the MFC through the channel com-
mands, or the other SPEs (or even the PPE), which access the MFC through
the MMIO registers.

A dual Cell-based Blade is composed of two separate Cell BEs linked together
through the EIB, therefore the maximum theoretical performance is duplicated
with respect to that of one Cell BE, which is very interesting for emerging

458 J.L. Abellán, J. Fernández, and M.E. Acacio

(a) Block Diagram of Cell BE. (b) Block Diagram of a Dual Cell-Based
Blade.

Fig. 1. Cell BE Architecture

scientific, game and multimedia applications. The main components of a dual
Cell-based blade are shown in Figure 1(b). In this architecture the two Cell BEs
operate in SMP mode with full cache and memory coherency. Main memory
is split into two different modules, namely XDRAM0 and XDRAM1, that are
attached to Cell0 and Cell1 respectively. In turn, the EIB is extended trans-
parently across a high-speed coherent interface running at 20 GBytes/second in
each direction.

2.2 Programming

The SPEs use DMA transfers to read from (Get) or write to (Put) main mem-
ory. DMA transfer size must be 1, 2, 4, 8 or a multiple of 16 Bytes up to a
maximum of 16 KB. DMA transfers can be either blocking or non-blocking. The
latter allow overlapping computation and communication: there might be up to
128 simultaneous transfers between the eight SPE LSs and main memory. In ad-
dition, an SPE can issue a single command to perform a list of up to 2048 DMA
transfers, each one up to 16 KB in size. In all cases, peak performance can be
achieved when both the source and destination addresses are 128-Byte aligned
and the size of the transfer is an even multiple of 128 Bytes [4]. Mailboxes are
FIFO queues that support exchange of 32-bit messages among the SPEs and the
PPE. Each SPE includes two outbound mailboxes, called SPU Write Outbound
Mailbox and SPU Write Outbound Interrupt Mailbox, to send messages from
the SPE; and a 4-entry inbound mailbox, called SPU Read Inbound Mailbox, to
receive messages. Every mailbox is assigned a channel command and a MMIO
register. The former allows the owner SPE to access the outbound mailboxes.
The latter enables remote SPEs and the PPE to access the inbound mailbox.
In contrast, signals were designed with the only purpose of sending notifica-
tions to the SPEs. Each SPE has two 32-bit signal registers to collect incoming
notifications. A signal register is assigned a MMIO register to enable remote
SPEs and the PPE to send individual signals (overwrite mode) or combined

Characterizing the Basic Synchronization and Communication Operations 459

signals (OR mode) to the owner SPE. Read-modify-write atomic operations en-
able simple transactions on single words residing in main memory. For example,
the atomic add return atomic operation adds a 32-bit integer to a word in main
memory and returns its value before the addition.

Programming of a dual Cell-based blade is equivalent to that of an inde-
pendent Cell from a functional point of view. However, there are two important
differences. First, dual Cell-based blades have 16 SPEs at programmer’s disposal
rather than 8 SPEs. This feature involves doubling the maximum theoretical per-
formance but also making much more difficult to extract thread-level parallelism
from applications. Second, from an architectural point of view, any operation
crossing the Cell-to-Cell interface results in significantly less performance than
those that stay on-chip (see Section 4). These facts must be taken into account by
programmers to avoid unexpected and undesirable surprises when parallelizing
applications for a dual Cell-based blade platform.

3 CellStats

3.1 Architecture

CellStats is a command-line tool which admits a number of parameters such as
the operation to evaluate, the number of SPEs, the specific Cell or Cells to use,
the number of iterations and other operation-specific parameters. However, the
process to launch, instruct and synchronize the threads is the same in all cases.
First, the PPE marshals an structure called control block. The control block
contains all the information needed by each SPE to complete the operation de-
manded by the user. Next, the PPE creates as many threads as specified by the
user and synchronizes them using mailboxes. In turn, SPEs transfer the control
block from main memory to their private LSs, report control block transfer com-
pletion to the PPE, and wait for PPE’s approval to resume execution. Then, each
SPE performs the task entrusted by the user in a loop. In order to measure the
time to complete the loop, the SPE utilizes a register called SPU Decrementer
which decrements at regular intervals or ticks1. Upon completion of the loop, the
SPE sends to the PPE the number of elapsed ticks through its outgoing mailbox.
In this way, the PPE can compute not only the elapsed time from the go-ahead
indication given to the SPEs, but also the time taken by each individual SPE to
complete the task. For further details refer to [2].

3.2 Functionality

CellStats performs a different experiment depending on the parameters specified
by the user: thread creation; PPE-to-SPE or SPE-to-SPE synchronization using
mailboxes or signals; data transfers from main memory to local LS/local LS to
main memory or remote LS to local LS/local LS to remote LS through DMA
operations or list of DMA operations; and atomic operations such as fetch&add,
1 Duration of every tick for the dual Cell-based blade is 70 ns.

460 J.L. Abellán, J. Fernández, and M.E. Acacio

fetch&sub, fetch&inc, fetch&dec, and fetch&set on main memory locations.
Besides, it is possible to specify the XDRAM memory module (0 or 1) in which
memory buffers are allocated. CellStats manages position of memory buffers by
using the numactl command.

Thread creation. This operation measures the time to launch the threads that
are executed by the SPEs. To do that, an empty task that returns immediately
is used. Consequently, this operation takes into account not only the time to
create the threads but also the time needed to detect their finalization.

Mailboxes. This operation performs a PPE-to-SPE or an SPE-to-SPE syn-
chronization using mailboxes. The PPE/SPE writes a message in the incoming
mailbox (SPU Read Inbound Mailbox) of the receiver SPE. Next, the receiver
SPE reads the message and replies with another message written to its out-
going mailbox (SPU Write Outbound Mailbox). When the initiator SPE/PPE
reads the message, the synchronization process is complete. In the former case,
the PPE uses the runtime management library function spe write in mbox [5]
involving a system call which explains the increased latency. Nevertheless, the
PPE can also write directly into the corresponding SPE’s MMIO register using
a regular assignment.

Signals. Unlike mailboxes, this operation performs a PPE-to-SPE or an
SPE-to-SPE synchronization using signals. The initiator SPE/PPE signals the
destination SPE by writing to the corresponding MMIO register (SPU Signal
Notification). If the initiator is an SPE, the destination SPE signals in turn the
source SPE, thus finishing the synchronization cycle. Otherwise, the destination
SPE sends the reply to the PPE using its outgoing mailbox (SPU Write Out-
bound Mailbox). Like mailboxes, it is possible to write directly into the SPE’s
MMIO register instead of using the runtime management library function call
spe write signal [5].

Atomic operations. These operations enable sequences of read-modify-write
instructions on main memory locations in an atomic fashion performed by as
many SPEs as indicated by the user. The memory location accessed by the
SPEs can be shared or private. In the latter case, the user can also specify the
distance, measured in Bytes, between two consecutive private variables.

DMA operations. Data transfers between main memory and the local LS,
or between a remote LS and the local LS, are achieved through DMA opera-
tions. The user can specify not only the DMA size but also whether the source
buffer (Gets) or the destination buffer (Puts) is shared or private, and whether
the memory location is in main memory or in an SPE’s LS. Just like atomic
operations, the user can specify the distance, measured in Bytes, between two
consecutive private buffers.

4 Evaluation

4.1 Testbed

To develop CellStats we used the IBM SDK v2.1 for the Cell BE architecture
installed atop Fedora Core 6 on a regular PC [6]. This development kit includes

Characterizing the Basic Synchronization and Communication Operations 461

a simulator, named Mambo, that allows programmers to execute binary files
compiled for the Cell BE architecture. To obtain the experimental results, we
installed the same development kit atop Fedora Core 6 on a dual Cell-based IBM
BladeCenter QS20 blade which incorporates two 3.2 GHz Cell BEs v5.1, namely
Cell0 and Cell1, with 1 GByte of main memory and a 40 GB hard disk.

4.2 Results

Thread creation. The average latency for launching each new thread, as described
in Section 3.2, is considerably high, around 1.68 ms. In order to reduce the cost
introduced by thread management, programmers can create SPE threads at
startup and keep them alive until the application finishes. In this way, the PPE
can submit tasks to the SPE threads by means of communication primitives such
as mailboxes or signals, thus minimizing overhead.

Mailboxes and Signals. In Table 1, the average latencies, measured in nanosec-
onds, for PPE-to-SPE synchronization using mailboxes or signals are shown. In
both cases, the PPE can either invoke a system call (Mailbox-sc or Signal-sc)
or write directly into the corresponding SPE’s MMIO register (Mailbox or Sig-
nal). Besides, we consider that the selected SPE can be placed on either Cell
for comparison (PPE-SPEc0 for Cell0 and PPE-SPEc1 for Cell1). As we can
see, the latency is shorter when writing directly into the SPE’s MMIO registers,
as defined in file cbe mfc.h, instead of using the runtime management library
function calls spe write signal or spe write in mbox [5]. In the former case,
it is worth noting that the synchronization latency doubles when the destination
SPE resides on Cell1 in both cases. In addition, Table 1 summarizes the average
SPE-to-SPE synchronization latency, measured in nanoseconds, using mailboxes
or signals when both SPEs are located on the same Cell (SPEc0-SPEc0) or on
different Cells (SPEc0-SPEc1), respectively. In the former case, the latency is
almost four times shorter because the synchronization messages stay on-chip and
do not need to cross the Cell-to-Cell interface.

Table 1. Average latency for PPE-to-SPE and SPE-to-SPE synchronization

Primitive PPE-SPEc0 PPE-SPEc1 SPEc0-SPEc0 SPEc0-SPEc1

Mailbox-sc 10,000.0 10,000.0 N/A N/A
Mailbox 779.7 1678.2 158.1 589.9
Signal-sc 18,000.0 18,000.0 N/A N/A

Signal 503.8 1182.3 160.1 619.4

Atomic Operations. The average latency of the fetch&add atomic operation
for a single variable is shown in Figure 2. By using numactl, we have selected the
variable’s memory location (XDRAM0 or XDRAM1). As we can see, latency re-
mains constant, at approximately 111 ns, when the variable is privately accessed
by the SPEs. However latency grows linearly, up to 7.5 μs for 16 SPEs, when the

462 J.L. Abellán, J. Fernández, and M.E. Acacio

Fig. 2. Latency of fetch&add on shared and separate variables (128-Bytes stride)

variable is shared by all intervening SPEs. This is due to the fact that shared
variables serialize the execution of atomic operations. Results for the rest of the
atomic operations are similar and, therefore, have been omitted for the sake of
brevity. Notice that the XDRAM memory module employed has negligible ef-
fect on performance results. This is because of the small size of the variable (4
Bytes).

DMA Operations. There are three different scenarios for data movement: data
transfers between main memory and an SPE’s LS (Gets), data transfers between
an SPE’s LS and main memory (Puts) and data transfers between SPEs’ LSs
(Movs). Results for Puts do not report significant differences to those of Gets
and, therefore, have been omitted for the sake of brevity.

In Figure 3 latency and bandwidth figures for Gets using Cell0 and Cell1 are
shown. In particular, to generate Figures 3(a), 3(c), 3(e) and 3(g) (left side) all
SPEs from Cell0 were used before any SPEs from Cell1, while to generate Fig-
ures 3(b), 3(d), 3(f) and 3(h) (right side) SPEs were used in the opposite order.
As we can see, two general trends can be identified. First, latency is constant for
message sizes smaller than or equal to the cache line, that is 128 Bytes. Second,
latency grows proportionally to the message size for messages larger than the
cache line until the available bandwidth is exhausted. In addition, a more in
depth analysis provides other interesting conclusions. Latency is constant, but
proportional to the number of SPEs, for message sizes up 128 Bytes regardless
of the originating Cell when shared buffers are used (see Figures 3(a) and 3(b)).
Latency is constant, around 300 ns, for message sizes up 128 Bytes regardless of
the originating Cell when private buffers are used (see Figures 3(c) and 3(d)).2

For bandwidth figures, there are three important trends to be considered.
Firstly, when 8 SPEs are involved, Gets initiated in Cell0 obtain an aggregate
bandwidth of 24.6 GB/s (close to the peak memory bandwidth), while Gets
initiated in Cell1 reach an aggregate bandwidth of 13.6 GB/s. This is due to
the fact that buffers are always placed in XDRAM0 memory module. Therefore,
Gets from SPEs in Cell1 must cross the Cell-to-Cell interface, limiting the
2 Stride is larger than or equal to the cache line size in all cases.

Characterizing the Basic Synchronization and Communication Operations 463

(a) Gets from Cell0 (shared memory) (b) Gets from Cell1 (shared memory)

(c) Gets from Cell0 (private memory) (d) Gets from Cell1 (private memory)

(e) Gets from Cell0 (shared memory) (f) Gets from Cell1 (shared memory)

(g) Gets from Cell0 (private memory) (h) Gets from Cell1 (private memory)

Fig. 3. Latency and bandwidth of DMA Gets on shared and private main memory
buffers for a variable number of SPEs and packet sizes using Cell0 and Cell1

maximum achievable aggregate bandwidth. With the numactl command, we
have verified that allocating all buffers in XDRAM1 memory module reports
just the opposite results. Secondly, when 16 SPEs are considered both Cells are

464 J.L. Abellán, J. Fernández, and M.E. Acacio

(a) Intra-Cell Movs (shared LS buffer) (b) Intra-Cell Movs (shared LS buffer)

(c) Inter-Cell Movs (shared LS buffer) (d) Inter-Cell Movs (shared LS buffer)

Fig. 4. Latency and bandwidth of Movs on shared LS buffers for a variable number
of SPEs and packet sizes using a single Cell and both Cells

involved, thus the figures report the benefits of transferring data from the closest
XDRAM memory module (for SPEs within Cell0), and also report the drawback
of going through the Cell-to-Cell interface (for SPEs within Cell1). Finally, for
private buffers the aggregate bandwidth grows faster for message sizes up to
1 KB because of exploiting simultaneous transfers to different buffers. After
that, the aggregate bandwidth figures converge to the same values as before. In
turn, latency and bandwidth figures for Movs using Cell0 and Cell1 are shown
in Figure 4. In particular, Figures 4(a) and 4(b) correspond to DMA Movs in
Cell0 , while Figures 4(c) and 4(d) correspond to DMA Movs between Cell0 and
Cell1. In the former case, SPEs approach the maximum available bandwidth of
the EIB-to-SPE interface. In the later case, the Cell-to-Cell interface bandwidth
is the limiting factor. Nevertheless, the latency is much longer than expected
resulting in an aggregate bandwidth shorter than that of Gets originating in
Cell1.

5 Conclusions

In this work, we have evaluated the synchronization and communication mech-
anisms of the Cell BE on a dual Cell-based blade platform. In this way, we
can give some recommendations for dual Cell-based blade programmers such as:
programmers should avoid frequent creation of threads, since thread creation
introduces a significant overhead; they should use direct writes to the SPEs’

Characterizing the Basic Synchronization and Communication Operations 465

MMIO registers, since using runtime management library calls is very slow; for
atomic operations, whenever possible, they should use private buffers residing
on different cache memory lines, because latency of shared buffers grows linearly
with the number of involved SPEs; in case of DMA transfers, they should use
private buffers up to 1KB. For messages larger than 1KB, the latency is identical
in both cases; finally programmers should be aware of the Cell-to-Cell interface,
which determines the maximum achievable bandwidth, and also the asymmetries
that arise when memory locations are in the furthest XDRAM memory module.
This can be controlled by using the numactl command.

References

1. Kahle, J., Day, M., Hofstee, H., Johns, C., Maeurer, T., Shippy, D.: Introduction
to the Cell Multiprocessor. IBM Journal of Research and Development 49(4/5),
589–604 (2005)

2. Abellán, J.L., Fernández, J., Acacio, M.E.: CellStats: a Tool to Evaluate the Basics
Synchronization and Communication Operations of the Cell BE. In: Proceedings of
16th Euromicro International Conference on Parallel Distributed and network-based
Processing, pp. 261–268 (2008)

3. Gschwind, M., Hofstee, H.P., Flachs, B., Hopkins, M., Watanabe, Y., Yamazaki, T.:
Synergistic Processing in Cell’s Multicore Architecture. IEEE Micro 26(2), 10–24
(2006)

4. Kistler, M., Perrone, M., Petrini, F.: Cell Processor Interconnection Network: Built
for Speed. IEEE Micro 25(3), 2–15 (2006)

5. IBM Systems and Technology Group: SPE Runtime Management Library Version
2.1. (2007)

6. IBM Systems and Technology Group: Cell Broadband Engine Software Development
Toolkit (SDK) Installation Guide Version 2.1. (2007)

	Introduction
	Dual Cell-Based Blade
	Architecture
	Programming

	CellStats
	Architecture
	Functionality

	Evaluation
	Testbed
	Results

	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

