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Abstract—One important issue the designer of a scalable shared-memory multiprocessor must deal with is the amount of extra
memory required to store the directory information. It is desirable that the directory memory overhead be kept as low as possible, and
that it scales very slowly with the size of the machine. Unfortunately, current directory architectures provide scalability at the expense
of performance. This work presents a scalable directory architecture that significantly reduces the size of the directory for large-scale
configurations of a multiprocessor without degrading performance. First, we propose multilayer clustering as an effective approach to
reduce the width of directory entries. Based on this concept, we derive three new compressed sharing codes, some of them with a
space complexity of O(log,(log,(V))) for an N-node system. Then, we present a novel two-level directory architecture to eliminate the
penalty caused by compressed directories in general. The proposed organization consists of a small full-map first-level directory (which
provides precise information for the most recently referenced lines) and a compressed second-level directory (which provides in-
excess information for all the lines). The proposals are evaluated based on extensive execution-driven simulations (using RSIM) of a
64-node cc-NUMA multiprocessor. Results demonstrate that a system with a two-level directory architecture achieves the same
performance as a multiprocessor with a big and nonscalable full-map directory, with a very significant reduction of the memory

overhead.

Index Terms—Scalability, directory memory overhead, two-level directory architecture, compressed sharing codes, unnecessary

coherence messages, cc-NUMA multiprocessor.

1 INTRODUCTION

HE key property of shared-memory multiprocessors is

that communication occurs implicitly as a result of
conventional memory access instructions (i.e., loads and
stores) which makes them easier to program, and thus,
preferred from a programmer’s perspective, than message-
passing machines.

Shared-memory multiprocessors cover a wide range of
prices and features, from commodity SMPs to large high-
performance cc-NUMA machines, such as the SGI Origin
2000/3000. Most shared-memory multiprocessors employ
the cache hierarchy to reduce the time needed to access
memory by keeping data values as close as possible to the
processor that uses them. However, caching data values in a
shared-memory multiprocessor introduces two major co-
herence problems, which are shown in Fig. 1.

First, when multiple processors read the same location
they create shared copies of memory in their respective
caches (see Fig. 1a). If, subsequently, the location is written,
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some action must be taken to ensure that the other
processor caches do not supply stale data. In most cases,
the cached copies are eliminated through invalidations (see
Fig. 1b). After completing the write, the writing processor
has a dirty copy of the cache line, which allows to
subsequently write the line by only updating its cached
copy (see Fig. 1c). The second coherence problem arises
when other processors reread this dirty line. When lines are
dirty, simply reading a location may return a stale value
from memory. To eliminate this problem, reads also require
interaction with other processor caches. In this case, the
cache that holds the requested line dirty provides a copy of
its memory line, overriding the response from memory. At
the same time, main memory is also updated (see Fig. 1d).
Particular implementations of cache coherence protocols
are quite different depending on the total number of
processors. For systems with small processor counts, a
common bus is usually utilized along with snooping cache
coherence protocols. Snooping protocols [1] solve the cache
coherence problem using a network with a completely
ordered message delivery (traditionally a bus) to broadcast
coherence transactions directly to all processors and
memory. Unfortunately, the broadcast medium becomes a
bottleneck (due to both the limited bandwidth that it
provides and the limited number of processors that can be
attached to it) preventing them from being scalable.
Instead, scalable shared-memory multiprocessors are
constructed based on scalable point-to-point interconnection
networks, such as amesh or a torus [2]. Besides, main memory
is physically distributed to ensure that the bandwidth needed
to access main memory scales with the number of processors.
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Fig. 1. Multiprocessor cache coherence.

In these designs, accessing main memory has nonuniform
access costs to a processor, and in this way, architectures of
this type are often called cache-coherent, nonuniform memory
access or cc-NUMA architectures.

Totally ordered message delivery and broadcasting
coherence transactions become infeasible in these organiza-
tions, and cache coherence is based on the concept of a
directory [3], which is a structure used to keep explicitly the
state of every memory line. Directory entries are distributed
along with the memory, so that different directory accesses
can go to different locations, just as different memory
requests go to different memories. Each memory line is
assigned to a directory (the home directory), which keeps a
directory entry for the memory line. A natural way to
organize directories is shown in Fig. 2. For each memory
line, a directory entry is kept together with the line in main
memory at the home node. Each directory entry is
comprised of two main fields:' the state bits used to codify
one of the three possible states the directory can assign to
the line (Uncached, Shared, and Owned), and the sharing code
[4], that holds the list of current sharers. Now, each cache
miss is sent to the home directory controller which, in turn,
using the corresponding directory entry, dispatchs coher-
ence transactions to the processors caching the line (if any).
As a consequence of its simplicity, this directory organiza-
tion—usually known as flat, memory-based directory organi-
zation [5]—has been extensively used in both the research
and the commercial arena. The best-known example of a
commercial multiprocessor using this approach is the SGI
Origin 2000/3000 [6].

In general, most of the bits of each directory entry are
devoted to codify the sharing code. In this way, its election
directly affects the extra memory required for storing
directory information, and consequently, the directory
memory overhead. Directory memory overhead is typically
measured as sharing code size divided by memory line size.
The designer of a scalable shared-memory multiprocessor
would like to keep the directory memory overhead as low
as possible and would like it to scale very slowly with
machine size [7], for which a scalable directory architecture is
required.

1. Apart from other implementation-dependent bits.

The full-map sharing code (also known as bit-vector or
Diry) constitutes the most popular way of keeping track of
the sharers [3]. It uses a presence bit vector to identify the
exact sharers of a certain memory line. Although it is
efficient for small-scale machines, its scalability is very
limited, since its size in bits increases linearly with the
number of nodes. For example, for a simple full-map
sharing code and a 128-byte line size, Fig. 3 illustrates how
directory memory overhead increases as the number of
nodes gets larger. As shown, directory memory overhead
for a system with 256 nodes is 25 percent. However, this
overhead becomes 100 percent when the node count
reaches 1,024, which is definitely unacceptable.

Compressed sharing codes are one of the alternatives
that have been proposed to reduce the width of directory
entries in large-scale configurations. We refer to compressed
directory as a directory structure in which a compressed
sharing code is used. Compressed directories actually store
the full directory information in a compressed way to use
fewer number of bits, introducing a loss of precision
compared to exact ones, such as a full-map directory. This
means that when sharing information is reconstructed,
some of the nodes that are codified are real sharers and
must receive the corresponding coherence message. How-
ever, some other nodes are not sharers actually, thus
unnecessary coherence messages will be sent to them, which
can dramatically hurt performance. Conversely, a full-map
directory never sends unnecessary coherence messages and
shows the best performance results.

An orthogonal way to diminish directory memory
overhead is to reduce the total number of directory entries.

Memory Lines Directory Entries

‘ State

Sharing Code I

Fig. 2. Organization of the directory information.
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Fig. 3. Memory overhead as a function of the number of nodes for a full-
map directory.

That is, instead of having a directory entry for every
memory line, one can construct a directory structure with
less entries than the total number of memory lines and, for
example, organize it as a cache [8], [9]. The observation that
motivates the utilization of fewer directory entries is that
the total amount of cache memory is much less than the
total main memory in the machine. The main drawback of
directory caches concerns how replacements are managed.
Each time a directory entry is evicted, the directory must
invalidate all shared copies of the associated memory line.
Note that, these premature invalidations may drastically
increase the number of cache misses.

In this paper, we propose two-level directories, a scalable
directory architecture which combines the advantages of
both compressed sharing codes and directory caches and
avoids their respective drawbacks. The aim of this new
directory architecture is to provide precise information for
those memory lines that are frequently accessed (achieving
the same behavior as a traditional full-map directory) and
in-excess information for those lines that are not accessed
very often. This approach can be generalized to a multilevel
directory organization. Additionally, we propose three new
compressed sharing codes with lower memory require-
ments than previous proposals.

Execution-driven simulation is used to evaluate our
proposals in terms of execution time and number of
unnecessary coherence messages. Results show that thanks
to the temporal locality exhibited by applications on the
references that several nodes make to the directory
information, the two-level directory architecture achieves
the same performance as big and nonscalable full-map
directories, while the memory overhead is significantly
reduced. A preliminary version of this article was presented
in [10]. Here, we extend that work with a deeper analysis of
some scalability and performance problems, and a more
extensive evaluation process.

The rest of the paper is organized as follows. In Section 2,
we present a review of the related work. Then, we introduce
the multilayer clustering concept in Section 3 and apply it for
deriving several new compressed sharing codes. Next, in
Section 4, we present the two-level directory architecture, a
directory organization especially conceived to reduce direc-
tory memory overhead without degrading performance.

Sections 5 and 6 discuss the methodology followed in our
evaluations and the impact that our proposals have on
application performance, respectively. And, finally, Section 8
concludes the paper.

2 RELATED WORK

There are two main alternatives for storing directory
information [5]: flat, cache-based and flat, memory-based
directory schemes.

2.1 Cache-Based Directory Protocols

These protocols (also known as chained directory protocols),
such as the IEEE Standard Scalable Coherent Interface (SCI)
[11], rely on distributing the sharing code among the nodes of
the system. For every one of its memory lines, the home node
contains only a pointer to the first sharer in the list plus a few
state bits. The remaining nodes caching the line are joined
together in a distributed, doubly linked list, using additional
pointers that are associated with each cache line in a node
(which are known as forward and backward pointers). The
locations of the copies are therefore determined by traversing
this list via network transactions.

The most important advantage of flat, cache-based
directory protocols is their ability to significantly reduce
directory memory overhead. In these protocols, every line
in main memory only has a single head pointer. The
number of forward and backward pointers is proportional
to the number of cache lines in the machine, which is much
smaller than the number of memory lines. Although some
optimizations to the initial proposal have been studied (for
example, in [12] and [13]) and several commercial machines
have been implemented using this kind of protocol, such as
the Sequent NUMA-Q [14] and Convex Exemplar [15]
multiprocessors, the important drawbacks these protocols
entail have decreased their popularity, and from the SGI
Origin 2000 [6] onward, most designs use memory-based
directory protocols, such as Piranha [16], the AlphaServer
GS320 [17], or the Cenju-4 [18]. Among others, these
drawbacks include the increased latency of coherence
transactions as well as occupancy of cache controllers,
complex protocol implementations [5] and, what is more
important, the need of larger cache states and extra bits for
forward and backward pointers, which implies changing
processor caches. We have not considered these organiza-
tions because they represent a different approach from the
implementation point of view. For a comparison between
flat, memory-based directory protocols and flat, cache-
based ones refer to [7].

2.2 Flat, Memory-Based Directory Schemes

In these directory schemes, the home node maintains the
identity of all the sharers and the state, for every one of its
memory lines. Memory overhead is usually managed from
two orthogonal points of view: reducing directory width and
reducing directory height.

2.2.1 Reducing Directory Width

Inspired by experimental data suggesting that, in many cache
invalidation patterns, the number of sharers is very low [19],
some authors propose to reduce the width of directory entries
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by having alimited number of pointers per entry to keep track
of sharers [20], [21], [22]. The differences between them are
mainly found in the way they handle overflow situations, that
is to say, when the number of copies of the line exceeds the
number of available pointers [5]. As an example, Dir;B
sharing code [20] provides ¢ pointers to codify up to ¢ potential
sharers. When the number of available pointers i is exceeded,
a broadcast bit in the directory entry is set. On a subsequent
write operation, invalidation messages will be sent to all the
nodes in the system, regardless of whether or not they are
caching the line. Two interesting instances of this sharing
code are Dir;B and DiryB. Whereas the former needs 1 +
log, N bits, the latter does not use any bits and always sends
N-1 coherence messages (invalidations or cache-to-cache
transfer requests) when the home node cannot directly satisfy
a certain cache miss (i.e., on a coherence event), for an N-node
system. Alternatively, in other architectures, such as MIT
Alewife [23], the overflow situations are handled using
exception software. In this case, every time a new sharer must
be added but all the pointers in the corresponding directory
entry are in use, an overflow bit is set and a pointer to the
sharer is saved into a special portion of the node’s local
memory by software. The main drawbacks these schemes
introduce arerelated to the large overhead thatinterrupts and
handling of these requests generate when they are handled by
software running on the main processor [23].

More recently, the segment directory has been proposed
as an alternative to the limited pointer schemes [24]. The
segment directory is a hybrid of the full-map and limited
pointers schemes. Each entry of a segment directory
consists of two components: a segment vector and a
segment pointer. The segment vector is a K-bit segment of
a full-map vector whereas the segment pointer is a
loga(N/K)-bit field keeping the position of the segment
vector within the full-map vector, aligned in K-bit bound-
ary. Using directory’s bits in this way results in a reduction
of the number of directory overflows suffered by limited
pointer schemes.

Alternatively, other proposals reduce directory width by
using compressed sharing codes (also known as multicast
protocols [4] or limited broadcast protocols [20]). Up till now,
several compressed sharing code schemes have been
proposed in the literature with a variety of sizes. Some of
the most used compressed sharing codes are coarse vector
[8], which is currently employed in the SGI Origin 2000
multiprocessor, tristate [20], and gray-tristate [4].

Unlike full-map sharing code, in coarse vector, each bit
of the sharing code stands for a group of K processors. The
bit is set if any of the processors in the group (or some of
them) cached the memory line. Thus, for an N-node system,
the size of the sharing code is N/K bits. Assuming K = 4, the
total size of the coarse vector sharing code for a 16-node
system is 4 bits. Bit 0 represents nodes 0, 1, 2, and 3,
whereas bit 1 refers to nodes 4, 5, 6, and 7. Bits 2 and 3
stands for nodes from 8 to 15.

Tristate, also called the superset scheme by Gupta et al.
[8], stores a word of d digits where each digit takes one of
three values: 0, 1, and both. If each digit in the word is either
0 or 1, then the word is the pointer to exactly one sharer. If
any digit is coded both, then the word denotes sharers

JANUARY 2005

whose identifier may either be 0 or 1 in that digit, but match
the rest of the word. If i digits are coded both, then 2! sharers
are codified. In this way, it is possible to construct a
superset of current sharers. Each digit can be coded in 2
bits, thus requiring 2log, N bits for an N-node system.
Gray-tristate improves tristate in some cases by using Gray
code to number the nodes.

2.2.2 Reducing Directory Height

Directory height, that is, the total number of directory
entries that are available, can be reduced either by
combining several directory entries in a single entry
(directory entry combining) [25] or by organizing the directory
as a cache (sparse directory) [8], [9]. The first approach tends
to increase the number of coherence messages per coher-
ence event as well as the number of cache misses in those
cases in which several memory lines share a directory entry,
whereas the second increases the number of cache misses as
a result of premature invalidations.

Finally, Everest [26] is an architecture for high perfor-
mance cache coherence and message passing in partition-
able distributed shared memory systems that use
commodity SMPs as building blocks. To maintain cache
coherence between shared caches included into every SMP,
Everest uses a new directory design called Complete and
Concise Remote (CCR) directory. In this design, each
directory maintains a shadow of the tags array of each
remote shared cache. In this way, each directory consists of
N —1 shadows for an N-node system, which limits the
scalability of CCR directories.

3 MULTILAYER CLUSTERING CONCEPT

In this section, we present several new compressed sharing
code organizations based on the multilayer clustering
approach. The goal of this approach is to improve the
scalability of the directory by reducing the size of the
sharing code.

In this approach, nodes are recursively grouped into
clusters of equal size until all nodes are grouped into a
single cluster. Compression is achieved by specifying the
smallest cluster containing all the sharers (instead of
indicating all the sharers). Compression can be increased
even more by indicating only the level of the cluster in the
hierarchy. In this case, it is assumed that the cluster is the
one containing the home node for the memory line. This
approach is valid for any network topology.

Although clusters can be formed by grouping any
integer number of clusters in the immediately lower layer
of the hierarchy, we analyze, as an example, the case of
using a value equal to two. That is to say, each cluster
contains two clusters from the immediately lower level. By
doing so, we simplify binary representation and obtain
better granularity to specify the set of sharers.

This recursive grouping into layer clusters leads to a
logical binary tree with the nodes located at the leaves.

As an application of this approach, we propose three
new compressed sharing codes. The new sharing codes can
be shown graphically by considering the distinction
between the logical and the physical organizations. For
example, consider a 16-node system with a 2D mesh as the
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Fig. 4. Multilayer clustering approach example. (a) Physical system. (b) Logical system.

interconnection network, as shown in Fig. 4a, we can
imagine the same system as being organized as a binary tree
(multilayer system) in which the nodes are located at the
leaves of the tree, as shown in Fig. 4b. Note that this tree
only represents the grouping of nodes, not the interconnec-
tion between them. In this representation, each subtree is a
cluster. Clusters are also shown in Fig. 4a by using dotted
lines. It can be observed that the binary tree is composed of
five layers or levels (log, N + 1, where N is a power of 2).

From this logical organization, the following three new
sharing codes are derived: Binary tree, Binary tree with
symmetric nodes, Binary tree with subtrees.

3.1 Binary Tree (BT)

Since nodes are located at the leaves of a tree, the set of
nodes (sharers) holding a copy of a particular memory line
can be expressed as the minimal subtree that includes the
home node and all the sharers. This minimal subtree is
codified using the level of its root (which can be expressed
using just [log,(logy N + 1)] bits). Intuitively, the set of
sharers is obtained from the home node identifier by
changing the value of some of its least significant bits to do
not care. The number of modified bits is equal to the level of
the above mentioned subtree. It constitutes a very compact
sharing code (observe that, for a 128-node system, only
three bits per directory entry are needed), but its precision
may be low, especially when few sharers, distant in the tree,
are found (as is the normal case [5]). For example, consider
a 16-node system such as the one shown in Fig. 4a, and
assume that nodes 1, 4, and 5 hold a copy of a certain
memory line whose home node is 0. In this case, node 0
would store 3 as the tree level value, which is the one
covering all sharers (see Fig. 4b).

3.2 Binary Tree with Symmetric Nodes (BT-SN)

We also introduce the concept of symmetric nodes of a
particular home node. Assuming that three additional
symmetric nodes are assigned to each home node, they
are codified by different combinations of the two most-
significant bits of the home node identifier (note that one of
these combinations represents the home node itself). In
other words, symmetric nodes only differ from the
corresponding home node in the two most significant bits.
For the previous example, if 0 were the home node, its
corresponding symmetric nodes would be 4, 8, and 12.
Now, the process of choosing the minimal subtree that

includes all the sharers is repeated for the symmetric nodes.
Then, the minimum of these subtrees is chosen to represent
the sharers. The intuitive idea is the same as before but, in
this case, the two most significant bits of the home identifier
are changed to the symmetric node used. Therefore, the size
of the sharing code of a directory entry is the same as before
plus the number of bits needed to codify the symmetric
nodes (for three sym-nodes, two bits). In the previous
example, nodes 4, 8, and 12 are the symmetric nodes of
node 0. The tree level could now be computed from node 0
or from any of its symmetric nodes. In this way, the one
which encodes the smallest number of nodes and includes
nodes 1, 4, and 5 is selected. In this particular example, the
tree level 3 must be used to cover all the sharers, computed
from node 0 or node 4.

3.3 Binary Tree with Subtrees (BT-SuT)

This scheme represents our most elaborate proposal. It
solves the common case of a single sharer by directly
encoding the identifier of that sharer. Thus, the size of the
sharing code is at least log, IV bits. When several nodes are
caching the same memory line, an alternative representa-
tion is chosen. Instead of using a single subtree to include
all sharers, two subtrees are employed. One of them is
computed from the home node. For the other one, a
symmetric node is employed. Using both subtrees, the
whole set of sharers must be covered while minimizing the
number of included nodes. Now, each directory entry has
two fields of up to [logy(log, N)] bits to codify these
subtrees (depending on the size of the subtree) and an
additional field to represent the symmetric node selected.
An additional bit is needed to indicate the representation
used (single sharer or subtrees). Note that, in order to
optimize the number of bits required for this representation,
we take into account the maximum size of the subtrees,
which depends on the number of symmetric nodes used.
Again, we assume three additional symmetric nodes for
each home node. In the previous example, symmetric nodes
do not change (i.e., nodes 4, 8, and 12). Node 0 should notice
that the sharing code value implying fewer nodes is
obtained by selecting node 4 as a symmetric node. Then,
it encodes its tree level as 1 (covering node 1) and the tree
level for the symmetric node as 1 (covering nodes 4 and 5).
Finally, as a generalization of BT-SuT, in those situations in
which it would be required (for example, a machine with a
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TABLE 1
Behavior of the Evaluated Sharing Codes
for the Proposed Example

S
S

NO. 1,
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Full-map —+—
Coarse vector -——-x---
Gray-tristate -
BT-SuT
Dir;B --
BT-SN --

s o

BT -~

—
(=1

Scheme Nodes covered Overhead

Full-map 14,5 1

DirgB and Dir; B 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15 5.34

Coarse vector 0,1,2,3,4,5,6,7 2.67

Gray-tristate 0,1,2,3,4,5,6,7 2.67

Binary tree 0,1,2,3,4,5,6,7 2.67

Binary tree with SN 0,1,2,3,4,5,6,7 2.67

Binary tree with subtrees 0,1,4,5 1.34

very large number of processors), it could be used a larger
number of subtrees to cover all the sharers (instead of 2), as
well as additional symmetric nodes from which compute
these subtrees (instead of 4).

For the example, Table 1 summarizes the nodes that
would receive a coherence message with the proposed
sharing codes. In addition, the same information is shown
for full-map, DirgB, Dir;B, coarse vector (assuming that
K =4) and gray-tristate sharing codes. The third column
indicates the overhead with respect to full-map (computed
as the relationship between the number of nodes encoded
by the corresponding sharing code and those that are
codified by full-map). As observed, the final number of
sharers exceeds the total number of pointers for both DiryB
and Dir B, resulting in the broadcast bit being set.

Memory overhead of a sharing code scheme is computed
as the amount of storage it requires divided by the storage
used for the memory lines themselves. Table 2 shows the
number of bits required by each sharing code (assuming
four symmetric nodes) for an N-node multiprocessor. As an
example, it also shows the values that are obtained when
N = 64.

Fig. 5 shows the memory overhead (in percentage)
introduced by each sharing code scheme as a function of the
number of processors, for a memory line of 128 bytes. As we
mentioned above, full-map sharing code is characterized by
its limited scalability. For instance, for a 1,024-node
configuration, 128 bytes would be required to keep a
memory line coherent (100 percent of memory overhead).
Coarse vector slightly reduces memory overhead, but it
does not solve the scalability problem, since its size is
actually a linear function of N. The rest of the schemes
present a much better scalability since their size is not a
linear function of the number of nodes but a logarithmic
function. It is important to note that, for our most
aggressive proposals (binary tree (BT) and binary tree with
symmetric nodes (BT-SN)), memory overhead remains almost
constant as the number of nodes increases. Additionally, the

TABLE 2
Number of Bits Required by Each One of the Sharing Codes
Size (in bits)

Sharing code General N=64
Full-map N 64
DirgB 0 0
Dir;B 1+1log, N 7
Coarse vector r 16
Gray-tristate 2log, N 12
Binary tree [log, (log, N + 1)] 3
Binary tree with SN [log, (log, N + 1)]+2 5
Binary tree with subtrees | max {(1 +log, N), (1 + 2 + 2 [log, (log, N)])} 9

—

Memory Overhead % (logarithmic scale)

32 64 128 256
Nodes (logarithmic scale)

1024

Fig. 5. Memory overhead as a function of the number of nodes.

three schemes proposed in this work achieve a much lower
memory overhead than those proposed previously, such as
gray-tristate. Finally, it is clear that the efficacy of these
schemes is sensitive to the processor mapping that an
application uses. In this paper, however, we do not try to
optimize this mapping.

4 Two-LeEvEL DIRECTORIES: REDUCING MEMORY
OVERHEAD AND KEEPING PERFORMANCE

In this work, we propose a scalable directory architecture
that combines the benefits of both previous solutions. Two-
level directories (multilevel directories, in general) combine
the properties of compressed sharing codes and sparse
directories to significantly reduce directory memory over-
head without degrading performance. The architecture,
which is based on both the temporal locality found for the
accesses that several nodes make to the directory and the
fact that the total amount of cache memory is much less
than the total main memory, relies on having precise
directory information for the subset of memory lines
currently being referenced and, additionally, compressed
directory information for all the memory lines.

4.1 Two-Level Directory Architecture

In a two-level directory organization, we distinguish two
clearly decoupled structures:

1. First-level directory (or uncompressed structure): Con-
sists of a small set of directory entries, each one
containing a precise sharing code (for instance, full-
map or a limited set of pointers). In our particular
case, we use full-map.

2. Second-level directory (or compressed structure): In this
level, a directory entry is assigned to each memory
line. We use the compressed sharing codes proposed
in this paper (BT, BT-SN, and BT-SuT) since their
very low memory overhead makes them much more
suitable for this level than any other previous
scheme, thus achieving better scalability.

While the compressed structure has an entry for each
memory line assigned to a particular node, the uncom-
pressed structure has just a few entries, which are used to
store directory information for a small subset of the
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Fig. 6. Two-level directory organization.

memory lines. Thus, for a certain memory line, in-excess
information is always available in the second-level direc-
tory, but precise sharing information will be occasionally
placed in the first-level directory depending on the
temporal locality exhibited by this line. Note that in this
organization if the hit rate of the first-level directory is high,
the final performance of the system is close to the one
obtained with a full-map directory. This hit ratio depends
on several factors: size of the uncompressed structure,
replacement policy and temporal locality exhibited by the
application on the references that several nodes make to the
directory.

Fig. 6 shows the architecture of the proposed two-level
directory. Since we assume that both levels have main
memory latency, state bits are only contained in the
compressed structure. Tag information must also be stored
in the first level to determine whether there is a hit or not.
On a cache miss, the directory controller accesses the
directory cache (first-level directory) and, in parallel, it
starts the memory operation for the memory line, which as
in the SGI Origin 2000 [6] brings both the memory line and
the second-level directory entry. Directory information is
taken from the directory cache, if it is present, or from the
compressed second level, otherwise. In the latter case, the
compressed sharing code is previously converted into its
full-map representation.

4.2 Implementation Issues

In sparse directories, when an entry is replaced, premature
invalidation messages are sent to all the nodes encoded in
the evicted entry [5]. This affects the cache miss rate (and
therefore the final performance) of processors having the
remote copy of the line, since they receive the invalidation
not because of a remote write, but because of a replacement
in the remote directory cache. These misses would not occur
if an individual directory entry were assigned to each
memory line.

The two-level directory organization presented in this
work will never send premature invalidations since correct
information per memory line is always placed in the main
(compressed) directory. For this organization, a miss in the
first-level directory causes the second-level to supply the
sharing information. In this case, the sharing code provides
in-excess information and occasionally unnecessary coher-
ence messages will be sent to nodes that do not actually
have a copy of the line. As opposed to premature
invalidations, unnecessary coherence messages will never

increase the cache miss rate with respect to a full-map
directory implementation.

Regarding the first-level directory, we assume that it is
implemented as a four-way set associative directory cache,?
and that an LRU policy is used on replacements. Each line
in the first-level directory contains a single directory entry,
which uses full-map as the sharing code. A detailed study
of the design and performance of directory caches was
previously carried out by Michael and Nanda in [27], so we
refer the interested reader to this paper.

In this work, we assume that the first-level directory has
main memory latency. In this way, we concentrate on the
ability of the first-level directory to capture most of the
directory accesses, which is a consequence of the temporal
locality exhibited by the memory references that different
processors issue. Note that the use of a fast directory cache
would blur the results. The management policy of the first-
level directory that we have implemented is based on this
consideration, and it tries to make the best use of the few
lines that are available in the first-level directory:

1.  When a request for a certain line arrives at the home
node, an entry in the first-level directory can be
allocated if the line is in uncached state, or if an
exclusive request is received. Note that, once an
exclusive request has been completed, only one
processor has a valid copy of the line. If the entry
were allocated at some other time, only in-excess
information would be available, which would not
exploit the features of this precise first level.

2. Since this uncompressed structure is quite small,
capacity misses can degrade performance. To reduce
such misses, an entry in the first-level directory is
freed when a write-back message for a memory line
in exclusive state is received. This means that the
line is no longer cached in any of the system nodes,
so its corresponding entry is available for other lines.

3. Replacements in the first-level directory are not
allowed for the entries associated with those
memory lines with pending coherence transactions.

Currently, entries in the first-level structure are not
allocated as long as there is a single node holding a copy of
the line and its identifier can be precisely encoded with the
sharing code of the second-level directory (for example,
when BT-5uT is used as the sharing code of the second
level).

5 SIMULATION ENVIRONMENT

We have used a modified version of Rice Simulator for ILP
Multiprocessors (RSIM), a detailed execution-driven simu-
lator [28]. RSIM models an out-of-order superscalar processor
pipeline, a two-level cache hierarchy, a split-transaction bus

2. Michael and Nanda demonstrate that a four-way set associative
directory cache obtains the same performance as a fully associative one [27],
50 in our simulations, we implement the first-level directory as a fully
associative structure.

3. Note that implementing the first-level directory using a fast directory
cache would need a different allocation policy that takes into consideration
both performance benefits of finding directory information in the faster first
level and total number of unnecessary coherence messages that need to be
sent on a coherence event.
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TABLE 3
Base System Parameters

64-Node System
ILP Processor

Processor Speed 1 GHz
Max. fetch/retire rate 4
Instruction Window 64

Functional Units 2 integer arithmetic

2 floating point

2 address generation
Memory queue size 32 entries

Cache Parameters

Cache line size 64 bytes
L1 cache WT Direct mapped, 32KB
L1 request ports 2
LI hit time 2 cycles
L2 cache WB 4-way associative, 512KB
L2 request ports 1
L2 hit time 15 cycles, pipelined

Number of MSHRs 8 per cache

Directory Parameters

Directory controller cycle 10 cycles
First coherence message creation time 4 cycles
Next coherence creation time | 2 cycles

Memory Parameters
Memory access time 70 cycles (70 ns)
Memory interleaving | 4-way

Internal Bus Parameters

Bus Speed 1 GHz
Bus width 8 bytes

Network Parameters
Topology 2-dimensional mesh
Flit size 8 bytes
Non-data message size 2 Flits
Router speed 250 MHz
Arbitration delay 1 router cycle
Router’s internal bus width 64 bits
Channel speed 500 MHz
Channel width 32 bits

on each processor node, and an aggressive memory and
multiprocessor interconnection network subsystem, includ-
ing contention at all resources. The modeled system is a cc-
NUMA with 64 uniprocessor nodes that implements an
invalidation-based, four-state MESI directory cache-coherent
protocol. Table 3 summarizes the parameters of the simulated
system. These values have been chosen to be similar to the

parameters of current multiprocessors.
RSIM provides support for multiple memory consistency

models. We have configured RSIM to simulate sequential
consistency following the guidelines given by Hill [29].
Note that, relaxed consistency models, such as Processor
Consistency or Release Consistency, could be employed to
reduce the performance impact that compressed sharing

codes have on write misses.
Table 4 describes the applications we use in this study.

To evaluate the benefits of our proposals, we have selected
several scientific applications covering a variety of compu-
tation and communication patterns. BARNES-HUT, CHOLES-
KY, FFT, OCEAN, RADIX, WATER-SP, and WATER-NSQ are
from the SPLASH-2 benchmark suite [30]. EM3D is a shared
memory implementation of the Split-C benchmark [31].
MP3D application is drawn from the SPLASH suite [32].
Finally, UNSTRUCTURED is a computational fluid dynamics
application [33]. All experimental results reported in this
paper are for the parallel phase of these applications. Data
placement in our programs is either done explicitly by the
programmer or by RSIM which uses a first-touch policy on
a cache-line granularity. Thus, initial data-placement is
quite effective in terms of reducing traffic in the system.

JANUARY 2005

TABLE 4
Benchmarks and Input Sizes Used in This Work
Benchmark Input Size
BARNES-HUT 8192 bodies, 4 time steps
CHOLESKY tk15.0
EM3D 38400 nodes, degree 2, 15% remote and 25 time steps
FFT 256K complex doubles
MP3D 48000 nodes, 20 time steps
OCEAN 258x258 ocean
RADIX 2M keys, 1024 radix
UNSTRUCTURED Mesh.2K, 5 time steps
WATER-NSQ 512 molecules, 4 time steps
WATER-SP 512 molecules, 4 time steps

6 SIMULATION RESULTS AND ANALYSIS

6.1 Compressed Directories

In this section, we evaluate the performance of the binary
tree (BT), binary tree with symmetric nodes (BT-SN), and
binary tree with subtrees (BT-SuT) compressed sharing
codes in terms of the number of unnecessary coherence
messages and the overhead in terms of execution time they
introduce regarding full-map. For comparison purposes, we
also show the results that are obtained for coarse vector,
gray-tristate, Dir;B and DiroB. For this, applications are
executed using the maximum number of processors
available, i.e., 64 processors for all the applications except
OCEAN and UNSTRUCTURED, which could be simulated
using up to 32 processors. As expected, the more processors
are used, the larger the impact the use of compressed
sharing codes has on the application’s performance.

Full-map sharing code provides the minimum execution
time, since unnecessary coherence messages are completely
eliminated. Table 5 gives the execution time (in processor
cycles) for the applications evaluated when full-map
sharing code is used (column two) as well as the total
number of coherence events (column three), the number of
coherence events per cycle (column four), the average
number of messages sent per coherence event (column five),
and the parallel efficiency reached for each application
(column six).

Column 4 of Table 5 provides an insight into the use of
the directory information made by the applications. This
depends on the L2 cache miss rates found in each case, and
we can find that whereas some applications frequently
access directory information (for example, EM3D, FFT, or
UNSTRUCTURED) others, such as CHOLESKY and WATER-
SP, make a lower utilization of this resource. This usage
constitutes one of the parameters that influence the over-
head on the execution time introduced by the use of
compressed directories. Also, column 5 gives an approx-
imate measure of the fraction of unnecessary coherence
messages that will be sent using compressed directories.

Figs. 7 and 8 show the average number of coherence
messages sent per coherence event for the sharing codes
evaluated in this paper. This number has been normalized
with respect to that obtained with the full-map directory,
which is shown in Table 5 (column 5). Fig. 8 presents the
results obtained for those sharing codes requiring a greater
number of bits and, therefore, expected to be more accurate.
Whereas, Fig. 7 shows the results gained when the less
demanding sharing codes are employed. Additionally, for
the sake of completeness, Table 6 compares the sharing
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TABLE 5
Execution Times, Number of Coherence Events,
Number of Events per Cycle, Messages per Event, and
Parallel Efficiency for the Applications Evaluated, when
Full-Map Sharing Code Is Used

Application Cycles | Coherence events Events (x10%) Messages Parallel
%109 x10° per Cycle (x10%) | per event | efficiency

BARNES-HUT 33.99 204.02 6.00 2.15 31.82%
CHOLESKY 42.85 213.98 4.99 111 30.01%
EM3D 7.34 441.22 60.11 1.47 120.28%
FFT 15.19 712.48 46.90 1.00 81.26%

MP3D 71.22 1040.08 14.60 1.04 2.69%
OCEAN 80.88 976.35 12.07 1.08 60.64%
RADIX 12.72 337.46 26.53 1.04 57.62%
UNSTRUCTURED | 225.72 10532.46 46.66 1.10 15.15%
WATER-NSQ 32.96 314.04 9.53 1.41 43.03%
WATER-SP 29.24 55.92 191 742 41.78%

codes in terms of the percentage of bits that are saved
regarding full-map (see Section 3 for a detailed discussion).

As derived from Fig. 7, when a small sharing code is
employed, slight increases in the length of the sharing code
translates into significant reductions on the number of
unnecessary coherence messages in most cases. Completely
removing the sharing code (DirgB scheme) significantly
increases the number of messages that are sent on a coherence
event (up to 63 times more messages are sent for FFT). Using a
small sharing code as BT reduces this count, although much
more coherence messages are still sent (35 times more for
MP3D, 30 for WATER-NSQ and 23 for BARNES and RADIX).
Adding symmetric nodes to BT (which supposes just two
additional bits to the final size) obtains the best results,
reducing the count to less than 15 times more messages than a
full-map sharing code for all the applications but FFT and
MP3D.

On the other hand, for the most “memory consuming”
sharing codes, there is no unique sharing code which can
obtain the best results in all the cases. Whereas Dir;B
exhibits the poorest performance for all the applications,
coarse vector obtains the best results for BARNES and
WATER-SP, gray-tristate for CHOLESKY, EM3D, MP3D, UN-
STRUCTURED, and WATER-NSQ, and BT-SuT for FFT,
OCEAN, and RADIX. Now, having a greater number of bits
for codifying the sharing code does not necessarily imply
obtaining better results. For example, BT-SuT requires
approximately half the number of bits used by gray-tristate
and coarse vector.
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Fig. 7. Normalized number of messages per coherence event for Binary
Tree with Symmetric Nodes (BT-SN), Binary Tree (BT), and DiryB
sharing codes.
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Fig. 8. Normalized number of messages per coherence event for coarse
vector, gray-tristate, Binary Tree with Subtrees (BT-SuT), and Dir, B
sharing codes.

Comparing the different sharing codes in terms of the
number of messages that are sent per coherence event gives
an idea about their accuracy. However, the most important
metric is the impact on the application execution times.
Figs. 9 and 10 plot the execution times obtained for the
evaluated sharing codes. These times have also been
normalized with respect to the execution time obtained
for the full-map directory, so these graphs actually show the
overhead introduced by the appearance of unnecessary
coherence messages.

Although in most cases there is a correlation between the
increment in the number of unnecessary coherence mes-
sages observed in Figs. 7 and 8 and the performance
degradation shown in Figs. 9 and 10, there are some
situations in which this is not true. In particular, for OCEAN
and WATER-SP, the degradation observed in terms of
execution time when using DirgB is lower than that
obtained when using BT-SN. However, DiryB was shown
to send more messages than BT-SN on average. These
apparently incoherent results are a consequence of the
excessive number of coherence messages that must be sent
on every coherence event, most of which are indeed
unnecessary coherence messages. This excessive number
of coherence messages frequently exhausts the buffers in
the system (network and directory buffers) and causes that
some of the requests cannot be served by the corresponding
directory at a certain time, so they have to be retried. This
indeterministic behavior is commonly found in systems
excessively loaded.

As expected, application performance is significantly
degraded when DiryB, BT, or BT-SN sharing codes are used

TABLE 6
Number of Bits (%) that Are Saved when Each Compressed
Sharing Code Is Used Compared to Full-Map

[ Compressed sharing code | Size (bits) [ % bits saved |

DirgB 0 100%
BT 3 95.31%
BT-SN 5 92.19%
Dir B 7 89.06%
BT-SuT 9 85.93%
Gray-tristate 12 81.25%

Coarse Vector 16 75%
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Fig. 9. Normalized execution times for BT-SN, BT, and DiryB
codes.

sharing

(see Fig. 9). Application execution times are increased to
unacceptable levels when the DirgB scheme is applied. For
most applications, slowdowns of more than three are
suffered. This means that eliminating the sharing code
does not constitute an effective solution to the scalability
problem. As far as our schemes are concerned, BT obtains
the worst results for all applications except OCEAN. We can
see how the addition of such a small sharing code as BT
significantly reduces the penalty suffered by Dir,B for some
applications as CHOLESKY, EM3D, FFT, RADIX, and UN-
STRUCTURED. For these applications, the average number
of messages sent on a coherence event is much lower when
BT sharing code is employed. On the other hand, for
BARNES, MP3D, and WATER-NSQ, BT sharing code was
unable to reduce unnecessary coherence messages too
much, and slowdowns of more than 3 were still suffered.

Adding symmetric nodes to BT (BT-SN) reduces the
degradation observed for BT for some applications such as
BARNES, CHOLESKY, RADIX, UNSTRUCTURED, and WATER-
NSQ. For other applications such as EM3D and FFT, both BT-
SN and BT send approximately the same number of
messages on every coherence event (see Fig. 7) and similar
degradations are observed for both sharing codes. Finally,
MP3D performance is significantly degraded even when BT-
SN is used (a slowdown of more than three) and more
elaborated sharing codes are needed.

Regarding the binary tree with subtrees (BT-SuT), Fig. 10
shows how this sharing code significantly improves the
results obtained by BT-SN for all the applications. The
overhead introduced by BT-SuT scheme is small for
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Fig. 10. Normalized execution times for coarse vector, gray-tristate,
BT-SuT, and Dir, B sharing codes.
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CHOLESKY (1.04), EM3D (1.12), FFT (1.09), OCEAN (1.12),
RADIX (1.01), and UNSTRUCTURED (1.19). However, the
degradation introduced by this sharing code is still very
important for some other applications such as BARNES
(1.66), WATER-NSQ (1.39), WATER-SP (1.80) and, especially,
for MP3D (2.71).

Comparing the directory schemes presented in this work
with others previously proposed (Dir;B, coarse vector and
gray-tristate), we can observe that BT-SuT outperforms Dir; B
for all the applications. Both sharing codes have approxi-
mately the same length, however, BT-SuT makes more
effective use of the bits. For CHOLESKY, EM3D, FFT, OCEAN,
RADIX, and UNSTRUCTURED, BT-SuT, coarse vector and
gray-tristate obtain comparable numbers. For BARNES,
MP3D, WATER-NSQ, and WATER-SP, coarse vector obtains
better results than BT-SuT and gray-tristate, although the
differences are not very important. BT-SuT and gray-tristate
sharing codes reach very similar performance numbers for
these applications. In this way, we can conclude from Table 6
that BT-SuT achieves the best trade off between memory
overhead and performance degradation.

6.2 Two-Level Directories

Figs. 11,12, 13, and 14 show the normalized execution times
(with respect to the full-map directory) obtained with a two-
level directory architecture, using different compressed
sharing codes for the second-level directory. We evaluate
two sizes for the full-map (FM) first-level directory: 512 and
1,024 entries. We have chosen these values according to the L2
cache size (512 KB). Having a first-level directory with 512
and 1,024 full-map entries results in total sizes (excluding
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Fig. 12. Normalized execution times when the Binary Tree (BT) sharing
code is used for the second-level directory.
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Fig. 13. Normalized execution times when the Binary Tree with
Symmetric Nodes (BT-SN) sharing code is used for the second-level
directory.

tags) of 4 KB and 8 KB, respectively, which constitutes less
than 0.8 percent and 1.6 percent of the L2 cache size,
respectively.

First of all, we evaluate a directory architecture consisting
of just a directory cache. For this, we set DirB as the sharing
code for the second-level directory. Fig. 11 shows the
normalized execution times obtained with a directory
architecture combining both a directory cache of 512 and
1,024 entries and a DiroB second-level directory (DiryB +
DC(512) and DiryB + DC(1, 024), respectively). For compar-
ison purposes, results for DirgB are also included. We can
observe that, once a directory cache is used, the performance
overhead introduced by the lack of the sharing code almost
disappears for BARNES, EM3D, MP3D, UNSTRUCTURED,
WATER-NSQ, and WATER-SP, especially when 1,024 entries
are used for the first-level directory. Due to the locality
exhibited by these applications, directory references are
concentrated on a small number of memory lines whose
corresponding directory entries are frequently found in the
first-level directory. On the contrary, for the rest of the
applications having only a directory cache is not enough,
since it still introduces important performance penalties.

Fig. 12 presents the results obtained when the BT scheme
is utilized for the second-level directory. As can be
observed, the significant degradation introduced by such
an aggressive compressed sharing code is almost hidden by
the first-level directory, although 1,024 entries are needed.
These results are very promising, since the scalability of
multiprocessors can be significantly enhanced using such a
scalable compressed directory while performance is kept
almost intact due to the presence of the first-level directory.
Nevertheless, FFT, OCEAN, and RADIX still present some
performance degradation, which may indicate that BT
could be too aggressive for the second level.

Fig. 13 shows the performance of the two-level directory
when the BT-SN sharing code is considered for the
compressed structure. As shown in Fig. 13, changing to
BT-SN sharing code for the second-level directory has a
minor impact on the final performance of FFT and OCEAN
and the degradation numbers previously observed are also
obtained. However, using BT-SN as the sharing code for the
second-level directory in RADIX, significantly reduces the
degradation previously reported, although 1,024 entries in
the first level are needed.
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Fig. 14. Normalized execution times when the Binary Tree with Subtrees
(BT-SuT) sharing code is used for the second-level directory.

Finally, Fig. 14 depicts the same results when BT-SuT is
considered for the second-level directory. Observe that
using just 512 entries in the first level (which constitutes less
than 0.8 percent of the L2 cache size) practically eliminates
the penalty introduced by BT-SuT compressed sharing
code, and the performance of a full-map directory is
reached.

7 CONCLUSIONS

One important issue the designer of a scalable shared-
memory multiprocessor must deal with is the amount of
extra memory required to store the directory information. It
is desirable that the directory memory overhead be kept as
low as possible, and that it scales very slowly with the size
of the machine. Unfortunately, current directory architec-
tures provide scalability at the expense of performance. This
work presents a scalable directory architecture which
significantly reduces the size of the directory for large-scale
configurations of a multiprocessor without degrading the
performance.

First, the multilayer clustering concept is introduced and
from it, three new compressed sharing codes are derived.
Binary tree, binary tree with symmetric nodes, and binary tree
with subtrees are proposed as new compressed sharing codes
with less memory requirements than existing ones. Com-
pressed sharing codes reduce the directory entry width
associated with a memory line, by having an in-excess
representation of the nodes holding a copy of this line.
Unnecessary coherence messages degrading the perfor-
mance of directory protocols appear as a result of this
inaccurate way of keeping track of the sharers. A compar-
ison between our three proposals and full-map sharing code
is carried out to evaluate such a degradation. Also, a
comparison with three of the most relevant existing
compressed sharing codes, coarse vector, Dir1B, and gray-
tristate, is presented. Results show that compressed direc-
tories slowdown application performance due to the
presence of unnecessary coherence messages. Despite this
degradation, the proposed scheme BT-SuT achieves a better
trade off between performance penalty and memory over-
head than previously proposed compressed sharing codes.

Then, we propose a novel directory architecture to
alleviate the performance penalty introduced by com-
pressed sharing codes. Two-level directory architectures
combine a very small uncompressed first-level structure
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(full-map directory) with a second-level compressed struc-
ture. Results for this directory organization show that a
two-level directory combining both a small first-level
directory and a BT-SuT second-level directory can achieve
the performance figures obtained by a system which uses a
big and nonscalable full-map directory, and drastically
reduces memory requirements for the directory. Addition-
ally, due to the small size of BT-5uT, the need of external
storage for the second level could be avoided since, as in
[16] and [34], it could be directly stored in main memory by
computing ECC at a coarser granularity and utilizing the
unused bits. This approach leads to lower cost by requiring
fewer components and pins, and provides a simpler system
scaling.

Finally, it is sure that chip multiprocessing (CMP) will
increase the total number of CPUs that cc-NUMA multi-
processors can offer at a reasonable price. In this way,
directory memory overhead will continue to be a prevalent
problem. In this context, we are currently studying a CMP
architecture in which every CPU has its own first-level
directory, which quickly provides precise sharing informa-
tion for a subset of the memory lines it is working on,
whereas the compressed second-level directory, which is
kept in main memory, is shared between all the cores.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous referees for
their detailed comments and valuable suggestions, which
have helped to improve the quality of the paper. This
research has been carried out using the resources of the
Centre de Computacié i Comunicacions de Catalunya
(CESCA-CEPBA) as well as the SGI Origin 2000 of the
Universitat de Valencia. This work has been supported in
part by the Spanish Ministry of Ciencia y Tecnologia and
the European Union (Feder Funds) under grant TIC2003-
08154-C06-03. José Duato was supported in part by a
fellowship from the Fundacién Séneca (Comunidad Autén-
oma de Murcia, Spain).

REFERENCES

[1] J. Goodman, “Using Cache Memories to Reduce Processor-
Memory Traffic,” Proc. Int'l Symp. Computer Architecture (ISCA
’83), June 1983.

[2] J. Duato, S. Yalamanchili, and L. Ni, Interconnection Networks: An
Engineering Approach. Morgan Kaufmann Publishers, Inc., 2002.

[3] L. Censier and P. Feautrier, “A New Solution to Coherence
Problems in Multicache Systems,” IEEE Trans. Computers, vol. 27,
no. 12, pp. 1112-1118, Dec. 1978.

[4] S.S. Mukherjee and M.D. Hill, “An Evaluation of Directory
Protocols for Medium-Scale Shared-Memory Multiprocessors,”
Proc. Eighth Int’l Conf. Supercomputing (ICS '94), pp. 64-74, July
1994.

[5] D.E. Culler, J.P. Singh, and A. Gupta, Parallel Computer Architec-
ture: A Hardware/Software Approach. Morgan Kaufmann Publishers,
Inc., 1999.

[6] J. Laudon and D. Lenoski, “The SGI Origin: A ccNUMA Highly
Scalable Server,” Proc. 24th Int’l Symp. Computer Architecture (ISCA
'97), pp- 241-251, June 1997.

[71 M.A. Heinrich, “The Performance and Scalability of Distributed
Shared Memory Cache Coherence Protocols,” PhD thesis, Stan-
ford Univ., 1998.

[8] A. Gupta, W.-D. Weber, and T. Mowry, “Reducing Memory and
Traffic Requirements for Scalable Directory-Based Cache Coher-
ence Schemes,” Proc. Int’l Conf. Parallel Processing (ICPP ’'90),
pp- 312-321, Aug. 1990.

]

(10]

(11]

[12]

(13]

(14]

(15]

[10]

[17]

(18]

(19]

(20]

[21]

(22]

(23]

[24]

[25]

[26]

(27]

(28]

(29]

[30]

JANUARY 2005

B. O'Krafka and A. Newton, “An Empirical Evaluation of Two
Memory-Efficient Directory Methods,” Proc. 17th Int’l Symp.
Computer Architecture (ISCA '90), pp. 138-147, May 1990.

M.E. Acacio, ]J. Gonzélez, ].M. Garcia, and ]. Duato, “A New
Scalable Directory Architecture for Large-Scale Multiprocessors,”
Proc. Seventh Int’l Symp. High Performance Computer Architecture
(HPCA-7), pp. 97-106, Jan. 2001.

D. Gustavson, “The Scalable Coherent Interface and Related
Standards Projects,” IEEE Micro, vol. 12, no. 1, pp. 10-22, Jan./Feb.
1992.

Y. Chang and L. Bhuyan, “An Efficient Hybrid Cache Coherence
Protocol for Shared Memory Multiprocessors,” IEEE Trans.
Computers, vol. 48, no. 3, pp. 352-360, Mar. 1999.

H. Nilsson and P. Stenstrom, “The Scalable Tree Protocol—A
Cache Coherence Approach for Large-Scale Multiprocessors,”
Proc. Fourth Int’l Symp. Parallel and Distributed Processing (SPDP
'92), pp. 498-506, Dec. 1992.

T. Lovett and R. Clapp, “Sting: A cc-NUMA Computer System for
the Commercial Marketplace,” Proc. 23rd Int'l Symp. Computer
Architecture (ISCA '96), pp. 308-317, 1996.

Convex Computer Corp., Convex Exemplar Architecture, dhw-014
ed., Nov. 1993.

L.A. Barroso, K. Gharachorloo, R. McNamara, A. Nowatzyk, S.
Qadeer, B. Sano, S. Smith, R. Stets, and B. Verghese, “Piranha: A
Scalable Architecture Based on Single-Chip Multiprocessing,”
Proc. 27th Int’l Symp. Computer Architecture (ISCA "00), pp. 282-293,
June 2000.

K. Gharachorloo, M. Sharma, S. Steely, and S.V. Doren, “Archi-
tecture and Design of Alphaserver GS320,” Proc. Int’l Conf.
Architectural Support for Programming Languages and Operating
Systems (ASPLOS IX), pp. 13-24, Nov. 2000.

T. Hosomi, Y. Kanoh, M. Nakamura, and T. Hirose, “A DSM
Architecture for a Parallel Computer CENJU-4,” Proc. Sixth Int’l
Symp. High Performance Computer Architecture (HPCA-6), pp. 287-
298, Jan. 2000.

A. Gupta and W.-D. Weber, “Cache Invalidation Patterns in
Shared-Memory Multiprocessors,” IEEE Trans. Computers, vol. 41,
no. 7, pp. 794-810, July 1992.

A. Agarwal, R. Simoni, J. Hennessy, and M. Horowitz, “An
Evaluation of Directory Schemes for Cache Coherence,” Proc. 15th
Int’l Symp. Computer Architecture (ISCA '88), pp. 280-289, May
1988.

D. Chaiken, J. Kubiatowicz, and A. Agarwal, “Limitless Direc-
tories: A Scalable Cache Coherence Scheme,” Proc. Int’l Conf.
Architectural Support for Programming Languages and Operating
Systems (ASPLOS 1V), pp. 224-234, Apr. 1991.

R. Simoni and M. Horowitz, “Dynamic Pointer Allocation for
Scalable Cache Coherence Directories,” Proc. Int’l Symp. Shared
Memory Multiprocessing, pp. 72-81, Apr. 1991.

A. Agarwal, R. Bianchini, D. Chaiken, K.L. Johnson, D. Kranz, ]J.
Kubiatowicz, B.-H. Lim, K. Mackenzie, and D. Yeung, “The MIT
Alewife Machine: Architecture and Performance,” Proc. 22nd Int’l
Symp. Computer Architecture (ISCA '95), pp. 2-13, May/June 1995.
J.H. Choi and K.H. Park, “Segment Directory Enhancing the
Limited Directory Cache Coherence Schemes,” Proc. 13th Int’l
Parallel and Distributed Processing Symp. (IPDPS "99), pp. 258-267,
Apr. 1999.

R. Simoni, “Cache Coherence Directories for Scalable Multi-
processors,” PhD thesis, Stanford Univ., 1992.

A K. Nanda, A.-T. Nguyen, M.M. Michael, and D.J. Joseph, “High-
Throughput Coherence Control and Hardware Messaging in
Everest,” IBM |. Research and Development, vol. 45, no. 2, pp. 229-
244, Mar. 2001.

M.M. Michael and A K. Nanda, “Design and Performance of
Directory Caches for Scalable Shared Memory Multiprocessors,”
Proc. Fifth Int’l Symp. High Performance Computer Architecture
(HPCA-5), pp. 142-151, Jan. 1999.

C.J. Hughes, V.S. Pai, P. Ranganathan, and S.V. Adve, “RSIM:
Simulating Shared-Memory Multiprocessors with ILP Proces-
sors,” Computer, vol. 35, no. 2, pp. 40-49, Feb. 2002.

M.D. Hill, “Multiprocessors Should Support Simple Memory-
Consistency Models,” Computer, vol. 31, no. 8, pp. 28-34, Aug.
1998.

S.C. Woo, M. Ohara, E. Torrie, ]J.P. Singh, and A. Gupta, “The
Splash-2 Programs: Characterization and Methodological Con-
siderations,” Proc. 22nd Int’l Symp. Computer Architecture (ISCA
'95), pp. 24-36, June 1995.



ACACIO ET AL.: A TWO-LEVEL DIRECTORY ARCHITECTURE FOR HIGHLY SCALABLE CC-NUMA MULTIPROCESSORS 79

[31] D.E. Culler, A. Dusseau, S.C. Goldstein, A. Krishnamurthy, S.
Lumetta, S. Luna, T. von Eicken, and K. Yelick, “Parallel
Programming in Split-C,” Proc. Int'l SC1993 High Performance
Networking and Computing Conf., pp. 262-273, Nov. 1993.

[32] ]. Singh, W.-D. Weber, and A. Gupta, “Splash: Stanford Parallel
Applications for Shared-Memory,” Computer Architecture News,
vol. 20, no. 1, pp. 5-44, Mar. 1992.

[33] S.S. Mukherjee, S.D. Sharma, M.D. Hill, ].R. Larus, A. Rogers, and
J. Saltz, “Efficient Support for Irregular Applications on Dis-
tributed-Memory Machines,” Proc. Fifth Int'l Symp. Principles &
Practice of Parallel Programming (PPOPP ’'95), pp. 68-79, July 1995.

[34] A. Nowatzyk, G. Aybay, M. Browne, E. Kelly, M. Parkin, W.
Radke, and S. Vishin, “The S3.MP Scalable Shared Memory
Multiprocessor,” Proc. Int’l Conf. Parallel Processing (ICPP '95),
pp- 1-10, July 1995.

Manuel E. Acacio received the MS and PhD
degrees in computer science from the Universi-
dad de Murcia, Spain, in 1998 and 2003,
respectively. He joined the Computer Engineer-
ing Department, Universidad de Murcia, in 1998,
where he is currently an assistant professor of
computer architecture and technology. His re-
search interests include prediction and specula-
tion in multiprocessor memory systems,
multiprocessor-on-a-chip architectures, and
power-aware cache-coherence protocol design.

José (Pepe) Gonzalez received the MS and
PhD degrees from the Universitat Politecnica de
Catalunya (UPC). In January 2000, he joined the
Computer Engineering Department of the Uni-
versity of Murcia, Spain, and became an
associate professor in June 2001. In March
2002, he joined the Intel Barcelona Research
Center, where he is a senior researcher.
Currently, he is working in new paradigms for

A the IA-32 family, in particular, thermal and
power-aware clustered microarchitectures. He is a member of the IEEE
Computer Society.

José M. Garcia received the MS and the PhD
degrees in electrical engineering from the Tech-
nical University of Valencia (Spain), in 1987 and
1991, respectively. Currently, Dr. Garcia is a
professor in the Computer Engineering Depart-
ment at the Universidad de Murcia (Spain), and
also the head of the research group on parallel
computing architecture. He specializes in com-
puter architecture, parallel processing, and inter-
connection networks. He has developed several
courses on computer structure, peripheral devices, computer architec-
ture, and multicomputer design. Dr. Garcia served as vice-dean of the
School of Computer Science from 1995 to 1997, and also as director of
the Computer Engineering Department from 1998 to 2004. His current
research interests lie in high-performance coherence protocols for
shared-memory multiprocessor systems, and high-speed interconnec-
tion networks. He has published more than 60 refereed papers in different
journals and conferences in these fields. Dr. Garcia is member of several
international associations such as the IEEE and ACM, and also member
of some European associations (Euromicro and AT]).

José Duato received the MS and PhD degrees
{ \ in electrical engineering from the Technical

University of Valencia, Spain, in 1981 and
1985, respectively. Currently, Dr. Duato is a
professor in the Department of Computer En-
gineering (DISCA) at the same university. He
was also an adjunct professor in the Department
of Computer and Information Science, The Ohio
State University. His current research interests
include interconnection networks, multiproces-
sor architectures, networks of workstations, and switch fabrics for IP
routers. He has published more than 250 refereed papers. He proposed
the first theory of deadlock-free adaptive routing for wormhole networks.
Versions of this theory have been used in the design of the routing
algorithms for the MIT Reliable Router, the Cray T3E supercomputer,
the internal router of the Alpha 21364 microprocessor, and the
BlueGene/L supercomputer. Professor Duato is the first author of the
book Interconnection Networks: An Engineering Approach. This book
was coauthored by Professor Sudhakar Yalamanchili, from the Georgia
Institute of Technology, and Professor Lionel Ni, from Michigan State
University. Dr. Duato served as a member of the editorial boards of IEEE
Transactions on Parallel and Distributed Systems and IEEE Transac-
tions on Computers. He has been the general cochair for the 2001
International Conference on Parallel Processing and is the program
committee chair for the Tenth International Symposium on High
Performance Computer Architecture (HPCA-10). Also, he served as
cochair, member of the steering committee, vice-chair, or member of the
program committee in more than 40 conferences, including the most
prestigious conferences in his area (HPCA, ISCA, IPPS/SPDP, ICPP,
ICDCS, Europar, HiPC). He is a member of the IEEE.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.



