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Abstract. In a near future, the access time to main memory will be
of several hundreds of processor cycles. This trend will be especially
problematic for multiprocessors, which have been traditionally used to
solve scientific problems, as the distance between processor and main
memory is typically larger than in the monoprocessor case. Maybe, the
most promissing technique to alleviate the increasing distance to mem-
ory is having processors with thousands of instructions in flight. One
alternative to achieve this is by increasing the size of the reorder buffer
structure and the number of physical registers. However, it is virtually
impossible to increase the size of these hardware resources without affect-
ing the clock cycle with current fabrication and integration techniques.
Another approach is to aggresively exploit the thread-level parallelism
by means of the thread-level speculation paradigm. In this paper, we de-
scribe this paradigm and review the state-of-the-art of several implemen-
tations based on chip-multiprocessors that use it, covering both research
prototypes and commercial products.

1 Introduction

Complex scientific problems have been traditionally solved making use of mid-
and large-range multiprocessors. However, in a near future the performance of
multiprocessors will be significantly impacted by the increasing distance to mem-
ory. This high latency will be mainly motivated by the duration of the processor
cycle, which is reduced continuously, and the response time of the logic used to
implement the memory [1]. In this scenario, it is essential the development of
techniques capable of parallelizing the accesses to main memory, in order to hide
memory latency.

Superscalar processors are a common approach when high performance com-
puting is required. These processors try to exploit the Instruction Level Paral-
lelism (ILP) by issuing several instructions each cycle. Currently, most multi-
processors use superscalar processors as their processing elements. However, the
complexity of the issue logic and the data dependencies will limit the perfor-
mance of these processors in a near future.

One approach we can consider in order to overcome the limitations of su-
perscalar processors is incrementing the number of entries of the reorder buffer



and the size of the associated resources, such as the physical register file and
the instruction queues, by a factor of 1000. In this way, we would get one or
two thousand instructions in flight, and consequently, the increased memory la-
tencies could be tolerated, as we will see later. However, this technique has a
fundamental drawback: increasing the size of the resources in this way would
increment the duration of the clock cycle drastically, as the complexity of the
logic needed grows with the number of entries of the reorder buffer and physical
registers implemented.

Very Long Instruction Word (VLIW) processors are another architecture ap-
peared in the last decade. This type of processors uses long instructions made
up of several shorter instructions that execute in parallel. Both superscalar and
VLIW processors try to extract instruction-level parallelism (ILP) in order to
reduce the execution time of the applications; however, typical integer scientific
programs have very low ILP, so other forms of parallelization are needed to
achieve the performace required by these problems. Therefore, we must consider
a couple of alternative high-performance architectures with lower cost and com-
plexity that are suitable for solving medium- and low-sized scientific problems
and, at the same time, increase the memory-level parallelism as a way to tolerate
the latency of future computers.

Simultaneous MultiThreading (SMT) is a novel technique aimed at maxi-
mizing on-chip parallelism. A SMT core allows to issue instructions belonging to
several independent threads to multiple functional units each cycle. Using this
mechanism, it is possible to outperform the instruction throughput of a single-
threaded wide superscalar, increasing the utilization of the execution units. As
an example, this technique has been recently adopted in the POWERS processor
design [2].

Finally, Thread-Level Speculation (TLS) allows to extract speculative paral-
lelism from sequential applications. TLS has been successfully used in the par-
allelization of some benchmarks such as SPEC95 and SPEC2000 suites, what
allows their execution on a single-chip multiprocessor [3]. A single-chip multi-
processor [4,5], also called Chip-Multiprocessor or CMP, is a multiprocessor ar-
chitecture in which several processor cores are integrated in a single-chip. CMPs
are a promising approach in order to execute sequential (making use of a par-
allelization technique as TLS) and parallel scientific applications, providing the
benefits of traditional multiprocessors at a lower cost, and incrementing in a nat-
ural way the number of instructions executed simultaneously. Thus, the use of
TLS and CMPs for sequential applications and CMPs alone for parallel applica-
tions appears as a promising approach to solve medium-sized scientific problems
and, at the same time, tolerate the high main memory latencies of future com-
puters.

The rest of the paper is organized as follows. Section 2 analyzes the problem
of the memory latency and presents how it affects the performance of future
multiprocessors, for which two well-known scientific applications are employed.
Then, Section 3 describes the state-of-the-art in thread-level speculation and



chip-multiprocessors. Finally, Section 4 presents the conclusions and outlines
our ongoing work on this issue.

2 The problem of main memory latency

As we described in Section 1, one of the problems of future computers, espe-
cially in the case of multiprocessors, will be the access time to main memory. In
order to analyze the importance of this problem, in this section we character-
ize the execution time of two scientific applications running on a cache-coherent
NonUniform Memory Access Multiprocessor (also known as cc-NUMA multipro-
cessor) under two different scenarios: a multiprocessor with a memory latency
of 80 cycles and a multiprocessor with a latency of 500 cycles, which tries to
approximate the situation that will be found in a near future.

The applications we have chosen are FFT and Radix from the SPLASH-2
benchmark suite [6]. The FFT kernel is a complex 1-D version of the radix-y/n
six-step algorithm. The data sets consists of the n complex data points to be
transformed, and another n complex data points referred to as the roots of unity.
Both sets of data as organized as \/n x /n matrices partitioned so that every
processor is assigned a contiguous set of rows which are allocated in its local
memory. Radix is a sort iterative kernel, performing one iteration for each radix
r digit of the keys. In each iteration, a processor passes over its assigned keys
and generates a local histogram. The local histograms are then accumulated into
a global histogram. Finally, each processor uses the global histogram to permute
its keys into a new array for the next iteration.

To perform the simulations, we have used the Rice Simulator for ILP Mul-
tiprocessors (RSIM), a detailed execution-driven simulator [7]. RSIM models an
out-of-order superscalar processor, a two-level cache hierarchy, a split-transaction
bus on each processor node, and an aggressive memory and multiprocessor in-
terconnection network. We have simulated four different architectures: two of
them have a memory access time of 80 cycles, while for the other two accessing
main memory takes 500 cycles. Each architecture consists of four identical nodes
(each one containing a MIPS R10000-like processor) interconnected by a mesh
network. In each group, we have studied a base case in which all the proces-
sors are configured with a number of resources typical in superscalar processors
(base), and a configuration with an unrealistic processor, which has 2048 entries
for the ROB and 1024 entries for the load/store queue (kilo). These four ar-
chitectures are aimed at analyzing the influence that the increasing distance to
memory will have on a typical multiprocessor in a near future.

Figure 1 shows the execution times that are obtained for each one of the
configurations for both FFT and Radix. Execution times have been normalized
with respect to those that are obtained for the base case when the 80-cycle main
memory is used, which represents a contemporary multiprocessor configuration.
As it can be observed, execution times have been split in several components
according to the time that the CPU has been busy, the time that the program



has spent reading at the L1 cache, and so on. We only show the components
that have a significant contribution.

As we can see in Figure 1(a), the execution time grows by a factor of 3
approximately for FFT when the memory latency is 500 cycles. As observed,
now most of the time is spent reading from memory. This degradation is reduced
when the kilo configuration is used. Having a thousand instructions in flight in
FFT can hide most of the degradation introduced by the slower main memory.
Similarly, Figure 1(b) presents the results that are obtained for Radix. As it can
be derived from it, although the two configurations help to tolerate the increased
distance to memory, significant degradation is still observed.
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Fig. 1. Normalized execution times for FFT and Radix.

This simple experiment demonstrates that increased memory latency that
will be observed in future multiprocessors will have an important impact on
applications’ performance and part of the degradation can be hidden by having
a large number of instructions in flight. In the next section, two techniques are
reviewed that can help us to alleviate this problem by incrementing the number
of instructions executing simultaneously.

3 Thread-Level Speculation and Chip-Multiprocessors

Recently, several proposals have been made to take advantage of current integra-
tion scale and fabrication techniques. We will focus on those proposals aimed at
increasing the performance of the microprocessor and, in some extent, reducing
the penalty incurred when accessing main memory.

The first approach consists in exploiting the ILP showed by certain sequential
and parallel applications. While some authors propose to increase the number
of instructions issued each cycle [8], other authors present out-of-order commit
processors as an alternative design of a processor with several thousands of
instructions in-flight [9].



Other proposals exploit the Thread-Level Parallelism (TLP) concept. This
type of parallelism is based on executing several control threads simultaneously,
achieving similar results to those obtained with a processor with a very large in-
struction window, but having several small instruction windows (one per thread)
working together in the same application.

Although TLP is a good choice to parallelize sequential applications, data
and control dependences (usually found in integer scientific applications) hurt
the performance that can achieved with this technique. One way to increase the
multithread parallelism performance provided by TLP is by using the Thread-
Level Speculation (TLS) paradigm, which attempts to split the program into
several threads in a speculative way starting from a spawning point (which is
usually a data operation or a subroutine call).

Simultaneous MultiThreading (SMT) architecture [10] allows a more efficient
use of the issue width of superscalar processors by executing instructions of
multiple control threads concurrently. The selection of these instructions is per-
formed dynamically, so processor’s resources are generally used better. At the
same time, the instruction latency incurred in a cache miss or motivated by
a true data dependence is hidden through the execution of instructions avail-
able at another thread. An SMT processor behaves like a traditional superscalar
processor when the application does not contain several threads.

Finally, the chip-multiprocessing approach proposes to integrate several sim-
ple processor cores onto a single chip. A CMP can be used to execute multi-
programmed scientific workloads, as the independent tasks execute in parallel
in several processors. On the other hand, if the execution time of a sequential
program is to be reduced, it is necessary to apply a parallelization technique,
which will be typically TLS. CMPs are simpler and easier to design and imple-
ment than SMT processors (which are more flexible), so they constitute a very
promissing architectural option of making use of the several billions of transistors
that will be packed into a single chip in a near future.

One of the first chip-multiprocessor prototypes suggested in the literature is
the Hydra single-chip multiprocessor [4]. This CMP integrates four cores similar
to the Alpha 21064, a shared L2 cache of 256 KB and a crossbar to access the
cache. Its performace is compared that achieved by a superscalar processor sim-
ilar to the MIPS R10000 in [11]. With benchmarks belonging to the SPECint92,
SPECint95 and SPECfp95 suites, the speed-up obtained with the CMP ranges
from 50% to 100%. Other papers of the same authors focus on control and data
speculation required to maximize the performance in this type of architecture
[12,13]. In [13], Hammond et al. describe the whole implementation of the thread-
level speculation support included in the Hydra CMP (basically a set of handlers
for the control speculation and some changes in the L2 cache).

The Piranha system [5] is a research prototype developed at Compaq that
exploits chip multiprocessing by integrating eight simple Alpha processor cores
along with a two-level cache hierarchy onto a single chip. Piranha also integrates
on-chip functionality to allow for scalable processor configurations to be built in
a modular fashion. This CMP has been specifically designed to execute commer-



cial workloads such as On-Line Transaction Processing (OLTP) or Decision Sup-
port Systems (DSS). The simulation results that the authors present show that
while each Piranha processor core is slower than a next-generation processor,
the integration of eight cores onto a single chip allows the CMP to outperform
the complex next-generation processor by up to 2.9 times on workloads such as
OLTP.

The STAMPede project [14] investigates the architectural, compiler, and OS
support necessary to effectively exploit single-chip multiprocessors. In [15], the
authors propose the Thread-Level Data Speculation (TLDS) technique, in which
the memory access operations (usually the loads) are executed speculatively but
in different threads. The authors simulate applications of the SPEC92, SPEC95
and NAS Parallel suites over a single-chip multiprocessor composed of four cores.
Their technique is extended in [3,16] to make it feasible for medium and large-
scale machines, and in [17,18] to improve the value communication between
threads. In these papers, the authors simulate different benchmarks from the
SPEC2000 suite over a multi-node architecture in which every node is a CMP
with one, two, four or eight processor cores.

Multiscalar processors [19] use an implementation paradigm designed to ex-
tract ILP from programs written in high-level programming languages. This was
one of the first proposals related to thread-level parallelism, and the authors
exposed here the need to introduce speculation in order to improve the perfor-
mace achieved with TLP. In general terms, a multiscalar processor is composed
of several processing units with a sequencer which assigns tasks (a set of instruc-
tions) to the processing units. The process of parallelizing the applications relies
mainly on the hardware, in contrast to the STAMPede project, where part of
the responsibility is assigned to the compiler.

More recently, Zilles and Sohi presented the Master/Slave Speculative Paral-
lelization (MSSP) as a paradigm which improves the execution rate of sequential
programs by parallelizing them speculatively [20]. With this paradigm, a master
processor executes an approximate version of the program speculatively, in order
to calculate a couple of values that the whole program will use. This values are
checked by the slave processors, that execute the original program. Each slave
processor uses the values calculated by the master in order to validate the values
of the next task, so the whole execution is validated inductively.

The MIT Multi-ALU processor (MAP) [28] is designed to extract thread-
level parallelism, with a number of instructions between 50 and 1000 belonging
to each thread. This system provides three processors integrated onto the chip
and support for fast communication and synchronization between them. A thread
executing in a processor can write a register belonging to the other two proces-
sors. The threads synchronize themselves by blocking in the destination register
of a remote write or by executing a fast barrier instruction. The MAP chip is
divided into three clusters of execution, a unified cache split into three banks, a
memory interface and a communication subsystem with two network interfaces
and a router. It is possible to connect several MAP chips directly or using a
bi-dimensional mesh in order to construct the M-Machine multicomputer.



Another approach was proposed in [21]. It is based on a processor able to ex-
ecute several threads speculatively in parallel from a sequential application over
a clustered architecture. In a clustered architecture some critical components are
organized in smaller processing units named clusters [22]. The proposed archi-
tecture consists of a number of thread units, being each unit very similar to
a superscalar processor, with an additional set of registers used to communi-
cate values between independent thread units. The thread-level parallelism is
extracted at execution time, so there is no need to modify the compiler nor the
ISA of the architecture. In [23], the same authors propose a mechanism based on
profiling to detect what are the best instructions to create new threads and where
the execution of the new thread has to start. This mechanism outperforms by
approximately 20% other similar proposals aimed at parallelizing speculatively
a sequential program.

The Superthreaded architecture [26,27] exploits the task-level parallelism with
multiple control threads. In its general form, a superthreaded processor consists
of several thread processing units connected together through a unidirectional
ring. The execution of each thread is split in several stages, each of which per-
forms a specific function. This type of architecture relies on the compiler to
extract thread-level parallelism.

Finally, other authors propose to extract thread-level parallelism from the
binary code of sequential applications. This is interesting in those cases in which
the source code of the application is not available, as a chip-multiprocessor ar-
chitecture is only effective if the program is compiled in order to allow the specu-
lative execution of parallel threads. In [24,25], the authors simulate applications
from the SPEC92 and SPEC95 benchmark suites over a CMP with 4 MIPS
R10000 processors, achieving an IPC 1.8 times greater than with a superscalar
processor with an issue-width of 12 instructions. The Atlas single-chip multipro-
cessor [29] is another project that focuses on aggressive speculation techniques
designed to allow the dynamic parallelization of the binary code of sequential ap-
plications with irregular data structures. The chip integrates eight cores sharing
a global L2 cache and a control and value predictor. The processors communicate
with the global structures through two shared buses: one is used to access the
L2 cache and the other to communicate control and data predictions. Regarding
the processors, they are communicated using a pipelined bidirectional ring. The
processor architecture is similar to the Alpha 21164 one.

While all the previous proposals are academical prototypes, there are several
commercial implementations and future releases of single-chip multiprocessors.
The IBM POWERA4 chip [30] was the first commercial implementation of a CMP.
The chip has two processors on board, including the various execution units
and the split first level instruction and data caches. The two processors share
a unified second level cache (implemented as three separate cache controllers)
through a Core Interface Unit (CIU), a crossbar switch between the L2 and the
two processors. Four POWERA4 chips can be packaged on a single module to
form an 8-way Symmetrical MultiProcessor (SMP). Four such modules can be



interconnected to form a 32-way SMP. This can be accomplished via five primary
interfaces integrated onto the chip.

Recently, HP has released the PA-8800 processor, that integrates two PA-
8700 processor cores. Each core has private first level instruction and data caches
with a size of 768 KB each one. Regarding the L2 cache, it is a 32 MB off-chip
shared cache. The cache is 4-way set associative and with a line size of 128 bytes.

The Sun UltraSparc IV system [31] is a two-cored version of the UltraSparc
III. The size of the off-chip L2 cache is 16 MB, although each core is able to
access only 8 MB. The cache line size is 128 bytes, 4 times smaller than the
UltraSparc III one. In a second generation (expected in 2005), the on-chip L2
cache will have 4 MB, and will be shared by the two processors.

There are also two implementations that will be released in a near future.
The first of them is the IBM POWERS [2], a natural extension to the POWERA4.
The main differences with respect to the POWER4 will be the increase of the
shared L2 cache, with a total size of 1.92 MB, and the off-chip L3 cache, with
a size of 36 MB. This processor will be able to manage a physical memory of 1
TByte. It has been also implemented the Simultaneous MultiThreading (SMT)
technique in each core, so it is possible to have two virtual processors for each
real processor.

Finally, the Fujitsu SPARC64 VI processor will be based on the SPARC64 V
core, but integrating two cores onto the chip. The processor will have first level
instruction and data caches of 128 KB for each core, while the unified second
level cache of 6 MB will be shared and integrated onto the chip. The clock
frequency will be in a first version of 2.4 Ghz, and the announced release date
is the beginning of 2006.

4 Conclusions

In a near future, the access time to main memory will be of several hundreds of
cycles. This trend will be especially problematic for multiprocessors, which have
been traditionally used to solve complex scientific problems, as the distance be-
tween processor and main memory is typically larger than in the monoprocessor
case.

One way of tolerating part of the distance to memory problem is by increasing
the number of instructions that are simultaneously accessing memory. In the
context of a multiprocessor made up of several superscalar microprocessors, this
could be achieved by scaling up the number of resources in critical processor’s
structures such as the ROB or the physical register file. However, this would
have negative effects in the clock cycle duration.

Thread-level speculation appears as a promising approach in order to par-
allelize sequential scientific applications, and at the same time, solve in some
extent the problem of the memory latency. In this paper, we have reviewed sev-
eral of the proposals made in this field, corroborating that this technique is very
suitable when these sequential applications are to be executed over a single-chip
multiprocessor. The importance of the CMP architecture has grown in the last



years, and the number of current and future commercial implementations indi-
cate that chip-multiprocessors will be one of the most important architectures
in the future.

At this time, we are developing a CMP simulator based on RSIM. We plan
to study memory behavior and contention at some resources that is motivated
by the use of several processors in a single die. In many of the proposals we
have reviewed in this paper, the processors share a monolithic L2 cache through
a bus which connects the private L1 caches to this single L2 cache. However,
the integration into a single chip of eight or more processor cores could colapse
a traditional bus or cache structure, and clever memory organizations could be
required.
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