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ABSTRACT
In this paper we introduce DualFS, a new high performance
journaling file system that puts data and meta-data on dif-
ferent devices (usually, two partitions on the same disk or on
different disks), and manages them in very different ways.
Unlike other journaling file systems, DualFS has only one
copy of every meta-data block. This copy is in the meta-
data device, a log which is used by DualFS both to read and
to write meta-data blocks. By avoiding a time-expensive
extra copy of meta-data blocks, DualFS can achieve a good
performance as compared to other journaling file systems.
Indeed, we have implemented a DualFS prototype, which
has been evaluated with microbenchmarks and macrobench-
marks, and we have found that DualFS greatly reduces the
total I/O time taken by the file system in most cases (up to
97%), whereas it slightly increases the total I/O time only
in a few and limited cases.

Categories and Subject Descriptors
D.4.3 [Operating Systems]: File Systems Management—
directory structures, file organization; D.4.2 [Operating Sys-
tems]: Storage Management—secondary storage; E.5 [Data]:
Files—backup/recovery, organization/structure

General Terms
Design, Performance, Reliability

Keywords
DualFS, journaling file system, meta-data management

1. INTRODUCTION
Meta-data management is one of the most important is-

sues to be taken into account in the design of a file system.
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This management is especially important when the file sys-
tem has to be recovered after a system crash, because it
must be possible to bring the file system to a consistent
state again. In order to guarantee this, file systems have
traditionally written meta-data in a synchronous way, and
have used tools (like fsck [11]) which scan the entire disk,
after a crash, to solve potential inconsistencies.

The problem with fsck-like tools is that they can take a
long time to scan an entire disk due to the large capacity
of the current disks. In recent years, several solutions have
been proposed [4, 18, 19, 26, 29] that keep some kind of log
of the last meta-data updates, what allows us to recover the
file system consistency quickly by analyzing only that log.

The synchronous write problem has also been studied at
length [5, 6, 23]. Synchronous writes are used to enforce
a specific order among meta-data writes. However, they
downgrade the file system performance significantly, since
they normally cause small I/O transfers at the speed of the
underlying device. They can also cause a great bottleneck
in many cases, specially in those cases which are sensitive
to meta-data performance [18, 28].

To solve the aforementioned problems, current file systems
treat data and meta-data somewhat differently while they
are, in fact, completely different. Note, for example, that
meta-data is the important part for file-system consistency
while data is not as important [13, 26, 29].

The objective of this paper is to introduce a new high
performance journaling file system, DualFS. This new file
system separates data and meta-data completely and places
them on different devices (possibly two partitions on the
same disk). Once completely separated, data will be treated
as regular Unix systems do [12], while meta-data will be
treated as log-structured file system [19]. Like other jour-
naling systems, DualFS uses the meta-data log to recover the
file system consistency quickly after a system crash. How-
ever, one of the main differences between DualFS and other
journaling file systems [4, 26, 29] is the fact that DualFS
has only one copy of every meta-data block. This copy is in
the log, which is used by DualFS both to read and to write
meta-data blocks. Avoiding a time-expensive extra copy of
meta-data blocks, DualFS can achieve a better performance
than other journaling systems.

We will also present a working prototype in this paper,
and we will show that this new organization, besides offer-
ing many new design opportunities, reduces the I/O time
significantly in most of the cases.



2. RELATED WORK
Multi-structured file systems [14] improve performance by

separating data and meta-data structures, and placing them
on independent and isolated disk arrays. Anderson et al. [1]
use a similar approach to implement a new architecture for
scalable network-attached storage. DualFS also separates
data and meta-data. However, one important difference be-
tween these previous works and our new file system is the
fact that DualFS does not need extra hardware in order to
improve file system performance.

DualFS also attacks the meta-data consistency problem.
One approach to solve this problem, without synchronously
writing meta-data, is Soft Updates [13]. The idea behind
Soft Updates is to have a more explicit control over de-
pendencies among meta-data structures (i-nodes, indirect
blocks, directory blocks, etc.) to know which meta-data up-
dates depend on the update of a specific meta-data. This
control of dependencies allows us to write meta-data updates
in the right order. Granularity of this control is per individ-
ual meta-data structure, and not per block, in order to avoid
cyclic dependencies. A block with modified meta-data can
be written at any moment, provided that any update in the
block which has pending dependencies is firstly “undone”
temporarily.

Journaling file systems [26, 29] are another solution to
the meta-data update problem. Basically, a journaling file
system is an FFS (or another kind of file system) with an
auxiliary log which records all meta-data operations. There-
fore, meta-data operations take place both in the “normal”
file system and in the log. This involves meta-data elements
being duplicated. The file system enforces a write-ahead
logging, a technique which ensures that the log is written
to disk before any buffers containing data modified by the
corresponding operations. If the system crashes, the log
is replayed to recover the file system consistency. Journal-
ing systems always perform additional I/O operations (the
log writes) to maintain ordering information. Nevertheless,
these additional writes can be done efficiently because they
are sequential.

There are several differences between Soft Updates and
journaling file systems [23]. Some of them are also differ-
ences between Soft Updates and DualFS. First, a journaling
file system guarantees atomicity of updates. Since a jour-
naling system records a logical operation, such as rename
or create, it will always recover to either the pre-operation
or post-operation state. Soft Updates, however, can recover
to a state where both old and new names persist after a
crash. Second, Soft Updates guarantees that the file sys-
tem can be restarted without any file system recovery. At
such a time, file system integrity is assured, but freed blocks
and i-nodes may not yet be marked as free. A background
process restores the file system to an accurate state with
respect to free blocks and i-nodes. A journaling system re-
quires a short recovery phase after system restart. Finally,
a journaling file system duplicates meta-data writes using
more time and space than actually needed. Soft Updates
does not duplicate meta-data blocks.

Log-structured file systems (LFS) [19, 21] are another ap-
proach that solves both the synchronous meta-data prob-
lem and the small-write problem. Like Soft Updates, log-
structured file systems ensure that blocks are written to disk
in a specific order. Like journaling, they take advantage of
sequential writes and log-based recovery. One difference be-

tween log-structured file systems and journaling file systems
is that the former write both data blocks and meta-data
blocks in the log, whereas the latter only write meta-data
blocks. The main drawback of an LFS is the cleaner, a pro-
cess which cleans segments and which may seriously down-
grade the file system performance in many cases [22, 30].

Finally, there exist approaches that implement some kind
of stable storage. The Rio file cache [3] makes ordinary
memory safe for persistent storage, what allows a file system
to avoid synchronous writes and guarantee the file system
consistency at the same time. The RAPID-Cache [8] uses
a disk to effectively increase the size of the write cache of
another disk, improving the write performance of the second
disk. Although DualFS pursues similar objectives, we think
that DualFS is complementary to these approaches.

3. DUALFS
The main idea of this new file system is to manage data

and meta-data in completely different ways. Each type of
blocks, the meta-data and data ones, will be located on dif-
ferent devices, the meta-data device, and the data device,
respectively. However, for the sake of security, there could
be copies of some meta-data blocks on the data device. On
account of that, the current prototype has a superblock copy
on the data device.

3.1 Data Device
Data blocks of regular files are on the data device. The

data device uses the concept of group of data blocks (similar
to the cylinder group concept) in order to organize data
blocks. In this way, we can bring together all data blocks of
a file, even if the file grows sometime later.

The data device works as follows. When a directory is
created, it is associated to a data block group, specifically to
the emptiest data block group. Then, all regular files created
in that directory place their data blocks in that group.

From the file-system point of view, data blocks are not
important for consistency, so they are not written synchro-
nously and do not receive any special treatment, as meta-
data does [4, 23, 26, 29]. However, they must be taken
into account for security reasons. When a new data block
is added to a file, it must be written to disk before writing
meta-data blocks related to that data block. Missing out
this requirement would not actually damage the consistency,
but it could potentially lead to a file containing a previous
file’s contents after crash recovery, which is a security risk.
DualFS meets this requirement.

3.2 Meta-data Device
Meta-data is organized as a log-structured file system,

that is, there is only one log where meta-data is written
sequentially. It is important to clarify that by meta-data
we understand all these items: i-nodes, indirect blocks, di-
rectory “data” blocks, and symbolic links (sometimes they
need extra blocks which are treated as meta-data). Obvi-
ously, bitmaps, superblock copies, etc., are also meta-data
elements.

DualFS can be seen as an evolution of a journaling file
system, but with two important differences. On the one
hand, meta-data blocks do not have to be written twice (one
in the file system, one in the log), because there is only one
copy of every meta-data element. On the other hand, data
and meta-data blocks are not mixed; they can be on the



SEGMENT 1 SEGMENT 2 SEGMENT J SEGMENT K

SUPERBLOCK

PARTIAL SEGMENT

META−DATAPARTIAL
SEGMENT
DESCRIPTOR

BLOCK BLOCK
INODEINODE

BLOCK
META−DATA
BLOCK

(b)

(a)

NEXT SEGMENT POINTER

CREATE TIME

NUM OF DESCRIPTOR BLOCKS

FINFOS COUNT I−NODES COUNT

FLAGS

NUM OF FILE BLOCKS

I−NODE VERSION

I−NODE NUMBER

LOGICAL BLOCK 1

LOGICAL BLOCK M

DESCRIPTOR
HEADER

(c)

FINFO 1

FINFO 2

I−NODE NUMBER

I−NODE NUMBER

I−NODE NUMBER

FINFO N

(d)

(e)

PARTIAL SEGMENT CHECKSUM

DESCRIPTOR CHECKSUM

Figure 1: Structure of the meta-data device

same disk, in two different partitions, but they can be in
two separate disks too. We hope that these two differences
improve the DualFS performance for many workloads.

DualFS is also different to Soft Updates, another mecha-
nism described in Section 2. Soft Updates can not sequen-
tially write meta-data updates in big chunks, because there
is nothing similar to a log. Hence, meta-data updates will
be more efficient in DualFS than in Soft Updates.

Since data and meta-data blocks are separate, we suppose
that a workload which will not take advantage of the DualFS
features will be a read-only one, when both data and meta-
data are on the same disk. In that case, data blocks and
their related meta-data blocks will be a long way from each
other, and DualFS will cause long seeks. Nevertheless, if
each type of information is on different disks (data blocks on
one disk, and meta-data blocks on another one) the above
may not be true, as we will see in 5.3. The idea of using
another disk for meta-data is not new; some journaling file
systems allow us to put the log on a specific disk [26] in
order to improve the file system performance. Journaling
systems can exploit the parallelism offered by the extra disk
only for meta-data writes. However, DualFS can exploit
the parallelism between the two devices for both meta-data
reads and meta-data writes.

On the other hand, there are a lot of large applications
(such as those in Section 4.2) which are not read-only. In
those applications, the separation between data and meta-
data will be an advantage.

Implementation
Our implementation of a log-structured file system for meta-
data is based on the BSD-LFS one [21]. However, it is impor-
tant to note that, unlike BSD-LFS, our log does not contain
data blocks, only meta-data ones.

The meta-data device is divided into pieces of equal size
called segments (see Figure 1.a). Each segment is usually
1 MB or 2 MB in size.

Meta-data blocks are written in variable-sized chunks call-
ed partial segments (see Figure 1.b). Partial segments can
be as large as a segment, although a segment often accom-
modates several partial segments which are written asyn-
chronously. There is always one, and only one, active partial
segment where the last modified meta-data blocks are writ-
ten to. The active partial segment can be up to 5 seconds
in main memory. This allows multiple meta-data updates
to be batched into a single log write, and increases the effi-
ciency of the log with respect to the underlying device [19].
This also means that, on average, we might lose the last 2.5
seconds of meta-data activity.

A partial segment is a transaction unit, and must be en-
tirely written to disk to be valid. If a system crash occurs
when a partial segment is being written, that partial seg-
ment will be dismissed during the file system recovery. Ac-
tually, a partial segment is a compound transaction because
it is the result of several file system operations. Each file
system operation is a transaction which is made up of the
meta-data elements involved in that operation.

The structure of a partial segment is similar to that of
BSD-LFS. The first element of the structure is the par-

tial segment descriptor which is made up of a descrip-
tor header, finfo structures, and i-node numbers (see Fig-
ure 1.c). All this information in the partial segment de-
scriptor is used both for recovering a crashed file system
rapidly, and for cleaning segments.

The descriptor header has information about the partial
segment, and its structure is shown in Figure 1.d. Since
a partial segment is a transaction unit, it is important to
know when a partial segment on disk is valid. In order to
know that, the descriptor header has two checksum fields,
one for the entire descriptor (descriptor checksum), and one
for the entire partial segment (partial segment checksum)
– actually, the checksum of the entire partial segment is
computed from the first 4 bytes of every partial segment
block, since checksum computation is very CPU consuming.

Finfo structures are next. There is a finfo structure for
every file (regular or not) that has one meta-data block (or
more) in the partial segment. Fields which make up a finfo
are shown in Figure 1.e. Logical blocks of a file are num-
bered as in BSD-LFS: data blocks have positive numbers,
and indirect blocks have negative numbers assigned accord-
ing to a specific numbering [21].

Finally, there is a list of i-node numbers (the numbers of
the i-nodes in the partial segment). There are at least as
many i-node numbers as finfo structures.

After the partial segment descriptor, there are meta-data
blocks which belong to several files: indirect blocks, “data”
blocks of directories, and “data” blocks of symbolic links.

At the end of the partial segment, there are several blocks
which contain i-nodes. Every block contains as many non-
consecutive i-nodes as it is able to, i.e., the number of blocks
is the minimum to contain all the i-nodes in the partial seg-
ment.

Since i-nodes have not a fixed location on disk, we need an
“i-node map”, i.e., a structure that, given an i-node, returns
the location of the i-node on disk. In our case, the i-node
map is part of a special file, the IFile (see Figure 2). The
structure of our IFile is similar to the one of the BSD-LFS
IFile, but it has two additional elements: the DGDT, and
the DGBT.
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Figure 2: Structure of the IFile

The segment usage table (SUT) contains information about
the amount of live bytes in each segment, when it was last
modified, and some flags (the segment has a superblock copy,
etc.). This information is used for cleaning and for selecting
a new clean segment when it is needed.

The data-block group descriptor table (DGDT) has a role
similar to the block group descriptor table of Ext2. As we
do not have i-nodes (or other meta-data elements) on the
data device, our data-block group descriptors do not contain
information about the number of free i-nodes, or the number
of directories, in each group. The only relevant information
they have is the free data-block count.

After the DGDT, comes the data-block group bitmap ta-
ble. We have a bitmap block for every data-block group,
as Ext2 does. Every bitmap indicates which blocks are free
and which are busy, in every group.

The last structure of the IFile is the i-node map (IMap).
It comes at the end because it can grow; unlike other file
systems, the number of i-nodes in DualFS can increase.

Cleaner
Like log-structured file systems, we need a segment cleaner.
A segment may contain information still in use (the “live
bytes”), but also obsolete information (information super-
seded by other information in a different segment, or infor-
mation that is no longer valid). A segment that contains live
bytes is a dirty segment. Otherwise, it is a clean segment.
When the number of clean segments is small, the cleaner
can collect the live bytes of several dirty segments and write
them in a new segment. Hence, dirty segments will become
clean ones. Obviously, if all dirty segments are full of live
bytes, cleaning will be senseless.

Our cleaner is started in two cases: (a) every 5 seconds, if
the number of clean segments drops below a specific thresh-
old, and (b), when we need a new clean segment, and all
segments are dirty.

It is important to note that the number of meta-data
blocks is usually much smaller than the number of data
blocks in any file system. If our meta-data device is large
enough, there will be always a lot of clean segments or a lot
of dirty segments with few live bytes. Therefore, either our
cleaner will be hardly required to work, or it will clean seg-
ments quickly. That is, our cleaner overhead will be small.

At the moment, our attention is not on the cleaner, so
we have implemented a simple one, based on Rosenblum’s
cleaner [19]. The threshold we have chosen is also very sim-
ple (it is a fixed number), though it should depend on both
the meta-data device size and the workload in a production
file system.

Perhaps, our cleaner is not the best one, but it will allow
us to obtain a conservative estimation of the impact of the
cleaner on the DualFS performance.

3.3 Recovering a Failed File System
Our file system is considered consistent when information

about meta-data is correct. Like other approaches [13, 26,
29], some loss of data is allowed in the event of a system
crash.

Since our meta-data device is organized as a log-structured
file system, we can recover the file system consistency very
quickly from the last checkpoint. We write a checkpoint
when the IFile is written. The superblock contains a refer-
ence to the last checkpoint.

Basically, recovering a DualFS file system means recov-
ering its IFile. The IFile is only written to disk at each
checkpoint, so its content may be lost at a system crash.
During recovery, each partial segment is analyzed to update
the IFile. Note that recovering does not involve redoing
or undoing any meta-data operation, only updating infor-
mation of the IFile. We scan the log from the last check-
point to the last valid partial segment. Partial segments are
timestamped and checksummed, so that the recovering pro-
cess can easily detect when the end of the log is reached.
The length of time for recovery is proportional to the inter-
checkpoint interval.

4. EXPERIMENT METHODOLOGY
In this section we describe how we have evaluated the

prototype of the new file system. We have used both mi-
crobenchmarks and macrobenchmarks for different configu-
rations. DualFS has been compared against Ext2 [2], the
default file system in Linux, and Ext3 [27], a journaling file
system derived from Ext2, using the Linux kernel 2.2.19.

We have compared DualFS with Ext2 because Ext2 is the
default file system in Linux, and because it is an FFS-like
file system [12], a very common kind of file system in the
Unix world. One important difference between Ext2 and
other FFS-like file systems is that it does not write modified
meta-data elements synchronously. Instead, it marks meta-
data elements to be written in 5 seconds. Besides, meta-data
elements involved in a file system operation are modified,
and marked to be written, in a specific order. In this way,
Ext2 can guarantee the consistency recovery after a system
crash, without significantly damaging the performance.

Ext3 allows us to compare DualFS to a file system with
similar consistency guarantees. Ext3 provides different con-
sistency levels through mount options. In our tests, the
mount option used has been “-o data=ordered”, which pro-
vides Ext3 with a behavior similar to the DualFS one. With
this option, Ext3 only journals meta-data changes, but flush-
es data updates to disk before any transactions commit.

Recently, other journaling file systems for Linux have e-
merged, such as XFS by SGI [24], and JFS by IBM [9].
We have not compared DualFS against these journaling file
systems because they are not stable enough (version 1.0.4 of
JFS hangs the computer in some of our microbenchmarks),



or because there is no version for the Linux kernel which we
have used (XFS versions only exist for the Linux 2.4 series).
We have also been unable to compare DualFS against Soft
Updates, as there is no version of Soft Updates for Linux.

4.1 Microbenchmarks
Microbenchmarks are intended to discover strengths and

weaknesses of DualFS. We have designed six benchmarks:

read-meta (r-m) find files larger than 2 KB in a directory
tree.

read-data-meta (r-dm) search a pattern in all the regu-
lar files of a directory tree.

write-meta (w-m) create a directory tree with empty files
from another tree used as a pattern.

write-data-meta (w-dm) create a directory tree from an-
other one used as a pattern.

read-write-meta (rw-m) create a directory tree with emp-
ty files from another tree that is used as a pattern and
is located in the same file system being analyzed.

read-write-data-meta (rw-dm) the same as rw-m but
with non-empty files.

In all cases, the directory tree used as a pattern is a clean
Linux 2.2.19 source tree. In the “write-meta” and “write-
data-meta” tests, that directory is in a file system on a de-
vice which is not being analyzed.

All tests have been run 10 times for 1 and 4 processes. For
4 processes, job done by 1 process is divided into 4 roughly
equal parts, each one for one process.

Finally, we have also used the read-write-data-meta test
to obtain the CPU time consumed by each file system.

4.2 Macrobenchmarks
Next, we list the benchmarks we have performed to study

the viability of our proposal. Note that we have chosen
environments that are currently representative.

Kernel Compilation for 1 Process (KC-1P) resolve
dependencies (make dep) and compile the Linux kernel
2.2.19, given a specific configuration. Kernel and mod-
ules compilation phases are done for 1 process (make
bzImage, and make modules).

Kernel Compilation for 8 Processes (KC-8P) the sa-
me as before, but for 8 processes (make -j8 bzImage,
and make -j8 modules).

Video Compression (VC) compress a video stream fra-
me by frame. The video stream has 400 frames. Every
frame is made up of three files. There is only one
directory for all frame files. Each frame is compressed
into one file. All output files are written in another
directory. See [16] for further details.

Specweb99 (SW99) the SPECweb99 benchmark [25]. We
have used two machines: a server, with the file system
to be analyzed, and a client. Network is a FastEther-
net LAN.

PostMark (PM) the PostMark benchmark, which was de-
signed by Jeffrey Katcher to model the workload seen
by Internet Service Providers under heavy load [10].
We have run our experiments using version 1.5 of the
benchmark. With our configuration, the benchmark
initially creates 150,000 files with a size range of 512
bytes to 16 KB, spread across 150 subdirectories. Then,
it performs 20,000 transactions with no bias toward
any particular transaction type, and with a transac-
tion block of 512 bytes.

4.3 Tested Configurations
Microbenchmarks and macrobenchmarks have been run

for six configurations:

DualFS-1d DualFS on one disk with two partitions. The
inner partition is the data device. The outer partition
is the meta-data device.

DualFS-2d DualFS on two disks, each one with two par-
titions. The two inner partitions make up a software
RAID 0, which is the data device. The two outer par-
titions also make up a software RAID 0, which is the
meta-data device.

Ext2-1d Ext2 on one disk with only one partition.

Ext2-2d Ext2 on two disks, each one with only one parti-
tion. The two partitions make up a software RAID 0.

Ext3-1d Ext3 on one disk with only one partition.

Ext3-2d Ext3 on two disks, each one with only one parti-
tion. The two partitions make up a software RAID 0.

Contrary to that one can expect, DualFS, Ext2 and Ext3
have different behaviors for one disk, and for two disks.
RAID 0 configurations [17] will help us to determine the
strengths and weaknesses of each file system in a better way.

For DualFS, the meta-data device is always on the outer
partition, since this partition is faster than the inner one.
In addition, the cleaner is enabled in all tests, although it
is hardly required because the number of clean segments is
almost always above the threshold (10 segments).

All RAID 0 configurations have a chunk size of 128 KB.
For DualFS, meta-data device is 10% of the total disk space.
The logical block size is always 4 KB.

Separate Disks for Data and Meta-Data
Since DualFS puts data and meta-data on different devices,
it is possible to put data on one disk, and meta-data on an-
other disk. In order to calculate the improvement achieved
by this separation, we have run the microbenchmarks for a
new DualFS configuration. This configuration puts data on
an entire disk, and meta-data on a partition of another disk,
similar to the data one. The meta-data partition is 10% of
the entire disk.

This configuration will also allow us to estimate how many
times the meta-data device can be slower than the data de-
vice to achieve the same performance Ext2 obtains with a
device similar to the data one. In this way, we will know if
a disk is suitable to be used as the meta-data device.

Since some journaling file systems allow us to put the
journal on a separate disk, it would be interesting to test
this configuration for the journaling file system used in our
benchmarks. Unfortunately, an Ext3 version with this fea-
ture only exists in Linux 2.4.



Table 1: System Under Test
Linux Platform

Processor Two 450 Mhz Pentium III

Memory 256 MB, PC100 SDRAM

Disk Two 4 GB IDE 5,400 RPM Seagate
ST-34310A.
Two 4GB SCSI 10,000 RPM FUJITSU
MAC3045SC.
SCSI disk 1: Operating system, swap
and trace log.
SCSI disk 2: trace log.
IDE disks: test disks

OS Linux 2.2.19

4.4 Cleaner Evaluation
One of the main drawbacks of a log-structured file system

is the cleaner. Since our meta-data device is implemented
as an LFS, we must evaluate the impact of the cleaner on
the performance. Most of the benchmarks described above
are not suitable for evaluating the DualFS cleaner, because
they do not produce enough half-full dirty segments. Hence,
we need a new test.

In the experiment we have designed for evaluating the
cleaner, a directory tree is copied and then, 87.5% (7/8)
of its regular files are deleted. This process is repeated 20
times. This experiment is carried out for DualFS-1d under
two configurations: without cleaner, and cleaning a segment
every five seconds.

Cleaning a segment every five seconds is very intrusive,
but it gives us a conservative estimation of the impact of the
cleaner on performance. In a tuned prototype, the cleaner
can be run when the storage system is idle. Hence, the
cleaner impact will be lesser. This test is denoted write-del.

4.5 System Under Test
All tests are done in the same machine. The configuration

is shown in Table 1.
In order to trace disk activity, we have instrumented the

operating system (Linux 2.2.19) to record when a request
starts and finishes. The messages generated by our trace
system are logged in an SCSI disk which is not used for
evaluation purposes.

Messages are printed using the kernel function printk.
This function writes messages in a circular buffer in main
memory, so the delay inserted by our trace system is small
(< 1%), especially if compared to the time needed to per-
form a disk access. Later, these messages are read through
the /proc/kmsg interface, and then written to the SCSI disk
in big chunks. In order to avoid the loss of messages (last
messages can overwrite the older ones), we have increased
the circular buffer from 16 KB to 1 MB, and we have given
maximum priority to all processes involved in the trace sys-
tem.

5. EXPERIMENTAL RESULTS
We are interested in the total time taken for all disk I/O

operations. The total I/O time gives us an idea of how
much the storage system can be loaded. A file system that
loads a disk less than other file systems makes it possible
to increase the number of applications which perform disk
operations concurrently.

We have represented the confidence intervals for the mean
as error bars, for a 95% confidence level. For comparison
purposes between figures, the absolute Ext2 I/O time has
been written inside each Ext2 bar. The numbers inside the
other bars are the I/O times, normalized with respect to the
Ext2 I/O time.

Finally, it is important to note that benchmarks have been
run with a cold file system cache (the computer is restarted
after every test).

5.1 Microbenchmarks
Microbenchmarks results can be seen in Figure 3. The six

benchmarks have been run for 1 and 2 disks, and for 1 and
4 processes.

Data Benchmark Results (*-dm tests)
Figure 3 shows that DualFS is always better than Ext2 and
Ext3 in write tests. In these tests, the average request size
in DualFS is greater than the average request size in Ext2.
This is because DualFS writes all meta-data blocks to the
log in big chunks, whereas Ext2 writes meta-data blocks in
small chunks, since its meta-data blocks are spread across
the disk. If the average request size is greater, the number of
requests is smaller. Hence, the total I/O time is smaller in
DualFS than in Ext2, even though the average access time
in the former is a little greater than in the latter.

Ext3 has the same problem Ext2 has with meta-data writes.
In addition, Ext3 has to write meta-data blocks in its log
too, and these writes can cause long seeks (note that the
Ext3 log, as the log of many other journaling file systems,
is in a fixed disk location). Therefore, the total I/O time of
Ext3 is greater than the Ext2 one, and much greater than
that of DualFS.

In read tests, Ext2 and Ext3 have similar performance,
as expected. On the other hand, DualFS performance is
significantly worse than Ext2 and Ext3 performance only in
one test. This is surprising because DualFS has data and
meta-data blocks in different partitions, and this would have
to cause long seeks. Hence, DualFS performance would have
to be bad.

The explanation is that the read-data-meta test has a lot
of meta-data writes because the access time field in the i-
node of every file which is read must be updated. These
meta-data writes are very fast in DualFS. The same does
not occur for Ext2 and Ext3. For example, in Ext2, all the
write requests take 1.5 seconds (7.5% of the total I/O time)
for 1 process and 1 disk. In Ext3, this time is 1.3 seconds
(6.1% of the total I/O time). And it is less than 1% in
DualFS.

Increasing the number of processes makes DualFS to per-
form significantly worse than Ext2 and Ext3. When the
number of processes goes from 1 to 4, the average read ac-
cess time increases for the three file systems. However, this
increase is a little bigger in DualFS than in Ext2 and Ext3
due to the separation between data and meta-data.

The case is different when we add a second disk, since Du-
alFS beats Ext2 and Ext3 in spite of the separation between
data and meta-data. Adding a second disk damages Ext2
performance, since related blocks that are together when
we have one disk can be separate when we have two disks.
Think about the data and meta-data blocks of a file. If we
want to read the block ‘n’ of a file, we must read first some
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Figure 3: Microbenchmarks results.

meta-data blocks of the file, and then the data block. If
we have one disk, we will have to do only one seek (or two
seeks, but the second one will be very short). If we have
two disks, the meta-data blocks can be on one disk, and
the data block on the other disk, so we will have to do two
seeks. Ext3 suffers the same problem. However, this is not
a problem for DualFS because there are already two long
seeks when we have one disk (due to the separation between
data and meta-data blocks), and the second disk does not
increase the number of long seeks.

Finally, we can see that the results of every read/write
test are a mixture of the results of its respective read and
write tests.

Meta-data Benchmark Results (*-m tests)
Figure 3 shows that DualFS clearly beats both Ext2 and
Ext3 in all meta-data only tests.

Since the DualFS meta-data device is a sequential log,
meta-data writes in DualFS are done in big chunks, and
at a rate close to the maximum disk bandwidth. In Ext2
and Ext3, meta-data blocks are spread across the storage
device. Hence, meta-data writes are done in small requests
which have a long access time. Ext3 also has to write meta-
data blocks in the log, so its total I/O time is greater than
the Ext2 one.

In the read test, Ext2 and Ext3 have similar performance,
as expected. However, DualFS performance is incredibly

good. There are three reasons for that performance: the
high meta-data locality achieved by DualFS in the log, where
related meta-data blocks are written together, the disk built-
in cache, which prefetches up to 512 KB of meta-data, and
the small size of the meta-data device, what makes seeks
shorter. There is also meta-data locality in Ext2 and Ext3,
since related meta-data blocks are in the same group. How-
ever, meta-data blocks are spread across the group, whose
size (128 MB) prevents the disk built-in cache from catching
that locality.

Increasing the number of processes harms DualFS perfor-
mance, although it is still much better than that of Ext2 and
Ext3. When the number of processes is 4, there is less meta-
data locality in the read stream. Therefore, the disk built-in
cache is less efficient. This is a problem for DualFS, which
loses much of the locality achieved for one process, but not
for Ext2 and Ext3, where the built-in cache is already little
efficient for one process, as we have seen above.

The effect of adding a second disk on the read test depends
on the number of processes. When the number of processes
is one, only DualFS is able to take advantage of both disks,
since the built-in cache is greater (1 MB). However, none of
the three file systems can take advantage of the parallelism
offered by both disks. When there are four processes, the
three file systems can exploit the parallelism offered by the
two disks, and DualFS again benefits from the large built-in
cache.



Finally, in the read/write tests, the results obtained are a
mixture of the results of the respective read tests and write
tests.

CPU Utilization
Table 2 shows the CPU utilization of every file system in
the read-write-data-meta test, for one disk and one process.
Each CPU time value is the sum of the user time and system
time. Confidence intervals are given as percentage of the
CPU time.

Although the CPU utilization of DualFS is bigger than
the one of Ext2 and Ext3, this time is small when compared
with the total I/O time. We must also take in account that
DualFS computes two checksums when it writes a partial
segment. Neither Ext2 nor Ext3 compute checksums. Fi-
nally, it is sure that our prototype is not as tuned as the
Ext2 and Ext3 implementations.

5.2 Macrobenchmarks
Results of macrobenchmarks are shown in Figure 4, for

one and two disks.
DualFS clearly beats Ext2 and Ext3 in the kernel com-

pilation, Specweb99, and PostMark tests. This is because
there are a lot of write operations in these tests, and Du-
alFS improves write operations greatly, especially in work-
loads where Ext2 and Ext3 have data and meta-data blocks
spread across the disk.

In our video compression test, however, Ext2 wins because
this test is a very good one for Ext2. This test only uses
2 directories: one for files to be read, and another for files
to be written. Hence, data and meta-data are not spread
across the device, and Ext2 is not obligated to do long seeks
to write, and read, data and meta-data. DualFS has to do
long seeks due to the separation between data and meta-
data blocks, but its performance is still much better than
Ext3, because Ext3 also has to do long seeks between the
journal and the regular file system.

As in the microbenchmark case, DualFS performance im-
proves more than that of Ext2 and Ext3 when the number
of disks goes from 1 to 2 (except for the PostMark and video
compression tests). Since DualFS enforces a stricter order
among write requests, these are done in large chunks and at
more specific moments. This allows DualFS to make better
use of the parallelism offered by the two disks which make up
the RAID 0 devices. In the PostMark test, however, Ext2
does almost five times as many write requests as DualFS.
Hence, the parallelism provided by both disks has a greater
effect on Ext2 than on DualFS. For Ext3 is the same.

5.3 Separate Disks for Data and Meta-Data
Results of this configuration are shown in Figure 5. As we

can see, there are three bars for every benchmark. The first
bar is the Ext2 I/O time. The second one is the I/O time
taken by the meta-data accesses in DualFS. And the third
one is the I/O time taken by the data accesses in DualFS.

Table 2: CPU utilization
Ext2 Ext3 DualFS

CPU Time (secs) 3.82 4.80 6.54

Confidence Interval 4.45% 1.92% 1.22%

Note that the DualFS I/O time is less than the addition of
the data I/O time and the meta-data I/O time, because of
the overlap between data and meta-data accesses.

As expected, DualFS beats Ext2 in all cases. We can also
see that the behavior when the number of processes goes
from 1 to 4 is the same as the one seen in 5.1.

Taking into account that we want DualFS to beat Ext2 in
all configurations, we are going to estimate when the meta-
data device would be too old with respect to the data one
to not meet that condition. This estimation is based on
information in [7, 20]:

• capacity: if disk capacity doubled every 3 years, and
the meta-data device size was 10% of the data device
size, the meta-data device would be too small after 10
years.

• seek time: if seek time decreased 5% every year, the
meta-data device would be too slow after more than
10 years.

• rotational speed: if rotational speed doubled every 6
years, the meta-data device would be too slow after
9.5 years.

Since disk throughput mainly depends both on seek time
and latency time [15], it is quite safe to say that DualFS will
beat Ext2 if it uses disks which are up to 9 or 10 years old
as meta-data device. Even older disks could be used if we
do not expect to get a gain in all workloads but just in most
of them. Although this usage of old disks might not be very
important for high-performance super-computing centers, it
might be very useful in low-cost systems and in home com-
puters where the disk from the previous system can be used
to improve performance instead of throwing it away.

5.4 Cleaner Evaluation
The results of the write-del test are shown in Table 3. As

we can see, the cleaner, even when it is very intrusive, has
a very small impact on the DualFS performance.

Although DualFS is much better than Ext2 in write tests,
in this test it is only slightly better. The main reason is
that meta-data writes are more frequent in DualFS than
in Ext2. In DualFS (as in Ext3), a dirty meta-data block
can be up to 5 seconds in main memory, whereas it can be
up to 10 seconds in main memory if the file system used is
Ext2. Since DualFS flushes data updates to disk before any
transactions commit, the data blocks of many files which
will be deleted after, will be flushed to disk. Many of these
data blocks will be assigned to new files in the next step, and
written to disk again. In Ext2, however, these data blocks
will be freed, and assigned to new files, before being written
to disk. Hence, these blocks will be written once, instead of
twice. This causes the amount of blocks written to disk to
be smaller in Ext2 than in DualFS, although write requests
are greater in DualFS.

Based on these results, we can suppose that the cleaner
will not be a great problem for DualFS. Since meta-data is
a small part of a file system (10%, or less), if the meta-data
device is large enough there will be always a lot of clean
segments (or a lot of dirty segments with few live bytes),
and the cleaning will take little time.
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Figure 4: Macrobenchmarks results.
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Figure 5: Using one disk for data and another one for meta-data.

6. CONCLUSIONS
In this paper we have introduced DualFS, a new journal-

ing file system that manages, in very different ways, data
and meta-data. The new file system separates completely
data and meta-data, and places them on different devices.
While data is organized much as it is by a traditional Unix
file system, meta-data is organized like a log-structured file
system. This log allows DualFS a quick consistency recovery
after a system crash.

The main difference between DualFS and other journal-
ing file systems is the fact that DualFS has only one copy
of every meta-data block, whereas other journaling file sys-
tems has two copies. In avoiding an expensive extra copy of
meta-data blocks, DualFS can achieve a good performance
if compared with other journaling file systems.

Table 3: Results of the write-del test
File System Total I/O Confidence

Time (secs) Interval

Ext2 44.90 0.42%

Ext3 64.04 2.59%

DualFS – Cleaner 42.16 1.61%

DualFS + Cleaner 44.41 2.01%

We have compared DualFS against Ext2, a FFS-like file
system, and Ext3, a journaling file system derived from
Ext2. Our experimental results show that DualFS greatly
reduces the total I/O time taken by the file system in most
cases (up to 97%), whereas it increases the total I/O time
in a few and limited cases (up to 17%).

Since meta-data is organized as a log-structured file sys-
tem, a cleaner is needed. We have evaluated the impact of
the cleaner on DualFS performance, and we have found that
it is very small (less than 6%).

Finally, we have also evaluated the possibility of using
two identical disks: one for data and one for meta-data. In
this configuration, DualFS beats Ext2 in all cases, and its
performance improvement on Ext2 ranges from 15% to 95%.
If an old disk is used for meta-data, it can be up to 9 or 10
years old with respect to the data disk before being too slow
for DualFS beating Ext2. Unfortunately, we have not been
able to do this test for Ext3.

The case where DualFS is not always better than Ext2 and
Ext3, is the read of data and meta-data. Nevertheless, we
think that the high meta-data locality achieved for DualFS
can be exploited to improve DualFS performance. We are
working on this issue.



6.1 Availability
For more information about DualFS, please visit the Web

site at http://www.ditec.um.es/~piernas/dualfs.
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