Memory Conscious 3D Wavelet Transform

Gregorio Bernabé, José Gonzalez, José M. Garcia

Dpto. Ing. y Tecnologia de Computadores
Universidad de Murcia
30071 Murcia (Spain)

{gbernabe, joseg, jmgarcia}@ditec.um.es

Abstract

The video compression algorithms based on the 3D
wavelet transform obtain excellent compression rates at
the expense of huge memory requirements, which dras-
tically affect the execution time of such applications.
The goal of this work is to mitigate the memory prob-
lem by exploiting the memory hierarchy of the processor
through blocking. In particular, we present two block-
ing approaches: cube and rectangular that differ in the
way that the original working set is divided. We also
propose the reuse of previous computations in order
to decrease the number of memory accesses and float-
ing point operations. Results show that the rectangu-
lar overlapped approach with computation reuse obtains
the best results in terms of execution time, a speedup
of 2.42 over the non-blocking non-overlapped wavelet
transform, maintaining the compression ratio and the
video quality (PSNR) of the original encoder based on
the 3D wavelet transform.

1 Introduction

The increase in the volume of medical video gener-
ated in hospitals, as well as its strict regulations and
quality constraints makes the research in compression
techniques especially oriented to this video an interest-
ing area.

In the last few years, the application of the wavelet
transform [9] has become an important development.
The wavelet transform has been mainly applied to im-
age compression. Several coders have been developed
using 2D wavelet transform [3][15][17][20]. The 2D
wavelet transform has been used for compressing video
[12] as well. However, three dimensional (3D) compres-
sion techniques seem to offer better results than two
dimensional (2D) compression techniques which oper-
ate in each frame independently. Muraki introduced

José Duato
Dpto. Inf. de Sistemas y Computadores
Universidad Politécnica de Valencia
46071 Valencia (Spain)

jduato@gap.upv.es

the idea of using 3D wavelet transform to efficiently
approximate 3D volumetric data [18][19]. Since one of
the three spatial dimensions can be considered simi-
lar to time, a 3D subband coding using the zerotree
method (EZW) was presented to code video sequences
[8] and posteriorly improved with an embedded wavelet
video coder using 3D set partitioning in hierarchical
trees (SPIHT) [13]. Nowadays, the standard MPEG-
4 [4][5] supports an ad-hoc tool for encoding textures
and still images based on a wavelet algorithm.

In previous works [6][7], we presented an implemen-
tation of a lossy encoder for medical video based on
the 3D Fast Wavelet Transform (FWT). This encoder
achieves high compression ratios with excellent quality,
so that medical doctors cannot find differences between
the original and the reconstructed video. However, one
of the main drawbacks of using the 3D wavelet trans-
form is its excessive execution time. Since three dimen-
sions are exploited in order to obtain high compression
rates, the working set becomes huge and the algorithm
becomes limited by memory (memory bound).

In this work, we propose a memory conscious 3D
wavelet transform that attempts to exploit the memory
hierarchy by means of blocking algorithms, thus reduc-
ing the final execution time. Blocking is a well-known
optimization technique for improving the effectiveness
of memory hierarchies [1][14][16]. Instead of operat-
ing on entire rows, columns or frames of the working
set, blocked algorithms operate on working subsets or
blocks, so that data loaded into the faster levels of the
memory hierarchy can be reused. Blocking has been
shown to be useful for many algorithms in linear al-
gebra like BLAS [10], LAPACK [2] or more recently
ATLAS [21]. In particular, we propose and evaluate
several blocking approaches that differ in the way that
the original working set is divided. We also propose
the reuse of some computations to save floating point
operations as well as memory accesses.

Results show that the rectangular partition provides

the best execution times, maintaining the compression
ratio and the video quality.

The rest of this paper is organized as follows. Sec-
tion 2 describes our proposed blocking approaches. We
present the main details of each method. Experimental
Results with some test medical video are analyzed in
Section 3. Finally, Section 4 summarizes the work and
concludes the paper.

2 Blocking approaches

Previous Wavelet-based encoders obtain excellent
results in compression rate and quality (PSNR), as
it can be observed in [6][7]. These results were ob-
tained with the 3D-FWT working on video sequences
of 64 frames of 5122512 pixels (16 MBytes of work-
ing set). This huge working set limits the performance
of such algorithm, making it unfeasible for real-time
video transmission. Initial results showed that this al-
gorithm is completely memory bound, therefore, block-
ing techniques become an interesting approach to re-
duce its memory requirements and thus the execution
time. The goal of blocking algorithms is to exploit the
locality exhibited by memory references by means of
partitioning the initial working set in limited chunks
that fit in the different levels of the memory hierar-
chy. In this way two positive effects appear: in the
one hand, memory accesses are accelerated since data
are actually at the higher levels of the memory hierar-
chy (closer to the processor core). On the other hand,
traffic between main memory and the processor chip is
drastically reduced, obtaining a better use of the band-
width provided by the baseline computer system.

However, applying blocking algorithms to video
coders is a challenge: not only the memory hierarchy
must be exploited by means of an optimum data parti-
tioning, but also quality must be preserved. Note that
partitioning the working set into independent blocks
may lead to unexpected degradations on the quality of
the resulting video due to artifacts in the block bounds.

In this section we present two different approaches to
the blocking version of the 3D-FWT transform: cube
and rectangular, that differ in the way that the original
working set is divided.

2.1 Cubeapproach

In this first approach, we propose to divide the origi-
nal sequence, for example a video sequence of 64 frames
of 512x512 pixels, into several subcubes as we can see
in figure 1, and the wavelet transform is independently
applied to each of these subcubes. Regarding the size

256

256 16

16

Time

256 256

X

Figure 1. Cube approach

of these subcubes, X and Y axis have the same size (dif-
ferent block sizes are evaluated), whereas the number
of frames in the time dimension is fixed to 16, which
is the minimum number of frames needed to apply the
transform 2 times.

However, this approach presents two disadvantages.
First, as the compression ratio increases, the Peak Sig-
nal to Noise Ratio (PSNR) drops significantly and, sec-
ond, it is detected an increasing degree of visibility of
the discontinuity in the reconstruction at adjacent sub-
cubes boundaries because artifacts effects appear. This
is due to the way that computation is performed in the
FWT, where, for a particular pixel, the value of its
coefficient after the transform is correlated with the
original values of its neighboring pixels.

To illustrate this problem, Figure 2 shows how the
wavelet transform is applied for an unidimensional sig-
nal of 8 pixels using the Daubechie’s of four coefficients
as mother function (Daub-4). This signal is divided
into two blocks of 4 pixels where the FWT is com-
puted independently. The resulting coefficient for the
first pixel depends on the second, third, fourth and it-
self, all of them belonging to the same block. However,
the second pixel depends on the third, fourth, fifth and
the sixth pixel (the last two pixels belong to a differ-
ent block and would not be available in this original
partitioning). The same happens for the rest of the
pixels. Since additional pixels are needed to compute
the transform in any dimension, two different alter-
natives can be considered to provide this information.
Non — Overlapped approaches utilize pixels from the
same block (for instance replicating last pixels, or using
first pixels). Owerlapped approaches use pixels from

/* 0, c1, c2, c3: Daub-4 coefficients */

/* pixels 1..8 = p[0..7] */

/* temporal vector: low-pass */

float low[8], high[8];

n=3,;

for(i=0,j=0;5<(n/2) —1;i+=2,j++) {

low[j]=c0*p[i]+c1*p[i+1]+c2*p[i+2]+c3*p[i+3];
high[j+n/2]=c3*pl[i]-c2*p[i+1]+c1*p[i+2]-c0*p[i+3];

low[j]=c0*p[n-2]+c1*p[n-1]+c2*p[0]+c3*p[1];
high[j+n/2]=c3*p[n-2]-c2*p[n-1]+c1*p[0]-cO*p[1];

Figure 2. Algorithm of 1D FWT with Daub-4

the following block. Although the latter does not seem
to exploit memory locality, it provides better compres-
sion and quality results as we will later show.

Furthermore, the 3D-FWT implies the computa-
tion of the 1D-FWT in the time dimension. Following
the aforementioned approach, information from addi-
tional frames is needed, which can be obtained from the
block itself or from the following blocks. The amount
of frames depends on the number of steps of wavelet
transform. For example, with the W, mother wavelet,
applying the wavelet transform just once needs two
more frames, six frames are necessary for two wavelet
transforms, and, with three wavelet transforms, four-
teen frames are needed.

Thus, choosing between the overlapped and non —
overlapped approaches for the 3D-wavelet transform is
one of the main decisions it must be taken to achieve
a good trade-off between execution time and quality.
Whereas the non — overlapped approach seems more
memory efficient, since computations are carried out
using the working set of the block, quality of the recon-
structed video is clearly affected by the artifacts that
appear in the block bounds due to the fact that the
coefficients of the block bounds are computed without
taking into account their neighbors.

Therefore, in order to avoid the artifacts caused
by discontinuities in reconstructions between adja-
cent coding subcubes, X, Y and time axis are over-
lapped. We refer to this cube modified approach as
cube overlapped. Since the FWT is applied twice, six
rows, six columns and six frames must be overlapped
(e.g. for subcubes of 256 rows-columns of 16 frames,
now we will need subcubes of 262 rows-columns of 22
frames).

256

256 16

16

Time

512

X

Figure 3. Rectangular approach

2.2 Rectangular approach

The 3D-FWT algorithm is programmed in C and
thus frames are stored in memory following a row or-
der. For the space locality of memory references to
be better exploited, it may be interesting to analyze a
different data distribution. In this section we present
the rectangular partitioning, where the original cube
is divided into several rectangles, as we can observe in
figure 3.

We also apply the overlapped wavelet transform
as in the cube approach, in order to avoid the artifacts
and the decrease of PSNR, but only Y and time dimen-
sions are overlapped. For example, a video sequence of
64 frames of 5122512 pixels can be divided into 8 rect-
angles of 16 frames of 5122256 or 32 rectangles of 16
frames of 5122128 pixels. After overlapping, rectangles
of 22 frames of 5122262 pixels or 22 frames of 5122134
pixels are obtained.

In this approach we present another contribution
of this work: the reuse of some computations in or-
der to reduce the number of floating point opera-
tions and memory accesses. As we use the overlapped
wavelet transform, operations are repeated across dif-
ferent blocks. For example, for the previous video
sequence, divided into 8 rectangles of 16 frames of
5122256 pixels, in the first rectangle 6 rows and 6
frames must be overlapped. When the first wavelet
transform is applied to the Y dimension, 130 low and
130 high rows are obtained. Last two low and high
rows are the first ones of the next rectangle, so they
should not be computed again in the following block.
As it can be seen in figure 4, some computations car-

512 512 512

256
262

512 512 6rows

Grows 512
%5 6rows

256

First Wavelet
Transform

512 512
m wo| s n Woo| LLLs

- 1129,L130 ” 1129,L130
LH HH | HLHIS LH HH | HLHLS

HI29,HI3) —— H129, H130
512 512
L129,L130

- P H129,H120

Figure 4. Reuse in Rectangular approach

Level 0 | L1 inst TLB, 4K page, 4-way, 32 entries
L1 data TLB, 4K page, 4-way, 64 entries
Level 1 | L1 inst cache, 16 KB, 4-way, 32 byte line
L1 data cache, 16 KB, 4-way, 32 byte line
Level 2 L2 cache, 256 KB, 8-way, 32 byte line
Level 3 512 Mbytes DRAM

Table 1. Description of the memory hierarchy

ried out for the first block are reused for the second
block. For instance, if we divide into several rectangles
of 16 frames of 512232 or 512216 pixels, 12% and 25%
of the operations will be reused respectively in the Y
dimension.

3 Experimental Results

The evaluation has been carried out on a 1GHz-
Intel Pentium-III processor with 512 Mbytes of RAM.
The main properties of the memory hierarchy are sum-
marized in table 1. The operating system was Linux
2.2.14. The programs have been written in the C pro-
gramming language.

Our measurements have been made using the perfor-
mance monitoring counters available in the P6 proces-
sor family. The Intel Pentium-series processors include
a 64-bit cycle counter, and two 40-bit event counters,
with a list of events and additional semantics that de-
pend on the particular processor. We have used a li-
brary, Rabbit (v.2.0.1) [11], to read and manipulate
Intel processor hardware event counters in C under the

Blocking approaches - Heart

14
12 % ~ cube overlapped
~ 10
2 g\ /i - cube non
g 6 \/% overlapped
= s ,kbﬁ/é(,/ ~rectangular
2
0 T T T T T

O N X D L I O
N0 ,{]/ qﬁ’) (,)'\/ (\P{\
O

_ o
Block size éo(\

Figure 5. Execution Time of Blocking ap-
proaches for Heart video sequence

Linux operating system.

We have compared execution time consumed by the
3D-wavelet transform for the different blocking ap-
proaches and with the original 3D-FWT lossy compres-
sion method [6], on a heart video medical sequence of
64 frames of 5122512 pixels coded in gray scale (8 bits
per pixel).

Figure 5 shows the execution time obtained with the
fast wavelet transform to compute 64 frames of 5122512
pixels and for the different blocking approaches: cube
non-overlapped, cube overlapped and rectangular. Re-
sults are presented for different block sizes, from
16x16x16 to 5122512216 in the cube approaches and
from 512216216 to 5122512216 in the rectangular ap-
proach. Also, we have included the execution time
without blocking, using the non-overlapped and the
overlapped wavelet transform.

First of all, we can observe that blocking approaches
clearly reduce the execution time of the original algo-
rithm for all configurations. The optimal block size
in the cube non-overlapped approach (64x64x16) ob-
tains a speedup of 2.71 over the original non-overlapped
wavelet transform, whereas overlapped blocking ap-
proaches, cube (optimal block size 32232216) and rect-
angular (optimal block size 512264x16), provide a
speedup of 1.77 and 2.42 respectively, compared to the
non-overlapped wavelet transform.

As we can see, among the different blocking ap-
proaches, the rectangular approach obtains the best
results, as we expected. This behavior is due to the
better exploitation of locality of its memory accesses

8,E+07
7,E+07
6,E+07
5,E+07 1
4 E+07
3,E+07 ~
2,E+07
1,E+07

0,E+00 T T T T T
16 32 64 128 256 512

Block size

~ cube-overlapped
= rectangular

Dcu Lines In

Figure 6. DCU Lines In of Blocking ap-
proaches for Heart video sequence

and the reuse of floating point operations. For in-
stance, in the rectangular approach, the optimal con-
figuration is 512264216 which obtain a speedup of
1.48 over the 64x64x16 in the cube overlapped ap-
proach. In some configurations (16216216, 32232216
and 64264216) the cube non-overlapped approach ob-
tains faster times than the rectangular approach, how-
ever this approach presents artifacts and a decrease of
the PSNR (around 4 points) in the reconstructed video,
that discards it for high quality compression of medi-
cal video. On the other hand, overlapped approaches
maintain the same compression rate and quality than
the non-blocking approaches, which confirm the po-
tential of these methods. Higher execution times on
overlapped blocking approaches compared to the non-
overlapped ones are due to the increase of the work-
ing set of blocks since data from the following blocks
must be incorporated. However, these overlapped ap-
proaches obtain the best trade-off between performance
and quality.

In order to gain some insight about the speedups ob-
tained by blocking approaches, Figures 6 and 7 present
the memory cache behavior for the heart video se-
quence. We measure this behavior using Data Cache
Unit (DCU) Lines In and L2 Lines In events of the
performance counters, which represent the number of
lines allocated in the L1 Data Cache and the L2 cache
respectively (i.e. the number of accesses that miss in
both caches). It can be observed that the rectangular
approach allocates less number of L.1 and L2 lines than
the cube overlapped approach, justifying the decrease

2.E+07
2,E+07 /
2 E+07

1,E+07

' / /
1,E+07

1,E407 \/L’;/
8,E+06 /
6,E+06 /
4,E+06 /
2,E+06
0,E+00 / —

16 32 64 128 256 512
Block size

~rectangular
- cube overlapped

L2 Lines In

Figure 7. L2 Lines In of Blocking approaches
for Heart video sequence

in the execution time. Recall that data are stored by
rows, since the rectangular approach keeps more coef-
ficients in a row than the cube approach, spatial local-
ity is better exploited and the number of compulsory
misses is drastically reduced.

Summarizing, overlapped approaches maintain the
compression rate and the quality of the video whereas
the non-overlapped approach produces an unaccept-
able degree of visibility in the reconstructed video.

Regarding the blocking overlapped approaches, the
rectangular one exploits better the memory hierarchy
than the cube, and thus the execution time is signifi-
cantly reduced. The effect of rectangular or cube block-
ing achieves execution times 12% (512x64x16) and 33%
(32232x16) faster than blocks of 5122:512x16.

4 Conclusions

In this work, we have focused on reducing the execu-
tion time of the 3D-Fast Wavelet Transform when it is
applied to code medical video. We have presented two
proposals. First, we have developed and evaluated sev-
eral blocking algorithms in order to exploit the mem-
ory hierarchy. Second, we propose the reuse of com-
putations in order to decrease the number of floating
point operations and memory accesses. Results show
that the rectangular approach obtains the best results,
achieving for optimal block size (512x64x16) speedups
of 2.42 over the non-blocking non-overlapped wavelet
transform and 1.48 over the optimal (64264216) cube
overlapped approach. Furthermore, the rectangular

overlapped approach maintains the same video qual-
ity and the compression ratio of the original encoder.

5 Acknowledgments

This work has been partially supported by the Span-
ish CICYT under grant TIC2000-1151-C07-03. The
video sequences have been donated by the Hospital
Recoletas (Albacete, Spain). We are grateful to the
reviewers for their valuable comments.

References

[1] N. Ahmed, N. Mateev, and K. Pingali. Tiling
imperfectly-nested loop nests. In Proceedings of Su-
percomputing, November 2000.

[2] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Don-
garra, J. D. Croz, A. Greenbaum, S. Hammarling,
A. M. Kenney, and D. Sorensen. Lapack: A portable
linear algebra library for high-performance comput-
ers. Tech. Report CS-90-105, (LAPACK Working
Note #20), Univ. of Tennessee, Knozville, 1990.

[3] M. Antonini and M. Barlaud. Image coding using
wavelet transform. IEEE Transactions on Image Pro-
cessing, 1(2):205-220, April 1992.

[4] S. Battista, F. Casalino, and C. Lande. Mpeg-4: A
multimedia standard for the third millenium, part 1.
IEEE Multimedia, 6(4):74-83, October 1999.

[6] S. Battista, F. Casalino, and C. Lande. Mpeg-4: A
multimedia standard for the third millenium, part 2.
IEEE Multimedia, 7(1):76-84, January 2000.

[6] G. Bernabé, J. Gonzilez, J. M. Garcfa, and J. Du-
ato. A new lossy 3-d wavelet transform for high-quality
compression of medical video. Proc. of IEEE EMBS
International Conference on Information Technology
Applications in Biomedicine, pages 226-231, Novem-
ber 2000.

[7] G. Bernabé, J. Gonzélez, J. M. Garcia, and J. Duato.
Enhancing the entropy encoder of a 3d-fwt for high-
quality compression of medical video. Proc. of IEEE
International Symposium for Intelligent Signal Pro-
cessing and Communication Systems, November 2001.

[8] Y. Chen and W. A. Pearlman. Three-dimensional sub-
band coding of video using the zero-tree method. Proc.
of SPIE-Visual Communications and Image Process-
ing, pages 1302-1310, March 1996.

[9] 1. Daubechies. Ten Lectures on Wavelets. Society for
Industrial and Applied Mathematics, 1992.

[10] J. Dongarra, J. D. Croz, I. S. Duff, and S. Hammar-
ling. A set of level 3 basic linear algebra subprogram.
ACM Trans. Math. Soft, 14:1-17, 1988.

[11] D. Heller. Rabbit: A perfomance counters library
for intel/amd processors and linux. Awailable at
hitp://www.scl.ameslab.gov/Projects/Rabbit/.

[12] M. L. Hilton, B. D. Jawerth, and A. Sengupta. Com-
pressing still and moving images with wavelets. Mul-
timedia Systems, 2(3), 1994.

[13] B.-J. Kim and W. A. Pearlman. An embedded wavelet
video coder using three-dimensional set partitioning in
hierarchical trees (spiht). Proceedings of Data Com-
pression Conference, 1997.

[14] M. S. Lam, E. E. Rothberg, and M. E. Wolf. The cache
perfomance and optimizations of blocked algorithms.
Fourth International Conference on Architectural Sup-
port for Programming Languages and Operating Sys-
tems (ASPLOS IV), April 1991.

[15] A. S. Lewis and G. Knowles. Image compression us-
ing the 2-d wavelet transform. IEEE Transactions on
Image Processing, 1(2):244-256, April 1992.

[16] A. W. Lim, S.-W. Liao, and M. S. Lam. Blocking
and array contraction across arbitrarily nested loops
using affine patitioning. In Proceedings of the 8th ACM
SIGPLAN Symposium on Principles and Practice of
Parallel Programming, June 2001.

[17] M. W. Marcellin, M. J. Gormish, A. Bilgin, and M. P.
Boliek. An overview of jpeg-2000. Proceedings of Data
Compression Conference, March 2000.

[18] S. Muraki. Approximation and rendering of volume
data using wavelet transforms. Proceedings of Visual-
ization, pages 21-28, October 1992.

[19] S. Muraki. Multiscale volume representation by a
dog wavelet. IEEE Transactions on Visualization and
Computer Graphics, 1(2):109-116, June 1995.

[20] J. M. Shapiro. Embedded image coding using zerotrees
of wavelets coefficients. IEEE Transcations on Signal
Processing, 41(12):3445-3462, December 1993.

[21] R. C. Whaley, A. Petitet, and J. J. Dongarra. Au-
tomated empirical optimizations of software and the
atlas project. Parallel Computing, 27(1-2):3-35, 2001.

