XIV JORNADAS DE PARALELISMO—LEGANES, MADRID, SEPTIEMBRE 2003 1

Design and Implementation of a Grid-Enabled
Component Container for CORBA Lightweight
Components

Diego Sevilla*, Jos¢ M. Garcia*, Antonio Goémez™

Resumen— Although Grid technology appears as a
promising infrastructure for global computation and
effective resource sharing. However, the development
of Grid Applications is still based in traditional pro-
gramming models such as MPI, making it difficult to
provide a good level of software reuse and productiv-
ity. Moreover, the Grid offers an environment where
the component technology can be applied to a greater
extent than ever, due to the intrinsic security en-
forced by the Grid, allowing the creation of a success-
ful component market. Component technology accel-
erates software development enforcing software reuse
and sharing. In this article we present CORBA-LC
and the design of its Container, that manage compo-
nents and provides them with non-functional aspects
such as security, concurrence, distribution, load bal-
ancing, fault tolerance, replication, data-parallelism,
etc. Component implementors can thus focus only on
the component functionality itself, independently of
these aspects, provided by the Container. Moreover,
we identify these non-functional aspects in the Grid
Computing domain and show the current status of the
implementation.

I. INTRODUCTION AND RELATED WORK

Grid technology [1] has emerged as a new
paradigm for reusing the computing power available
in organizations worldwide. Particularly, Grid toolk-
its like Globus [2] and frameworks like Open Grid
Services Architecture (OGSA) [3] help establishing
a standard framework for integrating new develop-
ments, services, users, organizations, and resources.

Within these frameworks, which offer the foun-
dation for the development of the Grid, distributed
component models fit seamlessly to provide a higher
level services for integrating and reusing components
and applications.

Component models allow developing parts of ap-
plications as independent components. These com-
ponents can be connected together to build applica-
tions, and represent the unit of development, instal-
lation, deployment and reuse [4].

Taken together, the benefits of both the Grid and
components raise the level of reuse and resource
availability, allowing the development of a “compo-
nent market”, in which all the organization offer their
components and services.

Traditional component models such as Enterprise
Java Beans (EJB) and the CORBA Component
Model (CCM) [5] are not suited for Grid comput-
ing because the enterprise services overhead. Thus,

* Department of Computer Engineering and T De-
partment of Information and Communications Engineer-
ing. University of Murcia, Spain. E-mail: {dsevilla,
jmgarcia} @Qditec.um.es, skarmeta@dif.um.es. Partially sup-
ported by Spanish SENECA PIRAMIDE project.

other component models oriented towards the Grid
have appeared, such as the Common Component Ar-
chitecture (CCA) [6], the work of Rana et al. [7] and
Furmento et al. [8]. However, these works do not of-
fer a complete component model, neither packaging
nor deployment models, making it difficult to man-
age applications and services in the Grid environ-
ment.

In this article we present the CORBA Lightweight
Components (CORBA-LC) distributed component
model and study the design and implementation
strategies for its component container.

II. THE CORBA-LC COMPONENT MODEL

CORBA Lightweight Components
(CORBA-LC) [9], [10] is a lightweight component
model based on CORBA, sharing many features
with the CORBA Component Model (CCM)[5].

The following are the main conceptual blocks of
CORBA-LC:

o« Components. Components are the most im-
portant abstraction in CORBA-LC. They are
both a binary package that can be installed and
managed by the system and a component type,
which defines the characteristics of component
instances (interfaces offered and needed, events,
etc.) Component characteristics are exposed by
the Reflection Architecture.

¢ Containers and Component Framework.
Component instances are run within a run-time
environment called container. Containers be-
come the instances view of the world. Instances
ask the container for the required services and
it in turn informs the instance of its environ-
ment (its context). Component/container dialog
is based on agreed local interfaces, thus conform-
ing a component framework. The design and
implementation strategies for the CORBA-LC
containers are described in Section III.

o Packaging model. The packaging allows to
build self-contained binary units which can be
installed and used independently. Components
are packaged in “.ZIP” files containing the com-
ponent itself and its description as IDL and
XML files. The packaging allows storing dif-
ferent binaries of the same component to match
different Hardware/Operating System/ORB.

¢ Deployment and network model. The de-
ployment model describes the rules a set of com-
ponents must follow to be installed and run in a

2SEVILLA, GARCIA, GOMEZ: DESIGN AND IMPLEMENTATION OF A GRID-ENABLED COMPONENT CONTAINER FOR CORBA-LC

Sen” (‘Node) ing initial placement of instances, migra-

reflects. -reflects : . .
s uneer ;f ------------ N tion/load balancing at run-time. Resource
" Component +f Component | Manager also reflects the hardware static

Component H Instance i Instance . . .
Registry e L, characteristics and dynamic resource us-

Container | age and availability.
Resource | . .o =7 — Network Model and The Distributed
Manager [N"===--2« S “retlects/interacts .
N Component Registry. The CORBA-LC deployment
i R it :

P T chosio model is a network-centered model: The com-
Cohesion B ey __ plete network is considered as a repository
Binar for resolving component requirements. Each
Component hardware host (node) in the system maintain a set
Populates of installed components in its Component

Fig. 1. Logical Node Structure.

set of network-interconnected machines in order
to cooperate to perform a task. CORBA-LC de-
ployment model is supported by a set of main
concepts: nodes, the reflection architecture,
the network model, the distributed registry
and applications.

— Nodes. The CORBA-LC network model can
be seen as a set of nodes (hosts) that collab-
orate in computations. Nodes maintain the
logical network connection, encapsulate phys-
ical host information and constitute the exter-
nal view of the internal properties of the host
they are running on. Concretely, they offer
(Fig. 1):

* A way of obtaining both node static charac-
teristics (such as CPU, Operating System
type, ORB) and dynamic system informa-
tion (such as CPU and memory load, avail-
able resources, etc.): Resource Man-
ager interface.

* A way of obtaining the external view of the
local services: the Component Registry
interface reflects the internal Component
Repository and allows performing dis-
tributed component queries.

x Hooks for accepting new components at run-
time for local installation, instantiation
and running [11] (Component Acceptor
interface).

* Qperations supporting the protocol for logi-
cal Network Cohesion.

— The Reflection Architecture. Is composed
of the meta-data given by the different node
services:

x The Component Registry provides infor-
mation about (a) running components,
(b) the set of component instances running
in the node and the properties of each, and
(c) how those instances are connected via
ports (assemblies)[12]. This information
is used when components, applications or
visual builder tools need to obtain ¢infor-
mation about components.

* the Resource Manager in the node col-
laborates with the Container implement-

Repository, which become available to the
whole network. When component instances
require other components, the network can
decide either to fetch the component to be
locally installed, instantiated and run or to
use it remotely. This network behavior is
implemented by the Distributed Registry.
It stores information covering the resources
available in the network as a whole.

— Applications and Assembly. In
CORBA-LC, applications are just spe-
cial components. They are special because
(1) they encapsulate the explicit rules to
connect together certain components and
their instances (assembly), and (2) they are
created by users with the help of visual
building tools. Thus, they can be considered
as bootstrap components.

III. A GRID-ENABLED CONTAINER FOR
CORBA-LC

Containers in CORBA-LC mediate between com-
ponent instances and the infrastructure (both
CORBA-LC runtime and the Grid middleware). In-
stances ask the container for needed resources (for in-
stance, other components), and it, in turn, provides
them with their contezrt. Figure 3 on page 5 shows
the building blocks of a container, as well as its re-
sponsibilities within a call by the component client.
Concretely, container responsibilities include [13]:

 Manage component instances. It interacts
with the component factory to maintain the set
of active component instances, as well as in-
stance activation and deactivation.

o Provide a controlled execution environ-
ment for instances. They obtain all the net-
work resources (their view or context) from the
container, becoming their representative into
the network. The communication between con-
tainer and instances is made through agreed lo-
cal interfaces.

o Provide transparent fault tolerance, secu-
rity, migration, and load balancing. The
container intercepts all the calls made to the
component instances it manages. This gives the
container the chance to redirect the calls to the
correct component or to group component in-
stances to implement fault tolerance. There are
two main strategies to implement this behavior:

XIV JORNADAS DE PARALELISMO—LEGANES, MADRID, SEPTIEMBRE 2003 3

— Interception. Using CORBA as a founda-
tion, Portable Interceptors [5] can be used to
intercept every call to the instance. This is
more flexible and generic, but inefficient.

— Code generation. With this approach, an
utility can take interface definitions and non-
functional aspects of the component (de-
scribed as XML files) and generate a cus-
tomized container. The container becomes a
wrapper for the component. This approach is
more efficient because the container is made
for the component. Moreover, the code gener-
ation can also convert the generated container
into an adapter [14] to offer the component in-
terfaces as Grid Services compliant with the
OGSA specification [3].

Figure 3 on page 5 shows the flow that a client call
follows within the Container. The client call in in-
tercepted by the Container’s POA (1). The POA
invokes the Servant Locator of the Container (2).
This is in charge of locating the actual component
instance for the call. If the instance is not activated,
it will activate it. Alternatively, it may redirect the
call to another host depending on the requirements
on the application (replication, etc.) (3). The Com-
ponent Instance now takes the control, executing the
required operation (4). While its operation, the in-
stance may call the container to obtain services from
the network (5), such as other components or re-
sources. The instance then returns the results of the
operation (6), and the Servant Locator takes the con-
trol again (7). At this point, it can decide if to passi-
vate the instance to save system resources. The POA
finally returns the results to the caller. Points (3) to
(7) represent interception points.

Containers follow the Aspect-Oriented Program-
ming (AOP) philosophy [15]. Components specify
the non-functional requirements (aspects) they need
from the environment. This specification is made
through XML files describing the characteristics of
the component in terms of the defined aspects. Fig-
ure 4 on page 5 shows the CORBA-LC tool chain.
The user provides both the IDL definitions for the
component and the XML file describing the com-
ponent characteristics. This separation allows us-
ing traditional ORBs and IDL2 compilers instead of
forcing to use a CORBA 3 implementation as CCM
does. The CORBA-LC Code Generator generates
the code that interacts with the container for do-
ing aspect weaving, and the IDL Compiler gener-
ates traditional CORBA stubs and skeletons. These,
together with the Component Implementation pro-
vided by the user, are compiled into a Binary DLL
(Dynamic Link Library). Finally, the CORBA-LC
Component Packager gets the DLL and the meta-
data of the component (XML and IDL) and packages
it for distribution.

Figure 2 shows the role of the generated weaving
code. The component instance is composed of the
generated code and the code supplied by the user.
The weaving code interacts with the container to pro-

vide the required aspects. For instance, if the user
(or the application) decides to log the calls to this
instance, the generated code will do the logging be-
fore calling the actual instance implementation pro-
vided by the user (The same can be applied for Se-
curity, distribution, etc.) Just after applying desired
aspects, it calls the user implementation. The im-
plementation uses the container to obtain resources
from the system, such as other components and so
on.

To the Container

Fig. 2. Internal view of a component instance.

While traditional component models as EJB and
CCM cover the needs of enterprise-oriented appli-
cations, we believe they are not suited for dealing
with Grid or HPC applications, because of the bur-
den of enterprise-oriented services such as persistence
or transactions. Moreover, they have a fixed set of
aspects, making them difficult to adapt to those en-
vironments.

Following the AOP paradigm, we have identified
a set of aspects that components can specify so that
the container can manage them effectively in a Grid
environment. This list is not exhaustive, and is a
result of our ongoing research on this area:

Defines the
Helps the container to

o Instance lifetime and service.
lifetime of instances.
manage instances.

o Integration with grid security. Specifies the
security restriction of this component. The con-
tainer must ensure component security restric-
tions by leveraging the grid infrastructure.

o Mobility. If the component can travel or must
be run remotely. The former allows physical
component distribution. The latter is seman-
tically equivalent to a OGSA service.

o Fault Tolerance and Replication. The con-
tainer must ensure the level of fault tolerance
required by the component (number of replicas,
etc.)

4SEVILLA, GARCIA, GOMEZ: DESIGN AND IMPLEMENTATION OF A GRID-ENABLED COMPONENT CONTAINER FOR CORBA-LC

« Data Aggregation and distribution. This is

interesting for data-parallel components, which
can specify how many workers they need for
the realization of their work, and know how to
join partial results. The container is in charge
of finding the workers, delivering the data and
bringing back the results.

IV. STATUS AND FUTURE WORK

Current status of CORBA-LC allows building com-
ponents and connect them. We are currently re-
searching in the area of aspects suited for grid com-
puting and the design and implementation of the
CORBA-LC container. Concretely, we are working
in the following fields:

« Identification of aspects suitable for Grid com-

(1]

2]
(3]

4]
(5]

(6]

[7]

(8]

(9]

[10]

[11]

[12]

[13]

puting, and its application to CORBA-LC and
the Container and Code Generator. [16].

The implementation of the Container and the
different aspects such as Grid Security, leverag-
ing the different Commodity Grid Kits (CoG)
such as the CORBA CoG [17].

We are implementing the CORBA-LC dis-
tributed deployment, which interacts with each
component container to offer distributed ser-
vices such as replication, load balancing and
fault tolreance.

REFERENCIAS

I. Foster and C. Kesselman, Eds., The Grid: Blueprint
for a New Computing Infrastructure, Morgan Kaufmann,
1999.

The Globus Project Home Page, http://www.globus.org/.
Open Grid Services Architecture,
http://www.globus.org/ogsa.

C. Szyperski, Component Software: Beyond Object-
Oriented Programming, ACM Press, 1998.

Object Management Group, CORBA: Common Object
Request Broker Architecture Specification, revision 3.0.2,
2002, OMG Document formal/02-12-06.

CCA Forum, The Common Component Ar-
chitecture Technical Specification - Version 1.0,
http://z.ca.sandia.gov/~cca-forum/gport-spec/.

M. Li, O. F. Rana, M. S. Shields, and D. W. Walker,
“A Wrapper Generator for Wrapping High Performance
Legacy Codes as Java/CORBA Components,” in Super-
computing’2000 Conference, Dallas, TX, November 2000.
N. Furmento, A. Mayer, S. McGough, S. Newhouse,
T. Field, and J. Darlington, “Optimisation of
Component-based Applications within a Grid Environ-
ment,” in SuperComputing 2001, Denver, November
2001.

D. Sevilla, J. M. Garcia, and A. Gomez, “CORBA
Lightweight Components: A Model for Distributed
Component-Based Heterogeneous Computation,” in EU-
ROPAR’2001, Manchester, UK, August 2001.

D. Sevilla, J. M. Garcia, and A. Gémez, “Design and
Implementation Requirements for CORBA Lightweight
Components,” in Metacomputing Systems and Applica-
tions Workshop (MSA’01), Valencia, Spain, September
2001.

R. Marvie, P. Merle, and J-M. Geib, “A Dy-
namic Platform for CORBA Component Based Applica-
tions,” in First Intl. Conf. on Software Engineering Ap-
plied to Networking and Parallel/Distributed Computing
(SNPD’00), France, May 2000.

N. Parlavantzas, G. Coulson, M. Clarke, and G. Blair,
“Towards a Reflective Component-based Middleware Ar-
chitecture,” in ECOOP’2000 Workshop on Reflection
and Metalevel Architectures, 2000.

M. Vadet and P. Merle, “Les conteneurs ouverts dans les
plates-formes & composants,” in Journées Composants,
Besangon, France, October 2001.

[14]

15]

[16]

[17]

E. Gamma, R. Helm, R. Johnson, and J. Vlissides, De-
sign Patterns: Elements of Reusable Object-Oriented
Software, Addison-Wesley, Reading, MA, 1995.

J. Fabry, “Distribution as a set of Cooperating Aspects,”
in ECOOP’2000 Workshop on Distributed Objects Pro-
gramming Paradigms, June 2000.

F. Duclos, J. Estublier, and P. Morat, “Describing
and Using Non Functional Aspects in Component Based
Applications,” in International Conference on Aspect-
Oriented Software Development, Enschede, The Nether-
lands, April 2002.

M. Parashar, G. von Laszewski, S. Verma, J. Gawor,
K. Keahey, and N. Rehn, “A CORBA Comodity Grid
Kit,” Concurrency and Computation: Practice and Ez-
perience, 2002.

XIV JORNADAS DE PARALELISMO—LEGANES, MADRID, SEPTIEMBRE 2003

Call flow

Fig. 3. Component instances and interception within a Container.

Component
Component XML Aspect Weaver

Descriptor

Component IDL
Definitions l

tubs/
Skeletons

User-provided
Component
Implementation

Component . _Compl;)neknt
binary DLL Inary Package
(.ZIP)

B Tool User-Provided || Generated

Fig. 4. CORBA-LC tool chain.

