
A New Scalable Directory Architecture for Large-Scale Multiprocessors

Manuel E. Acacio, José González, José M. García
Dpto. Ing. y Tecnología de Computadores

Universidad de Murcia
30071 Murcia (Spain)

{meacacio,joseg,jmgarcia}@ditec.um.es

José Duato
Dpto. Inf. de Sistemas y Computadores

Universidad Politécnica de Valencia
46071 Valencia (Spain)
jduato@gap.upv.es

Abstract

The memory overhead introduced by directories consti-
tutes a major hurdle in the scalability of cc-NUMA archi-
tectures, which makes the shared-memory paradigm unfea-
sible for very large-scale systems. This work is focused
on improving the scalability of shared-memory multipro-
cessors by significantly reducing the size of the directory.
We propose multilayer clustering as an effective approach
to reduce the directory-entry width. Detailed evaluation
for 64 processors shows that using this approach we can
drastically reduce the memory overhead, while suffering
a performance degradation very similar to previous com-
pressed schemes (such as Coarse Vector). In addition, a
novel two-level directory architecture is proposed in order
to eliminate the penalty caused by these compressed direc-
tories. This organization consists of a small Full-Map first-
level directory (which provides precise information for the
most recently referenced lines) and a compressed second-
level directory (which provides in-excess information). Re-
sults show that a system with this directory architecture can
achieve the same performance as a multiprocessor with a
big and non-scalable Full-Map directory, with a very sig-
nificant reduction of the memory overhead.

1. Introduction and Motivation

Shared-memory multiprocessors cover a wide range of
prices and features, from commodity SMPs to large high-
performance cc-NUMA machines, such as the SGI Ori-
gin 2000. The adopted architectures are quite different de-
pending on the number of processors. On the one hand,
for small number of processors, a common bus is usu-
ally utilized along with snooping cache coherence proto-
cols. On the other hand, for medium- and large-scale
multiprocessors, directory schemes along with scalable in-
terconnection networks constitutes the underlying archi-
tecture. However, these implementations of the shared-

memory paradigm have limited scalability, thus becom-
ing unfeasible for very large-scale systems, which use the
message-passing paradigm. Examples of such machines are
the ASCI Red, the ASCI Blue Pacific and the ASCI White
multiprocessors.

The key property of shared-memory multiprocessors is
that communication occurs implicitly as a result of conven-
tional memory access instructions (i.e., loads and stores)
which makes them easier to program and thus, more popu-
lar than message-passing machines. In order to alleviate the
problem of high latencies, most shared-memory multipro-
cessors employ the cache hierarchy to keep data as close as
possible to the processor. Since multiple copies of a mem-
ory line may co-exist in different caches, a coherence proto-
col is needed to maintain consistency among these copies.

Several cache coherence protocols have been proposed
for implementing cache coherence efficiently. These pro-
tocols can be classified into snooping and directory-based.
Snooping protocols [8] solve the cache coherence problem
using a network with a completely ordered message deliv-
ery (traditionally a bus) to broadcast coherence transactions
directly to all processors and memory. Unfortunately, the
broadcast medium becomes a bottleneck (due to the lim-
ited bandwidth that it provides and to the limited number
of processors that can be attached) preventing them from
being scalable. For medium- and large-scale multiproces-
sors, a scalable interconnection network such as a mesh, or
a torus, is needed [7]. This could make snooping unsuitable
to be implemented on such interconnects.

Directory-based protocols were first proposed by Tang
[24], and Censier and Feautrier [3]. The basic idea is to
keep a directory entry for every memory line. This entry
consists of its state and a sharing code [16] indicating the
caches that contain a copy of the line. Each coherence trans-
action is sent to a directory controller which, in turn, using
its corresponding directory entry, redirects it to the proces-
sors caching the line. Indirection introduced by directory
increases the latency of these protocols. This overhead does
not appear in snooping protocols, because they broadcast all

coherence transactions to all the nodes in the system.
Directory schemes must satisfy two requirements to pro-

vide support for scalable multiprocessors [9]. First, the
bandwidth needed to access directory information must
scale well with the number of processors. This requirement
can be achieved by distributing the physical memory and
the directory among all the system nodes, and by using a
scalable interconnection network. In this way, each mem-
ory line is mapped to a home node which keeps a directory
entry for every memory line assigned to it. These directory-
based, cache-coherent Distributed-Shared Memory (DSM)
multiprocessors are also known as cc-NUMA machines.

The second requirement is that the hardware overhead
of using a directory scheme must scale with the number of
processors. The most important component of the hardware
overhead is the amount of memory required to store the di-
rectory information, particularly the sharing code. Depend-
ing on how the sharing code is organized, memory overhead
for large-scale configurations of a parallel machine could
be prohibitive. For example, for a simple Full-Map shar-
ing code and for a 128-byte line size, the directory over-
head (measured as sharing code size divided by memory
line size) for a system with 256 nodes is 25%, but when the
node count reaches 1024 this overhead becomes 100% [6].

Several sharing code schemes have been proposed in the
literature with a variety of sizes. On the one hand,

�������

(None in this work) does not use any bit. Thus, for a N-node
system, it always sends N-1 coherence messages (invali-
dations or cache-to-cache transfer orders) when the home
node cannot satisfy a coherence transaction (i.e., coherence
event). If there were actually j sharers, j>1, then N-1-j of the
N-1 messages would be unnecessary coherence messages.
On the other hand,

�������
(also known as Full-Map) uses a

bit vector to exactly identify the sharers [1]. This sharing
code never sends an unnecessary coherence message1, but
requires N bits to keep a memory line coherent, and thus it
does not scale well.

There are several proposals that fit between the two pre-
vious approaches. Some of them use a sharing code smaller
than

�������
by storing an in-excess representation of the

nodes that hold a line, and unlike
�������

do not always fall
back on broadcast. We will refer to these proposals as com-
pressed sharing codes (also known as multicast protocols
[16] and limited broadcast protocols [1]), as opposed to ex-
act ones (as limited pointers [4] or

����� �
). The goal of a

compressed sharing code is twofold: to minimize the shar-
ing code size and the number of unnecessary coherence
messages. Note that, as stated in [16], the unnecessary co-
herence messages could have three potential negative ef-
fects: (a) increased contention in the network, (b) cycles

1This is not exact in our evaluation environment because replacement
hints are not sent for lines in shared state. Thus, some invalidation mes-
sages may be unnecessary.

wasted sending the messages, assuming that they are sent
out one at a time, and (c) cycles wasted processing these
messages and increased contention at the caches that do not
actually have a copy of the line.

Our work is focused on increasing cc-NUMA scalability.
As mentioned above, sharing code encoding plays an im-
portant role, not only because of the memory overhead, but
also because the performance can be seriously degraded due
to the introduction of many unnecessary coherence mes-
sages per coherence transaction. Therefore, scalability is
constrained by these two issues. This work proposes new
compressed sharing codes based on a multilayer clustering
approach discussed in Section 3. Some of the sharing codes
that we propose significantly reduce the memory overhead
introduced by previous proposals with a negligible increase
in the percentage of unnecessary coherence messages.

In order to minimize the performance penalty introduced
by in-excess directories, we propose a novel two-level direc-
tory organization, which combines a small first-level direc-
tory (a few Full-Map entries for the most recently accessed
lines) with a compressed second-level directory, with one
entry per memory line. The aim of this new directory ar-
chitecture is to provide precise information for those mem-
ory lines that are frequently accessed (achieving the same
behavior as a traditional Full-Map directory) and in-excess
information for those lines that are not accessed very often.
Note that this approach can be generalized to a multilevel
directory organization.

We see two key contributions for this paper. First, the
multilayer clustering concept is presented and applied to de-
rive three new compressed sharing codes. Second, a novel
directory architecture combining the advantages of both
compressed and exact directories is proposed. Execution-
driven simulation is used to evaluate our proposals in terms
of execution time and number of unnecessary coherence
messages. Results show that our two-level directory archi-
tecture achieves the performance of big and non-scalable
Full-Map directories.

The rest of the paper is organized as follows. The related
work is presented in Section 2. Section 3 introduces some
of the compressed sharing codes proposed in the literature.
It also presents the multilayer clustering approach and three
new sharing codes derived from it. A new directory orga-
nization is proposed and justified in Section 4. Section 5
shows a detailed performance evaluation of our novel pro-
posals. Finally, Section 6 concludes the paper.

2. Related Work

Directory-based cache coherence protocols are accepted
as the common technique in large-scale shared-memory
multiprocessors because they are more scalable than snoop-
ing protocols. Although directory protocols have been ex-

tensively studied in the past, memory overhead and long
remote accesses remain the major hurdle on the scalability.

Memory overhead is usually managed from two orthog-
onal points of view: reducing directory width and reduc-
ing directory height. Some authors proposed to reduce
the width of directory entries by using compressed shar-
ing codes: Coarse Vector [9], which is currently employed
in the SGI Origin 2000 multiprocessor [15], Tristate [1],
Gray-Tristate [16] and Home [16].

Others proposals reduce directory width by having a lim-
ited number of pointers per entry to keep track of sharers
[1][4][22]. Differences between them are mainly found in
the way they handle overflow situations [6]. A comparison
with such directory schemes is out of the scope of this pa-
per.

A third alternative way of keeping track of sharers is
the Chained directory protocol, such as the IEEE Standard
Scalable Coherent Interface (SCI) [10]. It relies on dis-
tributing the sharing code between them. Each directory
entry has a pointer to the first sharer in the list, which in
turn has a pointer to the second sharer, and so on. All nodes
holding a copy of the line are obtained by performing a list
traversal. Optimizations to this proposal can be found in
[5][12][18]. All these schemes introduce significant over-
head, drastically increasing the latency of coherence trans-
actions. We have not considered these organizations be-
cause they represent a different approach from the imple-
mentation point of view.

Instead of decreasing directory width, other schemes
propose reducing directory height (the number of directory
entries) by combining several directory entries into a single
entry [21] or by organizing the directory as a cache [9][19].

Recently, some proposals have appeared focusing on re-
ducing the penalty introduced by remote accesses. In [13],
[14] and [17], coherence messages are predicted. Bilir et al.
[2] try to predict which nodes must receive each coherence
transaction. If the prediction hits, the protocol approximates
the snooping behavior (although the directory must be ac-
cessed in order to verify the prediction).

3. Multilayer Clustering Concept

This section presents several new sharing code organi-
zations based on the multilayer clustering approach. The
aim of these proposals is to reduce the size of the directory
width without significantly increasing the percentage of un-
necessary coherence messages. We refer to these schemes
as compressed sharing codes since the full information is
actually compressed in order to be represented using a fewer
number of bits, introducing a loss of precision. This means
that, when this information is reconstructed, more sharers
than necessary appear.

Two of the already proposed compressed sharing codes

are Gray-Tristate and Coarse Vector. Tristate uses a ���������
digit code requiring 2 bits per digit. The j-th digit of the
code is 0 if the j-th bit of all sharers is 0; the digit is 1 if all
sharers have a bit equal to 1; and the digit is both otherwise.
Gray-Tristate differs from Tristate in that it uses Gray code
to number the nodes. Coarse Vector uses N/K bits, where
a bit is set if any of the processors in a K-processor group
cached the line. These sharing codes were shown to achieve
very good performance results in terms of precision, but ex-
ecution times were not reported [16].

We propose a new family of compressed sharing codes
based on the multilayer clustering concept. Nodes are recur-
sively grouped into clusters of equal size until all the nodes
are grouped into a single cluster. Compression is achieved
by specifying the smallest cluster containing all the shar-
ers (instead of indicating all the sharers). Compression can
be increased even more by indicating only the level of the
cluster in the hierarchy. In this case, it is assumed that the
cluster is the one containing the home node for the memory
line. This approach is valid for any network topology.

Although clusters can be formed by grouping any inte-
ger number of clusters in the immediately lower layer of
the hierarchy, we analyze the case of using a value equal
to two. That is, each cluster contains two clusters of the
immediately lower level. By doing so, we simplify binary
representation and obtain better granularity to specify the
set of sharers. This recursive grouping into layer clusters
leads to a binary tree with the nodes located at the leaves.

As an example of the application of this approach, we
propose three new compressed sharing codes. The new
sharing codes can be graphically shown by considering the
distinction between the logical and the physical organiza-
tions. For example, we can have a 16-node system with a
mesh interconnection network as shown in Figure 1(a) and
we can imagine the same system as a binary tree (multilayer
system), as shown in Figure 1(b). In this representation,
each subtree is a cluster. It can be observed that this binary
tree is composed of 5 layers or levels (�	�
��������
 , where N
is a power of 2).

From this, we derive three new sharing codes:

� Binary Tree (BT): Since nodes are located at the leaves
of a tree, the set of nodes (sharers) holding a copy of a
particular memory line can be expressed as the level of
the root of the minimal subtree that includes the home
node and all the sharers (which can be expressed just
using �������������	�
��������
���� bits). Intuitively, the set of
sharers is obtained from the home node identifier by
changing the value of some of its least significant bits
to don’t care. The number of bits is equal to the level
of the above mentioned subtree. It constitutes a very
compact sharing code (observe that, for a 128-node
system, only 3 bits per directory entry are needed), but
its precision may be low, especially when few sharers,

Node
3

6 7

8 11

14 15

4

0

5

Node Node
12 13

Node

NodeNode

Node

NodeNode

Node Node

Node

Node
1

Node
9

Node
10

2
Node

(a) Physical system

Level 0

Level 1

Level 2

Level 4

Level 3

Node
0 1

Node
2 3

Node
4

Node
5

Node
6

Node
7

Node Node
9

Node
12

Node
10

Node
11

Node
13

Node
14

Node
15

Node
8

Node

(b) Logical system

Figure 1. Multilayer Clustering Example

distant in the tree, are found. As an example, consider
a 16-node system as the one shown in Figure 1(a), and
assume that nodes 1, 4 and 5 hold a copy of certain
memory line whose home node is 0. In this case, node
0 would store 3 as the tree level value, which is the one
covering all sharers (see Figure 1(b)).

� Binary Tree with Symmetric Nodes (BT-SN): We in-
troduce the concept of symmetric nodes of a particu-
lar home node. Assuming that 3 additional symmetric
nodes will be assigned to each home node, they will
be codified by different combinations of the two most-
significant bits of the home node identifier (note that
one of these combinations represents the home node
itself). For instance, if 0 were the home node in Fig-
ure 1, its corresponding symmetric nodes would be 4,
8 and 12. Now, the process of choosing the minimal
subtree that includes all the sharers is repeated for the
symmetric nodes. Then, the minimum of these sub-
trees is chosen to represent the sharers. The intuitive
idea is the same as before but, in this case, the two
most significant bits of the home identifier are changed
to the symmetric node used. Therefore, the size of the
sharing code of a directory entry is the same as before
plus the number of bits needed to codify the symmet-
ric nodes. For the previous example, nodes 4, 8 and

12 are the symmetric nodes of node 0. The tree level
could now be computed from node 0 or from any of its
symmetric nodes. In this way, the one which encodes
the smallest number of nodes is selected. In this par-
ticular example, the tree level 3 must be used to cover
all sharers.

� Binary Tree with Subtrees (BT-SuT): This scheme rep-
resents our most elaborated proposal. It solves the
common case of a single sharer by directly encoding
the identifier of that sharer. Thus, the sharing code
size is, at least, �	�
��� � bits. When several nodes are
caching the same memory line, an alternative repre-
sentation is chosen. Instead of using a single sub-
tree to include all sharers, two subtrees are employed.
One of them is computed from the home node. For
the other one, a symmetric node is employed. Using
both subtrees, the whole set of sharers must be cov-
ered while minimizing the number of included nodes.
Now, each directory entry will have two fields of up to
� �	�
� � ���	�
� � � � � bits to codify these subtrees (depend-
ing on the size of the subtree) and an additional field
to represent the symmetric node used. An additional
bit is needed to indicate the representation used (single
sharer or subtrees). Note that, in order to optimize the
number of bits required for this representation, we take
into account the maximum size of the subtrees, which
depends on the number of symmetric nodes used. For
the previous example, symmetric nodes do not change
(i.e., nodes 4, 8 and 12). Node 0 should notice that the
sharing code value implying fewer nodes is obtained
by selecting node 4 as symmetric node. Then, it en-
codes its tree level as 1 (covering node 1) and the tree
level for the symmetric node as 1 (covering nodes 4
and 5).

Sharing code Size (in bits)

Full-Map N
None 0

Gray-Tristate
��� ��� ���

Coarse Vector

	 �
��
Binary Tree
 � ��� ��� � ��� �����������

Binary Tree with Symmetric Nodes
 � ��� � � � ��� � ����������� �
Binary Tree with Subtrees ������� ����� � ��� � �!�#"������ � � �
 � ��� ��� � ��� �$�!�����&%
Table 1. Bits required by different sharing codes

Table 1 shows the number of bits required for each shar-
ing code (assuming 4 symmetric nodes). As we mentioned
above, Full-Map sharing code is characterized by its limited
scalability. Coarse Vector slightly reduces memory over-
head, but it does not solve the scalability problem, since its
sharing code is actually a linear function of N. The rest of
schemes present a much better scalability since their shar-
ing code size is not a linear function of the number of nodes
but a logarithmic function. It is important to note that, for
the most aggressive proposals (BT and BT-SN), memory
overhead remains almost constant as the number of nodes

TAG

TAG
. . .

Sharing Code
Sharing Code

=

N

N

M

State

Full-map sharing code

To Directory Controller

State
State

State Sharing Code

Tag

. . .

Second-Level Directory First-Level Directory

Sharing Code (Full-map entry)

Sharing Code (Full-map entry)

1

0

&

Logic
Convert

Choose

Figure 2. Two-Level Directory Organization

increases. Finally, all three schemes proposed in this work
achieve a much lower memory overhead than the previously
proposed ones.

4. Two-Level Directory

In addition to reducing directory entry width, an orthogo-
nal way to diminish directory memory overhead is to reduce
the total number of directory entries. That is, the total num-
ber of entries of the directory is less than the total number
of memory lines. Therefore, the directory could be orga-
nized as a cache [9][19]. The observation that motivates
the utilization of fewer directory entries is that only a small
fraction of the memory lines will be used at a given time.
Such a directory organization is known as sparse directory.
The main drawback of this directory cache concerns how re-
placements are managed. One approach [6] invalidates all
sharing copies of a memory line whose associated directory
entry is evicted. This may drastically affect performance
due to unnecessary invalidations.

In this work, we propose a solution to the scalability
problem that combines the benefits of both previous solu-
tions. Our two-level directory architecture merges the prop-
erties of sparse directories and compressed sharing codes.
In this way, we can increase the scalability of cc-NUMAs
without degrading performance.

4.1. Two-Level Directory Architecture

In a two-level directory organization we distinguish two
clearly decoupled structures:

1. First-level Directory (or Uncompressed Structure): It
consists of a small set of directory entries, each one
containing a precise sharing code (as for instance, Full-
Map or limited set of pointers).

2. Second-level Directory (or Compressed Structure): In
this level, a directory entry is assigned to each memory

line. We will use the compressed sharing codes pro-
posed in this work (BT, BT-SN and BT-SuT) since their
very low memory overhead makes them much more
scalable for this level than other schemes.

While the compressed structure has an entry for each
memory line assigned to a particular node, the uncom-
pressed structure has just a few entries, only used by a
small subset of memory lines. Thus, for a certain mem-
ory line, in-excess information is always available in the
second-level directory, but precise sharing code will be oc-
casionally placed in the first-level directory depending on
the temporal locality exhibited by this line. Note that, in
this organization, if the hit rate of the first-level directory
is high, the final performance of the system should approxi-
mate to the one obtained with a Full-Map directory. This hit
ratio depends on several factors: size of the uncompressed
structure, replacement policy and temporal locality exhib-
ited by the application.

Figure 2 shows the architecture of our two-level direc-
tory. Originally, state bits are only contained in the com-
pressed structure. Tag information must also be stored in the
uncompressed structure in order to determine whether there
is a hit. Both directory levels are accessed in parallel and
a Choose & Convert logic selects between precise informa-
tion, if it is present, or compressed information otherwise.
In the latter case, compressed sharing code is converted into
its Full-Map representation.

4.2. Implementation Issues

In sparse directories, when an entry is replaced, inval-
idation messages are sent to all the nodes encoded in the
evicted entry [6]. This affects the cache miss rate (and there-
fore, the final performance) of processors having the remote
copy of the line, since they receive the invalidation not be-
cause of a remote write but because of a replacement in the
remote directory cache. We can refer to these invalidations
as premature invalidations. These misses would not occur if

a directory with correct information per memory line were
used.

On the other hand, our two-level directory organization
will never send premature invalidations since correct in-
formation per memory line is always placed in the main
(compressed) directory. For our organization, a miss in the
first-level directory will cause the second-level to supply
the sharing information. As opposed to premature invalida-
tions, unnecessary coherence messages will never increase
the cache miss rate with respect to a Full-Map directory im-
plementation.

In this paper we assume the organization of the first-level
directory to be fully associative, with a LRU replacement
policy. The entries of this structure use Full-Map sharing
code. The management of this uncompressed structure is
carried out as follows:

a) When a request for a certain line arrives at the home
node, an entry is allocated in the first-level directory if
the line is in uncached state, or if an exclusive request
was received.

b) Since this uncompressed structure is quite small, capac-
ity misses can degrade performance. In order to reduce
such misses, an entry in the first-level directory is freed
when a write-back message for a memory line in exclu-
sive state is received. This means that this line is no
longer cached in any of the system nodes, so its corre-
sponding entry is available for other lines.

In addition, entries in the uncompressed structure are not
allocated as long as there exists a single node holding a copy
of the line and its identifier can be precisely encoded with
the sharing code of the second-level directory. Since its
compressed sharing code provides precise information, al-
locating an entry in the first-level would be unnecessary (in
these cases, allocations could be done when a non-exclusive
request from another node comes). Finally, replacements in
the first-level directory are not allowed for entries associ-
ated to memory lines with pending coherence transactions.

While more elaborated management algorithms are pos-
sible and will be considered in the near future, we concen-
trate on this immediate implementation to demonstrate the
viability of our proposal.

5. Performance Results

In this section, we present a detailed performance evalu-
ation of our novel proposals based on execution-driven sim-
ulations.

5.1. Simulation Environment

We have used a modified version of Rice Simulator for
ILP Multiprocessors (RSIM), a detailed execution-driven

ILP Processor
Processor Speed 1 GHz
Max. fetch/retire rate 4
Instruction Window 64
Functional Units 2 integer arithmetic

2 floating point
2 address generation

Memory queue size 32 entries
Cache Parameters

Cache line size 64 bytes
L1 cache (on-chip, WT) Direct mapped, 16KB
L1 request ports 2
L1 hit time 2 cycles
L2 cache (off-chip, WB) 4-way associative, 64KB
L2 request ports 1
L2 hit time 15 cycles, pipelined
Number of MSHRs 8 per cache

Memory Parameters
Memory access time 60 cycles (60 ns)
Memory interleaving 4-way
First coherence message creation time 40 cycles
Next coherence messages creation time 20 cycles

Internal Bus Parameters
Bus Speed 1 GHz
Bus width 8 bytes

Network Parameters
Topology 2-dimensional mesh
Flit size 8 bytes
Router speed 250 MHz
Router’s internal bus width 64 bits
Channel speed 500 MHz
Channel width 32 bits

Table 2. Base system parameters

Round Trip Access Latency (Cycles)

Secondary Cache 19
Local 97

Remote (1-Hop) 137

Table 3. No-contention round-trip latency of reads

simulator [20]. RSIM models an out-of-order superscalar
processor pipeline, a two-level cache hierarchy, a split-
transaction bus on each processor node, and an aggressive
memory and multiprocessor interconnection network sub-
system, including contention at all resources. The modeled
system implements a Full-Map invalidation-based four-
state MESI directory cache-coherent protocol and sequen-
tial consistency. Table 2 summarizes the parameters of the
simulated system. These values have been chosen to be sim-
ilar to the parameters of current multiprocessors. However,
caches are smaller due to the limitations of the benchmarks
utilized for evaluation (SPLASH-2). These sizes have been
chosen following the working set characterizations found in
[25]. With all these parameters, the resulting no-contention
round-trip latency of read requests satisfied at various levels
of the memory hierarchy is shown in Table 3.

The original coherence protocol was designed based on
precise sharing codes, particularly on a Full-Map sharing
code. This protocol was extended to support compressed
sharing codes and, in particular, the presence of unneces-
sary coherence messages.

We have selected some numerical applications to inves-
tigate the potential performance benefits of our proposals.
The application programs used in our evaluations are Water
from the SPLASH benchmark suite [23] and FFT, Radix,
Barnes-Hut and LU from SPLASH-2 benchmark suite [25].
The input data sizes are shown in Table 4. All experimen-
tal results reported in this paper are for the parallel phase
of these applications. All the applications include code to

Program Size

FFT 64k
Water 512 molecules
Radix 2M keys, 1024 radix

Barnes-Hut 4K bodies
LU 512 by 512 matrix, block 16

Table 4. Applications and input sizes

distribute the data among the physically distributed memo-
ries in a cc-NUMA system based on the given recommen-
dations.

We chose 64 processors for our modeled system in or-
der to evaluate the impact of compressed sharing codes for
a reasonable number of nodes. Finally, for Coarse Vector
sharing code scheme, we assume a value of K equal to 4.

5.2. Simulation Results and Analysis

5.2.1 Compressed Sharing Codes Evaluation

In Section 3, three novel compressed sharing codes were
introduced: Binary Tree (BT), Binary Tree with Symmetric
Nodes (BT-SN) and Binary Tree with Subtrees (BT-SuT).
These schemes have been shown to obtain good scalability
and the best results in terms of memory overhead. However,
performance results in terms of execution time and number
of unnecessary coherence messages are needed to evaluate
the feasibility of such schemes.

Full-Map sharing code provides the best execution times,
since unnecessary coherence messages are completely elim-
inated. Table 5 shows the execution time (in processor cy-
cles) for the evaluated applications when Full-Map sharing
code is used (second column), the total number of coher-
ence events (third column), and the average number of mes-
sages sent per coherence event (fourth column). The last
measure is used to compute the fraction of unnecessary co-
herence messages that are sent using compressed directo-
ries.

The third column of Table 5 provides an insight about
the use of the directory information made by the applica-
tions. Water is the application that exhibits a higher num-
ber of coherence events whereas LU experiences the lowest
utilization of such a resource. This usage influences the ex-
ecution overhead introduced by compressed sharing codes
as we will later show.

Figure 3 shows the execution times obtained for the dif-
ferent evaluated sharing codes. These times have been nor-
malized with respect to the execution time obtained for the
baseline configuration (using the Full-Map directory), so
this graph actually shows the overhead introduced by un-
necessary coherence messages. This figure also shows the
normalized execution time when there is no sharing code in
the directory (labeled as None).

Results for LU application are not reported. Its few num-
ber of coherence events during a wide execution interval

Application Cycles Coherence events Messages per
������� ������� coherence event

FFT 3.6 178.66 1.00
Water 17.68 825.84 1.09
Radix 23.73 91.58 1.19

Barnes-Hut 16.58 106.98 2.58
LU 77.4 35.6 1.06

Table 5. Execution times, number of coherence
events and messages per coherence event when
Full-Map sharing code is used

makes compressed sharing codes not to degrade signifi-
cantly the performance when comparing with respect to a
Full-Map directory.

As expected, Water performance is significantly de-
graded when no sharing code exists (slowdown of 10). On
the other hand, the performance of Radix is also degraded
but not so significantly (75% slowdown). Finally, a slow-
down of 3.82 and more than 4 is observed for FFT and
Barnes-Hut, respectively. This means that eliminating the
sharing code does not constitute an effective solution to the
scalability problem. As far as our schemes are concerned,
BT obtains the worst results (as expected), it causes a per-
formance degradation which ranges from 1.31 for Radix to
6.40 for Water. This degradation is strongly related to the
amount of coherence transactions in the applications. How-
ever, the execution time for FFT (which has a considerable
number of such transactions) is only increased by a factor
of 1.52.

3.
82 10 46.
4

2.
54

2.
91 2.
07

0.8

1

1.2

1.4

1.6

1.8

2

FFT Water Radix Barnes

No
rm

al
iz

ed
 e

xe
cu

tio
n

tim
e

None
Coarse
Gray-Tr
BT
BT-SN
BT-SuT

Figure 3. Normalized execution times

Adding symmetric nodes to BT (BT-SN) does not affect
the performance of FFT. The reason for that can be seen in
Figure 4 (which shows the overhead in the number of coher-
ence messages introduced by compressed sharing codes).
For FFT, this overhead remains the same for both directory
schemes. Symmetric nodes cannot reduce the number of
unnecessary coherence messages due to the particular shar-
ing pattern of this application. Water, Radix and Barnes-
Hut experience a reduction on such overhead when sym-
metric nodes are added to the BT directory scheme, which
translates into an important reduction in the normalized ex-

ecution time (from 6.40 to 2.91 for Water, from 1.31 to 1.08
for Radix and from 2.54 to 2.07 for Barnes-Hut).

Regarding the binary tree with subtrees (BT-SuT), the
overhead introduced by such a scheme is very small for FFT
(1.1) and practically null for Radix, whereas for Water and
Barnes-Hut it is significantly reduced (from 2.91 to 1.36
and from 2.07 to 1.49, respectively).

Comparing the directory schemes proposed in this work
with previous compressed schemes (Coarse Vector and
Gray-Tristate), we can observe that BT-SuT slightly outper-
forms these two previous proposals for Radix. For FFT,
there is not any significant difference in the performance ob-
tained by these three schemes. BT-SuT outperforms Coarse
Vector in Water, although Gray-Tristate obtains the best re-
sults. Finally, BT-SuT and Gray-Tristate obtain very similar
performance numbers for Barnes-Hut, whereas Coarse Vec-
tor outperforms both schemes. It is important to note that
BT-SuT uses half of the storage required by Gray-Tristate.
Thus, we can conclude that it achieves a better trade-off be-
tween memory overhead and performance degradation.

24
.4

2

5863 53 33
.3

3

1

3

5

7

9

11

13

15

17

19

21

FFT Water Radix Barnes

C
oh

er
en

ce
 M

es
sa

ge
 o

ve
rh

ea
d

None
Coarse
Gray-Tr
BT
BT-SN
BT-SuT

Figure 4. Normalized number of messages per co-
herence event

5.2.2 Two-Level Directory Architecture Evaluation

As it was expected, some performance degradation occurs
when compressed sharing codes are used. Such degrada-
tion depends on both the compressed sharing code used and
the sharing patterns of the applications. This degradation
could be negligible (when BT-SuT is used, the slowdown
for Radix is only 0.3%) or significant (using BT-SuT, 49%
for Barnes-Hut). In order to recover as much as possible
from the lost performance, we organize the directory as a
multilevel architecture. In this section, we evaluate the two-
level directory organization proposed in Section 4.

Figure 5 shows the normalized execution time (with re-
spect to a Full-Map directory) obtained with a two-level di-
rectory. We evaluated two different sizes for the Full-Map

(FM) first-level directory: 256 and 512 entries2. We have
chosen these values according to the L2 size (they actually
represent 3.12% and 6.25%, respectively, of the L2 size).
The second-level directory does not have any sharing code
(None). For comparison purposes, results are also shown
for Coarse Vector and Gray-Tristate. We can observe that
the overhead introduced by the lack of sharing code is re-
duced when a Full-Map first-level directory is added, espe-
cially when 512 entries are used. However, this reduction
is not enough for FFT and Radix, which means that hav-
ing only a small directory cache still introduces important
performance penalties. On the other hand, the overhead is
completely eliminated in Water and Barnes-Hut, due to the
locality exhibited by their memory references, which causes
a high hit rate (almost 100%) in the first-level directory.

103.
82 4

2.
97

0.8

1

1.2

1.4

1.6

1.8

2

FFT Water Radix Barnes

No
rm

al
iz

ed
 e

xe
cu

tio
n

tim
e

None

Coarse

Gray-Tr

None+FM(256)

None+FM(512)

Figure 5. Normalized execution times for None and
first-level directory(FM)

4103.
82 2.

54

6.
39

0.8

1

1.2

1.4

1.6

1.8

2

FFT Water Radix Barnes

No
rm

al
iz

ed
 e

xe
cu

tio
n

tim
e

None
Coarse
Gray-Tr
BT
BT+FM(256)
BT+FM(512)

Figure 6. Normalized execution times for BT and
first-level directory(FM)

Figure 6 presents the same results when the BT scheme
is utilized for the second-level directory. The overhead in-
troduced by such an aggressive compressed sharing code is
almost hidden by the first-level directory (mainly for FFT,

2Since the main memory is four-way interleaved, each memory module
has a first-level directory of 64 and 128 entries, respectively.

Water and Barnes-Hut), although 512 entries are needed.
These results are very promising, since the scalability of
multiprocessors can be significantly increased using such a
scalable main directory while performance is almost kept
intact due to the presence of the first-level directory. Nev-
ertheless, Radix still presents a performance degradation,
which may indicate that BT could be too aggressive for the
second-level.

4

103.
82 2.
072.
91

0.8

1

1.2

1.4

1.6

1.8

2

FFT Water Radix Barnes

No
rm

al
iz

ed
 e

xe
cu

tio
n

tim
e

None
Coarse
Gray-Tr
BT-SN
BT-SN+FM(256)
BT-SN+FM(512)

Figure 7. Normalized execution times for BT-SN
and first-level directory(FM)

4

3.
82 10

0.8

1

1.2

1.4

1.6

1.8

2

FFT Water Radix Barnes

No
rm

al
iz

ed
 e

xe
cu

tio
n

tim
e

None
Coarse
Gray-Tr
BT-SuT
BT-SuT+FM(256)
BT-SuT+FM(512)

Figure 8. Normalized execution times for BT-SuT
and first-level directory(FM)

Figure 7 shows the performance of the two-level direc-
tory when the BT-SN sharing code is considered for the
compressed structure. In this case, 512 entries for the first-
level directory are enough to almost eliminate the perfor-
mance penalty introduced by BT-SN in Radix. Note that
this would be a good compromise between scalability and
performance since BT-SN only needs two additional bits per
directory entry with respect to BT. Finally, Figure 8 depicts
the same results when BT-SuT is considered for the second-
level directory. Observe that using just 256 entries in the
first level (which constitutes a 3.12% of the L2 size) practi-
cally eliminates all the performance degradation introduced
by BT-SuT. This means that a two-level architecture com-
posed by a very small Full-Map first-level directory and a

compressed second-level directory may constitute an effec-
tive solution to the problem of directory scalability, causing
negligible performance degradation.

6. Conclusions

The major objective of this work has been to overcome
the scalability limitations that directory memory overhead
imposes on current shared-memory multiprocessors. First,
the multilayer clustering concept is introduced and from
it, three new compressed sharing codes are derived. Bi-
nary Tree, Binary Tree with Symmetric Nodes and Binary
Tree with Subtrees are proposed as new compressed sharing
codes with less memory requirements than existing ones.
Compressed sharing codes reduce the directory entry width
associated to a memory line, by having an in-excess rep-
resentation of the nodes holding a copy of this line. Un-
necessary coherence messages degrading the performance
of directory protocols appear as a result of this inaccurate
way to keep track of sharers. A comparison between our
three proposals and Full-Map sharing code is carried out
in order to evaluate such a degradation. Also, a compari-
son with two of the most relevant existing compressed shar-
ing codes, Coarse Vector and Gray-Tristate, is performed.
Results show that compressed directories slowdown the ap-
plications performance due to the presence of unnecessary
coherence messages. Despite this degradation, our pro-
posed scheme BT-SuT achieves a better trade-off between
performance penalty (up to 49%) and memory overhead
(����� ���	��

������������������
���
��! "�#�����$�%�������&���(')�+*

bits per
entry) than previously proposed compressed sharing codes.

In order to alleviate the performance penalty introduced
by compressed sharing codes, a novel directory architec-
ture has also been proposed. Two-level directory architec-
tures combine a very small uncompressed first-level struc-
ture (Full-Map) with a second-level compressed structure.
Results for this directory organization show that, for a 256-
entry first-level directory and a BT-SuT second-level direc-
tory, the performance achieved is very similar to that ob-
tained by systems using big and non-scalable Full-Map di-
rectories. Therefore, the directory architecture proposed in
this paper drastically reduces directory memory overhead
while achieving similar performance. Thus, directory scal-
ability is significantly improved.

Further research in this field involves the application of
this directory organization not only to improve the scalabil-
ity but also to improve the performance. This can be accom-
plished by moving the directory controller and the first-level
directory into the processor chip. In this way, the time re-
quired by coherence transactions that may be in the critical
path would be significantly reduced. Note that some current
processors already include on-chip memory controller and
network interface [11].

Besides, medium-scale multiprocessors use snooping
protocols over a scalable interconnection network, since
buses are unfeasible for more than a few processors (exam-
ple of this is the Sun E10000). It will be interesting to eval-
uate whether the use of broadcast is better than the use of
our two-level directory organization with on-chip first-level
directory. The cost of broadcast coherence transactions in
snooping protocols and the network saturation may be over-
come with fast processor-to-processor directory access and
multicast coherence messages.

7. Acknowledgments

This research has been carried out using the resources of
the Centre de Computació i Comunicacions de Catalunya
(CESCA-CEPBA). This work has been supported in part
by the Spanish CICYT under grant TIC97-0897-C04.

References

[1] A. Agarwal, R. Simoni, M. Horowitz and J. Hennessy. An
Evaluation of Directory Schemes for Cache Coherence. Proc.
of the 15th Int’l Symposium on Computer Architecture, pp.
280-289, 1988.

[2] E.E. Bilir, R.M. Dickson, Y. Hu, M. Plakal, D.J. Sorin, M.D.
Hill and D.A. Wood. Multicast Snooping: A New Coherence
Method Using a Multicast Address Network. Proc. of the 26th
Int’l Symposium on Computer Architecture, May 1999.

[3] L.M. Censier and P. Feautrier. A New Solution to Coherence
Problems in Multicache Systems. IEEE Transaction on Com-
puters, 27(12), pp. 1112-1118, December 1978.

[4] D. Chaiken, J. Kubiatowicz and A. Agarwal. LimitLESS Di-
rectories: A Scalable Cache Coherence Scheme. Proc. of
International Conference on Architectural Support for Pro-
gramming Language and Operating Systems (ASPLOS IV),
pp. 224-234, April 1991.

[5] Y. Chang and L.N. Bhuyan. An Efficient Hybrid Cache Co-
herence Protocol for Shared Memory Multiprocessors. IEEE
Transaction on Computers, March 1999.

[6] D.E. Culler, J.P. Singh and A. Gupta. Parallel Computer Ar-
chitecture: A Hardware/Software Approach. Morgan Kauf-
mann Publishers, Inc., 1999.

[7] J. Duato, S. Yalamanchili and L.M. Ni. Interconnection Net-
works: An Engineering Approach. IEEE Computer Society,
Los Alamitos, 1997.

[8] J. Goodman. Using Cache Memories to Reduce Processor-
Memory Traffic. Proc. of the Int’l Symposium on Computer
Architecture, June 1983.

[9] A. Gupta, W.-D. Weber and T. Mowry. Reducing Memory
and Traffic Requirements for Scalable Directory-Based Cache
Coherence Schemes. Proc. Int’l Conference on Parallel Pro-
cessing, pp. I: 312-321, August 1990.

[10] D. Gustavson. The Scalable Coherent Interface and Related
Standards Projects. IEEE Micro 12(1), pp. 10-22, 1992.

[11] L. Gwennap. Alpha 21364 to Ease Memory Bottleneck. Mi-
croprocessor Report, pp. 12-15, October 1998.

[12] R.E. Johnson. Extending the Scalable Coherent Interface
for large-Scale Shared-Memory Multiprocessors. PhD The-
sis, University of Wisconsin-Madison, 1993.

[13] S. Kaxiras and C. Young. Coherence Communication Predic-
tion in Shared-Memory Multiprocessors. Proc. of the 6th Int’l
High Performance Computer Architecture, January 2000.

[14] A. Lai and B. Falsafi. Memory Sharing Predictor: The Key
to a Speculative DSM. 26th Proc. of the Int’l Symposium on
Computer Architecture, May 1999.

[15] J. Laudon and D. Lenoski. The SGI Origin: A ccNUMA
Highly Scalable Server. Proc. of the 24th Int’l Symposium on
Computer Architecture, 1997.

[16] S.S. Mukherjee and M.D. Hill. An Evaluation of Directory
Protocols for Medium-Scale Shared-Memory Multiproces-
sors. Proc. of the 8th ACM Int’l Conference on Supercom-
puting, July 1994.

[17] S.S. Mukherjee and M.D. Hill. Using Prediction to Acceler-
ate Coherence Protocols. Proc. of the 24th Int’l Symposium
on Computer Architecture, July 1998.

[18] H. Nilsson and P. Stenström. The Scalable Tree Protocol – A
Cache Coherence Approach for Large-Scale Multiprocessors.
Proc. of 4th IEEE Symposium on Parallel and Distributed
Processing, pp. 498-506, December 1992.

[19] B. O’Krafka and A. Newton. An Empirical Evaluation of
Two Memory-Efficient Directory Methods. Proc. of the 17th
Int’l Symposium on Computer Architecture, pp. 138-147, May
1990.

[20] V.S. Pai, P. Ranganathan and S.V. Adve. RSIM Reference
Manual version 1.0. Technical Report 9705, Department of
Electrical and Computer Engineering, Rice University, Au-
gust 1997.

[21] R. Simoni. Cache Coherence Directories for Scalable Multi-
processors. Ph.D. Thesis, Stanford University, 1992.

[22] R. Simoni and M. Horowitz. Dynamic Pointer Allocation for
Scalable Cache Coherence Directories. Proc. Int’l Symposium
on Shared Memory Multiprocessing, pp. 72-81, April 1991.

[23] J.P. Singh, W.-D. Weber and A. Gupta. SPLASH: Stanford
Parallel Applications for Shared-Memory. Computer Archi-
tecture News, vol. 20, pp. 5-44, March 1992.

[24] C. Tang. Cache Design in a Tightly Coupled Multiprocessor
System. Proc. AFIPS Conference, pp. 749-753, June 1976.

[25] S.C. Woo, M. Ohara, E. Torrie, J.P. Singh and A. Gupta. The
SPLASH-2 Programs: Characterization and Methodological
Considerations. Proc. of the 22nd Int’l Symposium on Com-
puter Architecture, pp. 24-36, June 1995.

