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Abstract

This paper focuses on reducing the execution time of
the video compression algorithms based on the 3D wavelet
transform. We present several optimizations that could not
be applied by the compiler due to the characteristics of the
algorithm. First, we use the Streaming SIMD Extensions
(SSE) for some of the dimensions of the sequence ( � and
�������

), in order to reduce the number of floating point in-
structions, exploiting Data Level Parallelism. Then, we ap-
ply loop unrolling and data prefetching to critical parts of
the code, and finally the algorithm is vectorized by columns,
allowing the use of SIMD instructions for the � dimen-
sion. Results show improvements of up to 1.54 over a ver-
sion compiled with the maximum optimizations of the Intel
C/C++ compiler. Our experiments also show that, allowing
the compiler to perform some of these optimizations (i.e.
automatic code vectorization) causes performance slow-
down which demonstrates the effectiveness of our optimiza-
tions.

1 Introduction

The increase in the volume of medical video generated
in hospitals, as well as its strict regulations and quality con-
straints makes the research in compression techniques espe-
cially oriented to this video an interesting area.

In the last few years, the application of the wavelet trans-
form [14][30] has reached an important development. The
wavelet transform has been mainly applied to image com-
pression. Several coders have been developed using 2D
wavelet transform [3][21][29]. Moreover, the last image
compression standard, JPEG2000 [23][28] is also based on
the 2D discrete wavelet transform with a dyadic mother
wavelet transform.

The 2D wavelet transform has been used for compress-

ing video [17] as well. However, three dimensional (3D)
compression techniques seem to offer better results than two
dimensional (2D) compression techniques which operate in
each frame independently. Muraki introduced the idea of
using 3D wavelet transform to efficiently approximate 3D
volumetric data [24][25]. Since one of the three spatial di-
mensions can be considered similar to time, a 3D subband
coding using the zerotree method (EZW) was presented to
code video sequences [10] and posteriorly improved with
an embedded wavelet video coder using 3D set partitioning
in hierarchical trees (SPIHT) [18]. Nowadays, the standard
MPEG-4 [4][5] supports an ad-hoc tool for encoding tex-
tures and still images based on a wavelet algorithm.

However, one of the main drawbacks of using the 3D
wavelet transform is its excessive execution time. Since
three dimensions are exploited in order to obtain high com-
pression rates, the working set becomes huge and the algo-
rithm becomes memory bound. Blocking is a well-known
optimization technique for improving the effectiveness of
memory hierarchies [1][19][22]. Instead of operating on
entire rows, columns or frames of the working set, blocked
algorithms operate on working subsets or blocks, so that
data loaded into the faster levels of the memory hierarchy
are reused. Blocking has been shown to be useful for many
algorithms in linear algebra like BLAS [15], LAPACK [2]
and more recently ATLAS [32].

In previous works [6][7], we presented an implementa-
tion of a lossy encoder for medical video based on the 3D
Fast Wavelet Transform (FWT). This encoder achieves high
compression ratios with excellent quality, so that medical
doctors cannot find differences between the original and the
reconstructed video. Later, we proposed a memory con-
scious 3D wavelet transform that exploits the memory hi-
erarchy by means of blocking algorithms [8], thus reduc-
ing the final execution time. In particular, we proposed and
evaluated several blocking approaches that differ in the way
that the original working set is divided. We also proposed



the reuse of some computations to save floating point (FP)
operations as well as memory accesses. Results showed that
the rectangular overlapped approach provided the best exe-
cution times among all tested algorithms, maintaining both
the compression ratio and the video quality.

The introduction of Multimedia Extensions (MMX) [20]
and the Streaming SIMD Extensions (SSE) [12] available
on modern processors, provide a technology designed to
accelerate multimedia and communications software, be-
ing able to reduce the execution time of the applications.
Ranganathan et al. [27] show that the Sun VIS media ISA
extensions provide an additional 1.1 to 4.2 performance im-
provement over several image and video processing appli-
cations. Nachtergaele et al. [26], proposed a software im-
plementation of the MPEG-4 based on the integer wavelet
transform using Multimedia Extensions. Conte et al. [11]
evaluated several applications obtaining substantial speed-
ups with MMX/SSE code.

In this paper, we present several techniques in order to
reduce the execution times of the rectangular overlapped ap-
proach based on the 3D-FWT, maintaining the same com-
pression ratio and video quality. Particularly, we attempt
to take advantage of the Streaming SIMD Extensions effi-
ciently [9], using the new Intel C/C++ Compiler [13]. We
also employ others classic methods like data prefetching
and loop unrolling. Finally, we examine the source code
in order to exploit the temporal and spatial locality in the
memory cache. A method to enhance the locality of the
memory hierarchy, based on the computation of the wavelet
transform in the � and � dimensions, will be presented tak-
ing into account that the mother wavelet function is the
Daubechie’s of four coefficients (Daub-4).

The rest of this paper is organized as follows. The back-
ground is presented in Section 2. Section 3 describes sev-
eral approaches in order to reduce the execution times in the
3D-FWT algorithm. We present the main details of each
method. Experimental Results on some test medical video
are analyzed in Section 4. Finally, Section 5 summarizes
the work and concludes the paper.

2 Background

In this Section, we review the framework on top of it
our enhancements have been built. We first review the ini-
tial blocking version of the Wavelet Transform, then we in-
troduce the Intel C/C++ compiler along with the advanced
multimedia extensions.

2.1 Blocking the Wavelet Transform

Previous Wavelet-based encoder obtained excellent re-
sults both in compression rate and quality (PSNR), as it
can be observed in [6][7]. These results were obtained with
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Figure 1. Rectangular approach

the 3D-FWT working on video sequences of
���

frames of
�����

�
�	�
�

pixels (16 MBytes of working set). This huge
working set limits the performance of such algorithm, mak-
ing it unfeasible for real-time video transmission. Initial
results showed that this algorithm is completely memory
bound, therefore, blocking techniques become an interest-
ing approach to reduce its memory requirements and thus
the execution time.

The goal of blocking algorithms is to exploit the locality
exhibited by memory references by means of partitioning
the initial working set in limited chunks that fit in the differ-
ent levels of the memory hierarchy. In this way two positive
effects appear: in the one hand, memory accesses are ac-
celerated since data are actually at the higher levels of the
memory hierarchy (closer to the processor core). On the
other hand, traffic between main memory and the proces-
sor chip is drastically reduced, obtaining a better use of the
bandwidth provided by the baseline computer system.

However, applying blocking algorithms to video coders
is a challenge: not only the memory hierarchy must be ex-
ploited by means of an optimum data partitioning, but also
quality must be preserved. Note that partitioning the work-
ing set into independent blocks may lead to unexpected
degradations on the quality of the resulting video due to ar-
tifacts in the block bounds. It is detected an increasing de-
gree of visibility of the discontinuity in the reconstruction at
adjacent subcubes boundaries because artifacts effects ap-
pear. This is due to the way that computation is performed
in the FWT, where, for a particular pixel, the value of its
coefficient after the transform is correlated with the original
values of its neighboring pixels.

The rectangular overlapped partitioning [8], where the
original cube is divided into several rectangles, as we can
observe in figure 1, was presented as the best approach for
two main reasons: first, it exploits better the spatial lo-
cality of memory references because the frames are stored
in memory following a row order, and second, there is a
reuse of floating point operations. The optimal block size
(
�	�
�

�
���
�
�
�

) obtains a speedup of 2.75 compared to the



non-blocking overlapped wavelet transform maintaining the
same compression rate and quality as the non-blocking ap-
proaches.

However, analyzing the cache behavior, we observe that
the number of L1 and L2 cache misses are still too high even
for the optimal block size. On the other hand, the number of
floating point instructions executed is also very large. Note
that, since after blocking the algorithm is not completely
memory bound, speeding-up floating points instructions be-
come crucial to obtain better performance results.

In the next section, we will present different methods
to decrease the L1 and L2 cache misses and the floating
point instructions executed in order to decrease the execu-
tion time.

2.2 Intel C/C++ Compiler

Up to now, we have used the gcc compiler of gnu. In
[8], results were obtained with the gcc compiler. However,
all the algorithms evaluated in this work, including the rect-
angular overlapped approach, have been compiled using the
Intel C/C++ Compiler for Linux (v5.0.1) [13], in order to al-
low our proposals to perform the best on Intel architecture-
based computers. This compiler provides high performance
using new compiler optimizations. It supports for Stream-
ing SIMD Extensions, data prefetching, automatic vector-
ization and generates and optimizes code specialized for
the Pentium III processor, in order to obtain the best per-
formance.

2.3 Streaming SIMD Extensions (SSE)

Pentium III processor family features a rich set of SIMD
instructions on packed integers and floating-point numbers
that can be used to boost the performance of loops that per-
form a single operation on different elements in data set.

The Pentium III processor introduced the 128-bit stream-
ing SIMD extensions [31], supporting floating-point op-
erations on 4 single-precision floating-point numbers, im-
plemented through of eight 128-bit data registers, called
xmm0, xmm1, . . . , xmm7.

On the other hand, the Intel C/C++ Compiler follows the
standard approach to the vectorization of inner loops [33].
First, statements in a loop are reordered according to a topo-
logical sort of the acyclic condensation of the data depen-
dence graph for this loop. Then, statements involved in a
data dependence cycle are either recognized as certain id-
ioms that can be vectorized, or distributed out into a loop
that will remain serial. Finally, vectorizable loops are trans-
lated into SIMD instructions.

However, automatic vectorization is still difficult to
achieve due to high restrictions imposed by compilers and
the nature of the algorithm of the wavelet transform. In-
stead, and as will be shown in next Section, we have man-

/* c0, c1, c2, c3: Daub-4 coefficients */
/* pixels 1..n = p[0..n] */
/* temporal vector: low-pass */
float low[n/2], high[n/2];
for(
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Figure 2. Algorithm of 1D-FWT overlapped
with Daub-4

ually vectorized the code, since it was simple and more ef-
fective than giving hints to help the compiler.

3 Optimizing the Rectangular Overlapped
Approach

In this Section, several enhancements over the original
blocking algorithms are presented, with the aim of reducing
both the number of FP instructions and the pressure over the
memory subsystem.

3.1 SSE Extensions for the Wavelet Transform

The SSE are used to exploit fine-grained parallelism by
vectorizing loops that perform a single operation on multi-
ple elements in a data set. Therefore, SSE are applied to
our wavelet overlapped transform algorithm for an unidi-
mensional signal (1D-FWT) of



pixels with the Daub-4 as

mother wavelet function.
As we can observe in Figure 2, the value of each result-

ing wavelet coefficient depends on four pixels, and 8 float-
ing point multiplications and 6 floating points additions are
needed to obtain the low and high pass for each pixel. Then,
for 4 coefficients, 32 floating point multiplications and 24
floating points additions are necessary.

Figure 3 shows the computation of the first four low-pass
resulting wavelet coefficients. We will refer to this opti-
mization as SSE vectorization by hand. First, four SSE reg-
isters (xmm0, xmm1, xmm2 and xmm3) are initialized with
the Daub-4 coefficients. Second, the pixels are loaded in
group of four into the SSE registers (xmm4, xmm5, xmm6
and xmm7). Finally, 4 floating point multiplications and 3
floating points additions are performed among the registers
SSE in order to obtain the same wavelets coefficients as in
the algorithm of 1D-FWT overlapped with Daub-4. We can
obtain the high-pass wavelet coefficients in the same way
with 4 floating point multiplications and 3 floating points
additions more. Therefore, the total number of floating
point instructions has been reduced from 56 to 15 instruc-
tions.



C0 C0 C0C0

C1 C1 C1C1

_mm_set_ps(C0, C0, C0, C0)

_mm_set_ps(C1, C1, C1, C1)

_mm_set_ps(C2, C2, C2, C2)

_mm_set_ps(C3, C3, C3, C3)

XMM0

XMM1

XMM2

XMM3

C2 C2 C2C2

C3 C3 C3C3

_mm_set_ps(p[6], p[4], p[2], p[0])

_mm_set_ps(p[7], p[5], p[3], p[1])

_mm_set_ps(p[8], p[6], p[4], p[2])

XMM4

XMM5

XMM6

XMM7

p[2] p[8]

p[3]

p[0] p[4] p[6]

p[1] p[5] p[7]

p[2]

p[3]

p[4] p[6]

p[5] p[7] p[9] _mm_set_ps(p[9], p[7], p[5], p[3])

C0*p[0] C0*p[2] C0*p[4] C0*p[6]

mulps xmm3, xmm7

mulps xmm1, xmm5

mulps xmm2, xmm6

XMM0

XMM1

XMM2

XMM3

C1*p[1] C1*p[3] C1*p[5] C1*p[7]

C2*p[2] C2*p[6] C2*p[8]

C3*p[3] C3*p[9]

C2*p[4]

C3*p[5] C3*p[7]

mulps xmm0, xmm4

C0*p[0] + C0*p[2] + C0*p[4] + C0*p[6] +
C1*p[3] C1*p[5] C1*p[7]C1*p[1]

C2*p[6]C2*p[4]C2*p[2] C2*p[8]

C0*p[0] + C0*p[2] + C0*p[4] + C0*p[6] +
C1*p[3] + C1*p[5] + C1*p[7] +C1*p[1] +

XMM0

XMM0

C3*p[3] C3*p[5] C3*p[7] C3*p[9]
C2*p[6] +C2*p[4] +C2*p[2] + C2*p[8] +

C0*p[0] + C0*p[2] + C0*p[4] + C0*p[6] +
C1*p[3] + C1*p[5] + C1*p[7] +C1*p[1] +XMM0 addps xmm0, xmm3

addps xmm0, xmm1

addps xmm0, xmm2

b) Load pixels in group of 4 into the SSE registers.

a) Initialize SSE registers with Daub−4 coefficients.

c) Floating point multiplications among SSE registers.

d) Floating point additions among SSE registers.

Figure 3. Phases for the compute of the first four low-pass wavelet coefficients with the SSE registers

3.2 Loop Unrolling and Prefetching Data

Loop unrolling is usually applied by the compiler if it
sees a room for improvement. However, due to the nature of
the Wavelet algorithm (3 nested loops for the time dimen-
sion) and the compiler constraints, we have had to manu-
ally unroll the time dimension. In this dimension, if the
wavelet transform is applied twice, the first iteration will
be applied over 20 frames (for blocks of 16 frames plus 4
frames needed for the overlapped wavelet transform), and
the second iteration over 8 frames (the half of first itera-
tion).

Note that, with the utilization of SSE, the time loop is
only executed three times for the first application of the
FWT, since each iteration computes four low-pass and four
high-pass coefficients. For the second application of the
FWT, just one iteration will suffice to compute all coeffi-
cients.

Another feasible optimization is data prefetching, which
improves the performance due to the accelerated data de-

livery. In this way, data prefetching can hide the memory
latency in part, if we predict which memory page our pro-
gram will request next, we can fetch that page into cache
(if it is not already in cache) before the program asks for it.
In our wavelet transform algorithms, it is necessary to ref-
erence many pixels for computing the wavelets coefficients,
and we can predict what are the next pixels that it can be
needed, in order to drop down the latency, because the com-
putation of the wavelet transform follows a specific pattern
which depends on the mother wavelet function chosen it, as
we can observe in figure 2.

3.3 Columns Vectorization

In the 3D-FWT, the wavelet is applied in the � , � and
��� � �

dimensions. In previous sections, we have analyzed
the time dimension and we have applied the SSE vectoriza-
tion by hand, loop unrolling and data prefetching. In the �

dimension, the wavelet transform is applied successively for
all rows of each frame. As the video sequence is stored in
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Figure 4. Columns vectorization

memory following a row order, spatial locality is exploited
when the transform is applied in this dimension. The main
problem regarding memory appears when the transform is
applied in the � dimension. Pixels from successive rows
are needed to compute coefficients of each column of � di-
mension, causing many cache misses even for the blocking
version of the algorithm (for this version, L1 data cache still
presents a high number of misses).

In this Section, we present ”columns vectorization” as
an effective way of applying the transform for the � dimen-
sion, exploiting the locality of references and the fact that
the transform was already applied for the � dimension.

As the wavelet transform is applied by rows in the � di-
mension, in order to compute the first coefficient for the �

dimension, only the resulting wavelet coefficients of the first
four rows are needed, since each coefficient of the Daub-4
mother function depends on four pixels, as we can observe
in Figure 2. Then, in order to compute a new row for the
� dimension two more rows of wavelet coefficients of the �

dimension are needed.
Figure 4 shows an example for a piece of frame of

�
rows

by
���

columns. Once the wavelet transform is applied for
the four first rows in the � dimension, it can be applied for
the first row in the � dimension (i.e. in order to compute
a coefficient, values obtained for rows 0,1,2,3 are needed).
Furthermore, this computation is carried out using SSE ex-
tensions (4 coefficients fit in a XMM register). The second
row in the � dimension depends on the rows 2, 3, 4 and 5.
Therefore, only two new rows in the � dimension are nec-
essary.

4 Experimental Results

The evaluation has been carried out on a 1GHz-Intel
Pentium-III processor with 512 Mbytes of RAM. The main
properties of the memory hierarchy are summarized in table
1. The operating system was Linux 2.2.14. The programs
have been written in the C programming language.

TLBs L1 instr TLB, 4K page, 4-way, 32 entries
L1 data TLB, 4K page, 4-way, 64 entries

Level 1 L1 instr cache, 16 KB, 4-way, 32 byte line
L1 data cache, 16 KB, 4-way, 32 byte line

Level 2 L2 unified cache, 256 KB, 8-way, 32 byte line
Level 3 512 Mbytes DRAM

Table 1. Description of the memory hierarchy
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Performance has been measured through the monitoring
counters available in the P6 processor family. The Intel
Pentium-series processors include a 64-bit cycle counter,
and two 40-bit event counters, with a list of events and addi-
tional semantics that depend on the particular processor. We
have used a library, Rabbit (v.2.0.1) [16], to read and manip-
ulate Intel processor hardware event counters in C under the
Linux operating system.

We have compared execution time consumed by the 3D-
wavelet transform combining the different optimizations
presented in section 2.1 and with the original 3D-FWT rect-
angular overlapped approach [8], on a

/ ����� �
video medi-

cal sequence of
���

frames of
�	�
�

�
�����

pixels coded in gray
scale (

�
bits per pixel).

Figure 5 shows the execution time obtained with the
fast wavelet transform to compute

���
frames of

�	�
�
�
�����

pixels for the rectangular blocking overlapped approach
( � ��! ��� 
 0�� � �	� ) compiled with the gcc/gnu compiler. 
 
 � � ��
��� � �

represents the same blocking rectangular ap-
proach compiled with the Intel Compiler [13]. ����� in-
cludes SSE vectorization by hand as well as loop unrolling
and data prefetching, all of them for the time dimension.
Finally,

� �-� � � 
��
includes Columns Vectorization and the

SSE vectorization by hand in the computation of wavelet



coefficients for the � dimension . Results are presented for
different block sizes, from

�	�
�
�
� �
�
� �

to
�	�
�

�
�����

�
� �

.
First of all, we can observe that each new optimization

clearly reduces the execution time of previous approaches
for all configurations. The optimal block size (

���
�
�
���
�
�
�

)
is maintained in all approaches. For this block size, the ver-
sion just compiled with the Intel C/C++ obtains a speedup
of 1.18 with respect the one compiled with gnu/gcc. From
now on, we will refer to the Intel C/C++ version as the
baseline, since it just represents our previous proposal re-
compiled with a better compiler. Adding SSE extensions
along with prefetching and loop unrolling obtain a speedup
of 1.31 regarding to the baseline and Columns vectorization
provides a speedup of 1.54. It is important to note that all
of these optimizations in the algorithm maintain the same
compression rate and quality as the rectangular overlapped
approach, which confirms the potential of these methods.

The results in Intel C/C++ are obtained with the option4 � &�& �
which generates code optimized for Pentium III pro-

cessors and the advantages of the new compiler which im-
proves the original execution time. In addition, we have
enabled the automatic vectorization with the options

4
���

and
4 �

��� , which generates code specialized for Stream-
ing SIMD extensions, and, although the execution times
are better than in the original rectangular overlapped ap-
proach (i.e. that compiled with gnu/gcc), they are worse
than without automatic vectorization for the Intel C/C++
compiler. The reason of the decrease on performance ex-
perienced with automatic vectorization is that the vector-
ization of the Wavelet Transform is tricky, i.e. it has to be
carefully applied to the computations that could obtain ben-
efit from it. Remember that there are three nested loops
and, for instance, vectorizing the innermost loop does not
provide any benefit. Thus, manually vectorizing the code,
as we propose in this work is, so far, the best option for
achieving benefits when SIMD extensions are applied in the
Wavelet Transform.

In � ��� optimizations, performance benefits come from
three different ways: first, the utilizations of SSE extensions
for the time dimension, second, the effect of loop unrolling
to increase Instruction Level Parallelism, and third, the ef-
fect of data prefetching. In particular, at the same time as 4
wavelet coefficients are being calculated, pixels needed for
the next coefficients are being prefetched.

Finally, with
� �-� � � 
��

optimization, execution times
are reduced significantly for all configurations. This is due
to the better exploitation of the temporal and spatial local-
ity of the cache memory. We also manually vectorized the
computations of the � dimension without the

� �-� � � 

opti-

mization (i.e, coefficients in the � dimension are computed
after the wavelet has been completed for the whole � dimen-
sion). This optimization does not provide any performance
benefit, thus, as mentioned before, SSE extensions provide
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benefit for the FWT only if they are applied carefully, which
involves sometimes smart code reordering.

In order to gain some insight about the speedups ob-
tained by the previous approaches, Figures 6 and 7 present
the memory cache behavior for the heart video sequence.
We measure this behavior using Data Cache Unit (DCU)
Lines In and L2 Lines In events of the performance coun-
ters, which represent the number of lines allocated in the L1
Data Cache and the L2 cache respectively (i.e. the number
of accesses that miss in each cache respectively).

It can be observed that the 
 
 � � � � � � ���
approach al-

locates less number of L1 and L2 lines than the rectangu-
lar overlapped approach for all configurations, justifying
the decrease in the execution time. With respect to �����
vectorization by hand, we can observe that in most of con-
figurations, this approach produces less number of L1 and



L2 misses than the Intel C/C++ but the difference is not very
significant. Note that the main benefit provided by ����� op-
timizations come from the reduction in the number of Float-
ing Point Instructions, as we can observe in Figure 8, due
to the manual vectorization. Applying SSE extensions do
not reduce the overall number of FP operations, which only
depends on the algorithm, but it does reduce the number of
FP instructions1, since operations are performed in parallel
in single SIMD instructions. Thus, what we are exploit-
ing is � � ����� ��� � ��� ��� � �3� � � ��� � . Furthermore, the bene-
fit provided by data prefetching cannot be measured using
the number of L1 or L2 misses, since prefetching instruc-
tions does cause cache misses, but data is prefetched ahead
enough so that misses do not make dependent instructions
to wait on the processor.

Finally, in the Columns approach, there is a significant
increment in the number of lines allocated in L1 and L2
caches, compared with previous approaches, although the
columns vectorization exploit better the spatial and tempo-
ral locality for the calculation of � and � dimension. This
increment in L1 and L2 misses is due to an implementation
issue. When columns vectorization is applied, two rows are
generated for the � dimension, a low-pass and a high-pass.
High pass coefficients must be saved in other memory loca-
tion different from the frame itself in order not to delete the
original pixels, that are already needed for the rest of � com-
putations. This increases the number of memory lines used
for the transform (the original ones plus those needed for
the temporal location of high-pass coefficients). Also, due
to data movements back and forth to this temporal locations,
locality is not so exploited, affecting the final performance
of memory operations.

However, even with this problem with the memory in-
structions, the execution times have been drastically re-
duced for all configurations. This reduction is due by two
reasons. First, since this optimization is built in top of the
previous ones (the original blocking, prefetching and so
on), the original 3D-FWT is not so memory bound, even
with the latter memory ”inefficiency”. Second, since the al-
gorithm is not memory bound, and following the Amdahl
Law, any optimization in the computation side will pro-
vide a great impact in performance. Note that with the� �-� � � 
��

approach, the number of FP instructions exe-
cuted have dropped spectacularly, 53%, 48% and 34% com-
pared to Rectangular compiled with gnu/gcc, rectangular
compiled with Intel C/C++ and � ��� vectorization by hand
respectively as we can see in Figure 8. This reduction in
the number of instructions comes, again, through the ex-
ploitation of Data Level Parallelism, achieved by manually
vectorizing computation in the � dimension.

1Recall that, in general, SSE optimizations maintain the number of FP
operations but reduces the number of instructions by collapsing four oper-
ations in one multimedia instruction
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Figure 8. Floating point operations executed
with different approaches for Heart video se-
quence

5 Conclusions

In this work, we have focused on reducing the execution
time of the 3D-Fast Wavelet Transform when it is applied
to code medical video. We have presented four proposals.
First, we proposed and evaluated both the automatic and
manually vectorization SSE, that exploits Data Level Paral-
lelism by collapsing FP operations on single SIMD instruc-
tions. We have shown that the native compiler, Intel C/C++,
is not able to obtain performance benefits through automatic
optimizations and we have proposed several modifications
on the algorithm that provide significant benefits by vec-
torizing computations in � and

��� ���
dimensions. Third,

we have manually unrolled the time dimension loop and in-
serted prefetching instructions, in order to both reduce the
impact of cache misses and exploit Instruction Level Paral-
lelism. Fourth, we proposed and evaluated the columns vec-
torization in the � dimension, in order to reduce the floating
point instructions and the memory accesses exploiting the
spatial and temporal locality of the memory hierarchy.

Results show a speedup of 1.81 over the rectangular
overlapped wavelet transform (compiled with gnu/gcc) and
1.54 when compared to the rectangular overlapped wavelet
transform compiled with the Intel C/C++ compiler. Further-
more, all presented approaches maintain the video quality
and the compression ratio of the original encoder.

6. Acknowledgments

This work has been partially supported by the Spanish
CICYT under grant TIC2000-1151-C07-03. The video se-
quences have been donated by the Hospital Recoletas (Al-



bacete, Spain). We are grateful to the reviewers for their
valuable comments.

References

[1] N. Ahmed, N. Mateev, and K. Pingali. Tiling imperfectly-
nested loop nests. In Proceedings of Supercomputing,
November 2000.

[2] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra,
J. D. Croz, A. Greenbaum, S. Hammarling, A. M. Ken-
ney, and D. Sorensen. Lapack: A portable linear algebra
library for high-performance computers. Tech. Report CS-
90-105, (LAPACK Working Note #20), Univ. Of Tennessee,
Knoxville, 1990.

[3] M. Antonini and M. Barlaud. Image coding using wavelet
transform. IEEE Transactions on Image Processing,
1(2):205–220, April 1992.

[4] S. Battista, F. Casalino, and C. Lande. MPEG-4: A multi-
media standard for the third millenium, part 1. IEEE Multi-
media, 6(4):74–83, October 1999.

[5] S. Battista, F. Casalino, and C. Lande. MPEG-4: A multi-
media standard for the third millenium, part 2. IEEE Multi-
media, 7(1):76–84, January 2000.
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[7] G. Bernab é, J. Gonz ález, J. M. Garc ı́a, and J. Duato. En-
hancing the entropy encoder of a 3d-fwt for high-quality
compression of medical video. Proc. of IEEE International
Symposium for Intelligent Signal Processing and Communi-
cation Systems, November 2001.
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