
XII JORNADAS DE PARALELISMO—VALENCIA, SEPTIEMBRE 2001 1

Abstract—Branch prediction is one of the main hurdles in
the roadmap towards higher clock frequencies and deeper
pipelines. This work presents a new approach to enhancing
current branch predictors: Selective Branch Prediction
Reversal. The rationale behind this proposal is the fact that
many branch mispredictions can be avoided if branch
prediction is selectively reversed. We present a Branch
Prediction Reversal Unit (BPRU) that selectively reverses
branch predictions by correlating with the predicted values
of the branch inputs, in addition to recent control flow. As
a case study, we have included the BPRU in an already
proposed branch predictor, the Branch Predictor through
Value Prediction (BPVP). The effect is a reduction by half
in its original misprediction rate. We have also measured
the improvement when the BPRU is used in a hybrid
scheme composed of a BPVP and a gshare predictors.
Results using immediate updates show average reductions
in misprediction rate ranging from 7% to 14%.
Performance evaluation of the proposed BPRU in a 20-
stage superscalar processor shows an IPC improvement of
up to 9%.

Keywords—Branch Prediction Reversal, Value Prediction,
Dynamically-scheduled Superscalar Processors.

I. INTRODUCTION

NE of the common ways to increase processor
performance relies on reducing the clock cycle. On

a given technology, fewer gates per pipeline stage result
in higher frequencies. However, this causes an increase
in the pipeline depth. For instance, the Intel P6 processor
has a pipeline of 10 stages and a clock frequency of 733
MHz at 0.18 microns, whereas the new Intel Pentium 4
is announced to work at a clock rate of more than 1.4
GHz with the same technology. To achieve this
frequency, the pipeline is lengthened to 20 stages [6].

Deeper pipelines present a serious challenge to the
performance of dynamically-scheduled superscalar
processors: the branch misprediction penalty increases
since branches take longer to be resolved and thus, the
entering to the pipeline of instructions from the correct
path is delayed. In the meantime, the pipeline is filled
with many useless instructions from the incorrect path.
As an example, for perfect branch prediction, we have
measured that the slowdown experienced by a processor
with a 20-stage pipeline (similar to the Pentium 4) with

1

Dpto. Ingeniería y Tecnología de Computadores, Universidad de
Murcia, 30071 Murcia (Spain)
e-mail: {jlaragon,joseg,jmgarcia}@ditec.um.es

2
Departament d’Arquitectura de Computadors, Universitat Politècnica

de Catalunya, 08034 Barcelona (Spain)
e-mail: antonio@ac.upc.es

respect to a 10-stage pipelined processor for the go
application is almost negligible (2%). On the other hand,
for a gshare branch predictor of 32 KB, the slowdown
due to the increased pipeline depth augments to 22%.
Even if the branch misprediction rate is quite small,
improvements on branch prediction accuracy
significantly influence performance, due to the
superlinear relationship between misprediction rate and
processor performance [7].

This paper presents a new approach to enhancing
current branch predictors: Selective Branch Prediction
Reversal. The rationale behind this approach is the fact
that many branch mispredictions can be avoided if the
branch prediction is selectively reversed. Inverting some
branch predictions was proposed by other authors [14].
However, their approach showed limited performance
benefits since the inversion mechanism relied on
correlating the inversion with the outcome of recent
branches. We propose a Branch Prediction Reversal
Unit (BPRU) that reverses branch predictions based on
the predicted value of the branch input, and the path
followed to reach the branch (including the PC of the
input producers). Thus, BPRU correlates the inversions
with data values and recent control flow.

The BPRU can be combined with any other proposed
predictor. As a case study for the application of the
BPRU, in this work, we use as baseline predictor the
Branch Predictor through Value Prediction (BPVP) [8],
which is a branch predictor that already correlates
predictions with data values. The BPVP was shown to
have extremely high prediction accuracy when used in
combination with a correlating branch predictor such as
the gshare [15], outperforming other contemporary
branch predictors. We show that the proposed BPRU can
significantly improve the accuracy of the original BPVP.
On average, the BPRU reduces the misprediction rate of
the BPVP by half.

The rest of this paper is organized as follows. Section
II presents a taxonomy of branch mispredictions. The
proposed BPRU is described in Section III and Section
IV analyzes its performance. Section V presents the
related work, and finally, Section VI summarizes the
main conclusions of this work.

II. TAXONOMY OF BRANCH MISPREDICTIONS

This section motivates the inclusion of a Branch
Prediction Reversal Unit (BPRU) in a traditional branch
predictor. We focus our analysis on the BPVP [8], which
predicts branch outcomes by predicting the values of
their inputs and performing an early computation of
their results according to the predicted values.

Branch Prediction Reversal
by Correlating with Data Values

Juan L. Aragón1, José González1, José M. García1 and Antonio González2

O

2 ARAGÓN Y COL: BRANCH PREDICTION REVERSAL BY CORRELATING WITH DATA VALUES

Figure 1 establishes a relationship between the
behavior of the value predictor and branch predictions.
Value predictions can be split into confident and non-
confident, depending on the confidence counter of the
value predictor entry being used1. Each of them can
result in a branch input hit or a branch input miss. A
value prediction hit causes a branch prediction hit.
However, a value prediction miss does not necessarily
cause a branch miss. For instance, if a branch checks
whether the input value is different from zero, any
predicted input value but zero will cause a branch hit.

Table I quantifies the frequency of the different cases
described in Figure 1 for the whole SpecInt95
benchmark suite. The BPVP uses an 8 KB stride
predictor as value predictor. Section 4 further details the
experimentation process. First of all, the value predictor
provides 57.9% of confident predictions and 42.1% of
non-confident ones. Most of the confident input
predictions are correct (52.4% over 57.9%), and just a
minor percentage cause branch misses (3.2% over
57.9%). Furthermore, for the non-confident input
predictions, 31.5% over 42.1%, lead to value
mispredictions. We also see that the majority of the total
branch mispredictions come from these non-confident
input mispredictions (11.2% over 14.4%). All
benchmarks follow this trend, which suggests a
correlation between branch mispredictions and value
predictions: most branch misses come from non-
confident predicted inputs and only a few branch
mispredictions come from confident ones. However, in
order to reverse branch predictions, not only the
confidence counters of the value predictor should be
taken into account. If all branch predictions based on

1
 Value predictors use a confidence field, usually implemented as a n-

bit saturating counter, in order to assign confidence to their predictions
[12].

non-confident input predictions we reversed, the overall
accuracy would be degraded.

III. BRANCH PREDICTION REVERSAL MECHANISM

In this section, we analyze alternative parameters that
may be taken into account for a branch reversal
mechanism and then, the proposed implementation of
the BPRU is described.

A. Quantitative Analysis of the Branch Reversal
Mechanism

We have first performed an off-line analysis in order
to gain some insight into the processor parameters that
provide a better correlation with branch mispredictions.
The following parameters have been independently
examined:

a) The predicted value of the branch input.
b) The PC of the branch input producer.
c) The predicted branch input and the branch PC.
d) The predicted branch input and the PC of the branch

input producer.
e) The predicted branch input, the PC of the branch

input producer and the path followed to reach the
branch.

We have run all the SpecInt95 suite using a modified
version of the sim-safe simulator [2]. Then, the
occurrences of cases A, B and C (see Figure 1) are
measured for the five scenarios, assuming unbounded
storage resources. For those parameter values for which
Equation (1) is fulfilled, the branch prediction is
reversed.

occurrences in A > (occurrences in B + occurrences in C) (1)

Then, a new misprediction rate is obtained, which
shows the potential of reversing the branch prediction
considering this a priori information. As an example of
how this evaluation has been carried out, Table II shows
the branch misprediction distribution for a particular
branch from the go application, and the approach that
reverses predictions based on the predicted branch input
and the branch PC.

TABLE II

CLASSIFICATION FOR A BRANCH WITH PC = 4831941696 AND A

PREDICTED BRANCH INPUT = –2, IN THE GO BENCHMARK

input hit input hit
br. hit br. hit br. miss br. hit br. hit br. miss

go 0 1 59 0 905 4531

Non-conf. pred. input
input missBenchmark

Confident pred. input
input miss

This particular static branch is predicted 5496 times
with a predicted input of –2. Non-confident value
predictions cause 4531 misses and 905 hits. Evaluating
Equation (1), we realize that reversing the branch
prediction for this scenario increases the overall hit rate:
from 906 to 4532 branch hits after reversing.

Figure 2 shows the new misprediction rate for gcc, go,
ijpeg and li applications for the five evaluated scenarios.
The underlying branch predictor is the BPVP using a
stride value predictor with an unrealistic size of 1 MB in

input hit input hit
br. hit br. hit br. miss br. hit br. hit br. miss

gcc 42.8% 4.4% 3.4% 11.2% 23.8% 14.4%
compress 46.4% 0.8% 4.6% 10.9% 22.4% 14.9%

go 27.3% 3.9% 5.4% 16.6% 27.4% 19.3%
ijpeg 63.3% 1.6% 2.5% 10.3% 13.1% 9.1%

li 45.9% 1.6% 2.0% 5.8% 33.9% 10.9%
m88ksim 76.2% 0.9% 2.6% 3.7% 11.0% 5.5%

perl 46.8% 3.5% 3.2% 12.9% 23.5% 10.1%
vortex 70.6% 1.9% 1.5% 13.4% 7.2% 5.4%

AVERAGE 52.4% 2.3% 3.2% 10.6% 20.3% 11.2%

Benchmark
Confident pred. input

input miss

57.9% 42.1%

Non-conf. pred. input
input miss

confident

Branch input
prediction

input miss

input hit branch hit

branch miss

branch hit

non-conf.

input miss

input hit branch hit

branch miss

branch hit

A

B

C

Figure 1. Diagram of the different branch outcomes depending on the
input prediction.

TABLE I

BRANCH PREDICTION BREAKDOWN FOR AN 8 KB BPVP

XII JORNADAS DE PARALELISMO—VALENCIA, SEPTIEMBRE 2001 3

order to isolate the potential of our proposal from the
performance of the value predictor. It can be observed
that the approach (e) is the best one. It reduces the BPVP
misprediction rate by half for all benchmarks. These
results show the potential of branch prediction reversal
to enhance the performance of branch predictors when
data values and control flow information are taken into
account.

There are some examples that may offer some insights
into the source of correlation between a branch
prediction miss and a mispredicted value. For nested
loops with values that follow repeated stride patterns
(e.g. 2,4,6,8,2,4,6,8,…), every new start of the internal
loop produce a re-start of the stride sequence and a value
misprediction for the first iteration. If this value is used
by a branch predictor it may result in a misprediction,
but the predicted value will always be the same. For
instance, in the above sequence the value predictor will
produce 10 whereas the actual value is 2. If the branch
condition result for 10 and 2 are different, every time
that the prediction is 10 the prediction may be inverted
and the result will be correct. Another example is the
traversal of linked lists to search for an element.
Although the operating system memory handler tries to
allocate contiguous memory locations, many
consecutive elements are located in consecutive
locations but others are not. Since the addresses of
physically consecutive elements follow a stride pattern,
a stride value predictor usually hits, except when there is
a non-contiguous node, producing a branch input miss if
this address is used as the branch input. If this value
misprediction results in a branch misprediction, the
following times that the same address is predicted, the
branch prediction will be inverted, resulting in a branch
hit.

B. Branch Prediction Reversal Unit (BPRU)

This section presents the implementation of the

Branch Prediction Reversal Unit (BPRU). As a case
study, we show how it works in conjunction with the
BPVP predictor, although this unit could be included in
any branch predictor.

Figure 3 depicts the block diagram of the BPRU. It
consists of a Reversal Table (RT) and the logic
necessary for making the reversal of the preliminary
branch outcome. Each entry of the RT stores a reversal
counter, which is an up/down saturating counter, and a
tag. The RT is accessed when the branch is predicted, by
hashing some processor state information. The most
significant bit of the counter of the corresponding RT
entry indicates whether the branch outcome is reversed.
Once the correct branch outcome is computed, the RT
entry is updated, incrementing the counter if the
preliminary branch outcome was incorrect, and
decreasing the counter otherwise.

Figure 4 depicts the block diagram of the BPRU when
it is integrated along with the BPVP predictor. Details
about how the BPVP works can be found in [8]. We
refer to this new scheme as BPVP+BPRU. According to
the analysis of the previous section, the most effective
approach to reversing branch predictions is to correlate
with the predicted value, the PC of the branch input
producer and the path followed to reach the branch. The
first and the second parameters along with a non-
confidence signal are forwarded from the BPVP to the
BPRU. In addition, the BPRU maintains a Path History
Register (PHR), which stores the path followed to reach
the branch. For each fetched control-flow instruction
(conditional or unconditional), the PHR is shifted 2 bits
to the left and the 2 least significant bits of the PC are
shifted in. The RT is indexed by hashing the PC of the
branch input producer, the predicted value and the PHR.
Nevertheless, for other branch predictors, different
information could be used, such as the values of some
particular registers, the branch PC, history of recent
outcomes, etc.

Conflicts in the RT are one of the major problems that
may limit the BPRU performance [1]. We observed that
the use of tags alleviates destructive aliasing, obtaining
higher performance than a non-tagged RT of the same
size, despite of the space occupied by the tags. Besides,
the replacement policy of the RT has to be carefully
selected. Our replacement policy gives priority to entries
with lower values in their reversal counter.

The BPVP predictor exploits different predictability
phenomena than a correlating predictor, and the
combined effect in a hybrid scheme obtains very low

Figure 2. Potential misprediction rate using branch inversion.

branch preliminary
prediction

Reversal Table (RT)

counter msb
hash
func. tag reversal count.

input
information

Branch
Predictor

branch
prediction

input
information

BPRU

Figure 3. Block diagram of the BPRU.

input PC pred. input

input
PCInput

Information
Table (IIT)

counter
msb

input
register

Path Hist. Reg.

preliminary
prediction

hash
func.

Value Predictor
(VP)

branch

predictiontag reversal count.

result of compare instr.

Branch
Evaluation
Unit (BEU)

non-conf.
signal

BPVP

BPRU
Reversal Table (RT)

Figure 4. Block diagram of the BPRU integrated along with the BPVP.

gcc go ijpeg li

B
ra

nc
h

M
is

s-
ra

te
 (

%
)

0

5

10

15

20

25

BPVP
only value
only PCin
val+PCbr
val+PCin
val+PCin+path

4 ARAGÓN Y COL: BRANCH PREDICTION REVERSAL BY CORRELATING WITH DATA VALUES

misprediction rates [8]. In the next section we will
evaluate the benefits of the BPRU when applied to the
BPVP alone and in a hybrid scheme composed of the
BPVP and a correlating branch predictor (e.g. gshare).

IV. EXPERIMENTAL RESULTS

This section analyzes the performance of the proposed
BPRU engine when it is integrated along with the BPVP.
We also present results for a hybrid mechanism
composed of two correlating predictors: bimodal (2bit)
[19] and gshare [15]. Thus, the evaluated hybrid
predictors are: BPVP+BPRU+gshare, BPVP+gshare,
and 2bit+gshare2.

A. Simulation Methodology

We have considered the five programs from the
SpecInt95 benchmark suite that exhibit the highest
misprediction rates. Table III shows for each benchmark
the input set, the number of dynamic instructions and the
number of conditional branches. All benchmarks were
compiled with maximum optimizations (-O4 -migrate)
by the Compaq Alpha compiler, and they were run until
completion using the SimpleScalar/Alpha v3.0 tool set
[2].

TABLE III

BENCHMARK CHARACTERISTICS

Benchmark Input Set
dyn. Instr.

(in Mill.)
dyn.cond.

branch (Mill)
compress 40000 e 2231 169.6 12.6
gcc genrecog.i 145.4 19.3
go 9 9 145.6 15.4
ijpeg specmun -qual 45 166.0 9.4
li 7 queens 242.7 32.0

B. Results for Immediate Updates

The first set of experiments update prediction tables
immediately, in order to evaluate the potential of the
selective reversal mechanism when it is isolated from
other aspects of the microarchitecture (using the sim-
safe simulator). We first measure the misprediction rate
of the BPVP+BPRU predictor for different sizes. For
each configuration, half of the total size is devoted to the
BPVP and the other half to the BPRU. The RT is
implemented as an 8-way associative table using 13 bits
for tags and 3 bits for the reversal counters. All the
experiments compare predictors of the same total size,
including the space occupied by tags and counters.

Figure 5 shows the results. It can be observed that
BPVP+BPRU significantly outperforms BPVP for all
benchmarks and all evaluated sizes. On average, the
BPRU reduces the misprediction rate of the BPVP by
half for 32 KB capacity. Besides, as the total predictor
size grows, the difference between the misprediction
rates of both predictors becomes higher, which shows
that the BPRU exploits other type of correlations not
included in the BPVP.

2
 The first and the second predictors use the selector proposed in [8],

whereas the 2bit+gshare uses the selector proposed in [15]. For each
case, we chose the selector that produced the best results.

The misprediction rate of the BPVP is not impressive,
since this predictor was designed to be used in
conjunction with a correlating branch predictor. Figure 6
shows the misprediction rates for the hybrid
BPVP+BPRU+gshare, BPVP+gshare and 2bit+gshare
predictors. More details about the configurations used
can be found in [1].

First, the BPVP+BPRU+gshare outperforms the
BPVP+gshare for all benchmarks and for all size
configurations excepting compress, for which both have
about the same performance. A BPVP+BPRU+gshare

gcc

1 2 4 8 16 32 64

5

10

15

20

25

go

1 2 4 8 16 32 64

M
is

pr
ed

ic
ti

on
 r

at
e

(%
)

15

20

25

30

AVERAGE

size (KB)
1 2 4 8 16 32 64

8

12

16

20

ijpeg

1 2 4 8 16 32 64

6

8

10

12

li

size (KB)
1 2 4 8 16 32 64

M
is

pr
ed

ic
ti

on
 r

at
e

(%
)

0

4

8

12

16

compress

1 2 4 8 16 32 64

M
is

pr
ed

ic
ti

on
 r

at
e

(%
)

8

12

16

20 BPVP+BPRU

BPVP

Figure 5. Branch misprediction rates for BPVP+BPRU and BPVP
predictors for five Spec95 applications as well as the arithmetic mean.

AVERAGE

size (KB)
8 16 32 64 128

4

6

8

10

ijpeg

8 16 32 64 128

5

6

7

8

9

li

size (KB)
8 16 32 64 128

M
is

pr
ed

ic
ti

on
 r

at
e

(%
)

1.0

1.5

2.0

2.5

3.0

gcc

8 16 32 64 128
2

4

6

8

10

go

8 16 32 64 128

M
is

pr
ed

ic
ti

on
 r

at
e

(%
)

8

12

16

20

compress

8 16 32 64 128

M
is

pr
ed

ic
ti

on
 r

at
e

(%
)

4

6

8

10

BPVP+BPRU+gshare

BPVP+gshare

2bit+gshare

Interference free

Figure 6. Branch misprediction rates for BPVP+BPRU+ gshare,
BPVP+gshare, 2bit+gshare and BPVP+BPRU+ gshare with an
interference-free RT.

XII JORNADAS DE PARALELISMO—VALENCIA, SEPTIEMBRE 2001 5

with a size of 36 KB obtains, on average, a similar
misprediction rate than a BPVP+gshare of 128 KB.
Second, the combination of BPVP+BPRU+gshare
significantly outperforms the 2bit+gshare for all size
configurations. On average, a BPVP+BPRU+gshare
with a total size of 9 KB has about the same
misprediction rate (7.7%) as a 2bit+gshare of 128 KB
(7.5%). Summarizing, on average the
BPVP+BPRU+gshare reduces the misprediction rate by
a factor that ranges from 7% to 14% with respect to the
BPVP+gshare, and from 24% to 35% with respect to a
2bit+gshare.

Finally, we note that the potential of the BPRU is
limited by destructive aliasing when accessing the RT.
This can be observed by looking at the misprediction
rate of the BPVP+BPRU+gshare using an interference-
free RT. The unbounded RT provides huge
improvements for all benchmarks. For instance, in the
go application, the miss rate of an 8 KB BPVP+gshare
drops from 18% to 9% when a BPRU with an
interference-free RT is included. This shows the
potential of the proposed branch reversal mechanism as
well as an opportunity for improvement by using better
indexing schemes to access the RT.

C. Results for Realistic Updates

This section presents an evaluation of the proposed
BPRU in a dynamically-scheduled superscalar
processor. Details of the simulated superscalar pipeline
are described in Table IV. In addition, the original sim-
outorder simulator pipeline has been lengthened to 20
stages, following the pipeline scheme of the Pentium 4
processor [6].

TABLE IV

SIMULATED SUPERSCALAR PIPELINE PARAMETERS

F e tc h e ngine
U p to 8 ins truc tions /c yc le , 2 ta ke n b ra nc he s ,
8 c yc le s m is pre dic tion pe na lty .

E xe c ution e ngine
Is s ue s up to 8 ins truc tions /c yc le , 128-e ntr ie s
re orde r buffe r , 64-e ntr ie s loa d/s tore que ue .

F unc tiona l U nits
8 in te ge r a lu , 2 in te ge r m ult, 2 m e m por ts ,
8 FP a lu , 1 F P m ult.

L 1 Ins tr -c a c he
128 K B , 2-w a y s e t a s s oc ia tive , 32 byte s /line ,
1 c yc le h it la te n c y.

L 1 D a ta -c a c he
128 K B , 2-w a y s e t a s s oc ia tive , 32 byte s /line ,
1 c yc le h it la te n c y.

L 2 unif ie d c a c he
512 K B , 4-w a y s e t a s s oc ia tive , 32 byte s /line ,
6 c yc le s h it la te nc y, 18 c yc le s m is s la te nc y.

M e m ory
8 byte s /line , v ir tua l m e m ory 4 K B pa ge s ,
30 c yc le s T L B m is s .

Figure 7 shows the IPC obtained for each benchmark
when using the BPVP+BPRU+gshare, BPVP+gshare
and 2bit+gshare predictors for three different sizes. The
latency considered for the 2bit+gshare is one cycle, that
is, the branch prediction is made during the fetch stage.
The latency considered for the BPVP+BPRU is 3 cycles,
since the BPVP has to perform several table accesses to
provide the prediction3 [8]. We can observe that the
addition of the BPRU results in a significant speedup for
all cases. The average IPC obtained with the
BPVP+BPRU+gshare predictor is significantly higher
than the IPC of the 2bit+gshare (average speedups of
13%, 14% and 14% for 32 KB, 64 KB and 128 KB
respectively). Also, a BPVP+BPRU+gshare of about 32
KB achieves the same performance as a BPVP+gshare
of 128 KB.

Table V shows the speedup obtained by
BPVP+BPRU+ gshare with respect to BPVP+gshare
and 2bit+gshare for a total predictor size of 64 KB.

TABLE V

SPEEDUP FOR A TOTAL SIZE OF 64 KB

Baseline BPRU compress gcc go ijpeg li AVG.

realistic 1.07 1.04 1.09 1.03 1.07 1.06
Interf.free RT 1.22 1.11 1.18 1.08 1.11 1.14

realistic 1.19 1.13 1.25 1.05 1.09 1.14
Interf.free RT 1.29 1.28 1.38 1.10 1.12 1.23

BPVP+
gshare

2bit+
gshare

The average speedup of the BPVP+BPRU+gshare
over BPVP+gshare is 6%. Go is the benchmark which
obtains the higher speedup (9%). Comparing
BPVP+BPRU+ gshare with 2bit+gshare, the average
speedup is about 14%. The benchmark that obtains the
best speedup is again go (25%). Finally, the speedup of
the BPRU with an interfererence-free RT is very high,
specially for compress, gcc and go. For a size of 64 KB,
the average speedups over BPVP+gshare are 22%, 11%
and 18% respectively.

V. RELATED WORK

The vast majority of branch predictors rely on the fact
that the outcome of a branch may correlate with its own
history [19][20], the behavior of previous branches
[15][19], or the path followed by the program [16].
Some other works have focused on improving the
performance of those predictors by avoiding aliasing
[4][18] or by combining different branch predictors
[5][15].

On the other hand, several studies have shown that
some instructions generate data values that follow
predictable patterns [13][17]. Therefore, value
prediction has been mainly applied to data value
speculation [3][12]. The aim of these proposals is to
overcome the serialization imposed by data
dependences.

In [17], the potential of improving branch prediction
accuracy by using data value prediction was suggested
but no particular mechanism is proposed. In [8], it is

3
 To reach this latency, accesses to the different tables can be pipelined

by adding latches in between.

IPC

compress gcc go ijpeg li AVERAGE

1.0

1.5

2.0

2.5

3.0

3.5

BPVP+gs 32KB

BPVP+gs 64KB

BPVP+gs 128KB

2bit+gs 32KB

2bit+gs 64KB

2bit+gs 128KB

BPVP+BPRU+gs 32KB

BPVP+BPRU+gs 64KB

BPVP+BPRU+gs 128KB

Interf. free 32KB

Interf. free 64KB

Interf. free 128KB

Figure 7. IPC for BPVP+BPRU+gshare, BPVP+gshare and
2bit+gshare for different predictor sizes.

6 ARAGÓN Y COL: BRANCH PREDICTION REVERSAL BY CORRELATING WITH DATA VALUES

proposed the BPVP predictor which correlates branch
predictions with data values, obtaining a very high
accuracy when it is used along with a correlating branch
predictor. In [10], it is proposed a branch predictor
which correlates with data values to index a prediction
table. The scheme also includes a Rare Event Predictor,
for the exceptional cases.

In [11], a branch confidence estimator is proposed, and
although it is suggested that can be used for branch
reversal, neither a particular implementation nor a miss
rate evaluation is presented. In [9] different branch
confidence estimators are proposed and, in [14], they are
evaluated when used for Selective Branch Inversion. All
the confidence estimators proposed are just based on
correlating on recent branch outcomes and the branch
PC, without correlating on other processor parameters
such as data values. The results showed average
misprediction reductions by a factor of 5%-7% over a
2bit+gshare (named mcfarling in that work), which is
lower than the reduction we present in this work (7%-
14% achieved by the BPRU+BPVP+gshare over
BPVP+gshare, which, in turn, is a better predictor than
the 2bit+gshare).

VI. CONCLUSIONS

In this paper we have proposed a Selective Branch
Prediction Reversal mechanism as an effective approach
to improving branch prediction accuracy. It relies on the
fact that many branch mispredictions can be avoided if
branch predictions are selectively reversed based on
some processor parameters. We have evaluated several
parameters and showed that the result of a branch
prediction can be correlated with the predicted data
value of the branch input, path history and the PC of the
branch input producer. We have proposed a Branch
Prediction Reversal Unit (BPRU) that selectively
reverses particular branches likely to be mispredicted,
based on the above parameters.

As an example of its functionality, we have integrated
the BPRU with the BPVP predictor, which on average
results in a reduction in misprediction rate by half. In
addition, we have compared the hybrid BPVP+BPRU+
gshare against both the BPVP+gshare and the
2bit+gshare predictors. Results using immediate
updates show average reductions of misprediction rates
by a factor that ranges from 24% to 35% over
2bit+gshare, and from 7% to 14% over BPVP+gshare.

We have also evaluated the proposed BPVP+BPRU+
gshare predictor for a superscalar processor with a 20-
stage pipeline using realistic table updates and
prediction latencies. Results show average speedups of
6% (up to 9% for some applications) over
BPVP+gshare and 14% (up to 25%) over 2bit+gshare.
Results have also shown that the potential performance
of the BPRU is limited by destructive aliasing. This
suggests an opportunity for improvement by exploring
other indexing schemes to access the Reversal Table.

ACKNOWLEDGEMENTS

This work has been supported by the project TIC2000-
1151-C07-03 of the Plan Nacional of I+D+I of the
Spanish Ministry of Science and Technology and by the
Spanish CICYT under grant TIC98-0511.

REFERENCES

[1] J.L. Aragón, J. González, J.M. García and A. González. “Selective
Branch Prediction Reversal by Correlating on Data Values and
Control Flow”. Tech.Report #UM-DITEC-2000-08, University of
Murcia, 2000. http://ditec.um.es/reportsFiles/ditec/publics/UM-
DITEC-2000-8.pdf

[2] D. Burger and T.M. Austin. “The SimpleScalar Tool Set, Version
2.0”. Technical Report #1342, University of Wisconsing-Madison,
Computer Sciences Department, 1997.

[3] B. Calder, G. Reinman and D.M. Tullsen. “Selective Value
Prediction”. Proc. of the Int. Symp. on Comp. Arch., 1999.

[4] P.Y. Chang, M. Evers and Y.N. Patt. “Improving Branch
Prediction Accuracy by Reducing Pattern History Table
Interference”. Proc. of the Int. Conf. on P.A.C.T., 1996.

[5] M. Evers, P.Y. Chang and Y.N. Patt. “Using Hybrid Branch
Predictors to Improve Branch Prediction Accuracy in the Presence
of Context Switches”. Proc. of the I.S.C.A., 1996.

[6] P.N. Glaskowsky. “Pentium 4 (Partially) Previewed”.
Microprocessor Report (Microdesign Resources), August 2000.

[7] J. González and A. González. “The Potential of Data Value
Speculation to Boost ILP”. Proc. of the Int. Conf. on
Supercomputing, pp. 21-28, 1998.

[8] J. González and A. González. “Control-Flow Speculation through
Value Prediction for Superscalar Processors”. Proc. of the Int.
Conf. on Parallel Arch. and Compil. Tech., 1999.

[9] D. Grunwald, A. Klauser, S. Manne and A. Pleszkun. “Confidence
Estimation for Speculation Control”. Proc. of the Int. Symp. on
Computer Architecture, 1998.

[10] T.H. Heil, Z. Smith and J.E. Smith. “Improving Branch
Predictors by Correlating on Data Values”. Proc. of the Int.
Symp. on Microarchitecture, 1999.

[11] E. Jacobsen, E. Rotenberg and J.E. Smith. “Assigning
Confidence to Conditional Branch Predictions”. Proc. of the Int.
Symp. on Microarchitecture, 1996.

[12] M.H. Lipasti and J.P. Shen. “Exceeding the Dataflow Limit via
Value Prediction”. Proc. of the Int. Symp. on Microarchitecture,
pp. 226-237, 1996.

[13] M.H. Lipasti, C.B. Wilkerson and J.P. Shen. “Value Locality and
Load Value Prediction”. Proc. of the Int. Conf. on Architect.
Support for Prog. Lang. and Oper. Systems, 1996.

[14] S. Manne, A. Klauser and D. Grunwald. “Branch Prediction
using Selective Branch Inversion”. Proc. of the Int. Conf. on
Parallel Architectures and Compilation Tech., 1999.

[15] S. McFarling. “Combining Branch Predictors”. Tech. Report
#TN-36. Digital Western Research laboratory, 1993.

[16] R. Nair. “Dynamic Path-Based Branch Correlation”. Proc. of the
Int. Symp. on Microarchitecture, pp. 15-23, 1995.

[17] Y. Sazeides and J.E. Smith. “Modeling Program Predictability”.
Proc. of the Int. Symp. on Computer Architecture, pp. 73-84,
1998.

[18] E. Sprangle, R.S. Chappell, M. Alsup and Y.N. Patt. “The Agree
Predictor: A Mechanism for Reducing Negative Branch History
Interference”. Proc. of the I.S.C.A., 1997.

[19] J.E. Smith. “A Study of Branch Prediction Strategies”. Proc. of
the Int. Symp. on Computer Architecture, 1981.

[20] T.Y. Yeh and Y.N. Patt. “A Comparison of Dynamic Branch
Predictors that Use Two Levels of Branch History”. Proc. of the
Int. Symp. on Comp. Architecture, pp. 257-266, 1993.

