A Novel Approach to Reduce L2 MissLatency in Shared-Memory
Multiprocessors

Manuel E. Acacio, José Gonzalez, José M. Garcia
Dpto. Ing. y Tecnologia de Computadores

Universidad de Murcia
30071 Murcia (Spain)

{meacaci o, j oseg, j ngarci a}@li tec. um es

Abstract

Recent technology improvements allow multiprocessor
designers to put some key components inside the processor
chip, such as the memory controller, the coherence hard-
ware and the network interface/router. In this work we ex-
ploit such integration scale, presenting a novel node archi-
tecture aimed at reducing the long L2 miss latencies and
the memory overhead of using directories that characterize
cc-NUMA machines and limit their scalability. Our pro-
posal replaces the traditional directory with a novel three-
level directory architecture and adds a small shared data
cache to each of the nodes of a multiprocessor system. Due
to their small size, the first-level directory and the shared
data cache are integrated into the processor chip in ev-
ery node. A taxonomy of the L2 misses, according to the
actions performed by the directory to satisfy them is also
presented. Using execution-driven simulations, we show
significant L2 miss latency reductions (more than 60% in
some cases). These important improvements translate into
reductions of more than 30% in the application execution
time in some cases.

1 Introduction

Shared-memory multiprocessors cover a wide range of
prices and features, from commodity SMPs to large high-
performance cc-NUMA machines. The adopted architec-
tures are quite different depending on the number of pro-
Cessors.

Snooping-based designs (usually known as SMPs) are
the preferred architecture for machines with a small num-
ber of processors. However, some snooping-based multi-
processors have recently moved to medium scale (up to
64 processors), replacing the bus with more sophisticated
interconnection network organizations. Unfortunately, the
energy consumed by snoop requests, snoop bandwidth lim-
itations, and the need to act upon all transactions at every
processor, make snooping-based designs extremely chal-
lenging, especially in light of aggressive processors with
multiple outstanding requests.

On the other hand, directory-based multiprocessors are
much better suited for larger designs and have traditionally
constituted the selected architecture for medium- and large-
scale configurations. The basic idea is to keep a directory
entry for every memory line, which stores the state as well
as a sharing code indicating the caches that contain a copy
of the line. L2 misses are sent to a directory controller
which, in turn, using the corresponding directory entry, di-
rects coherence transactions to the processors caching the

José Duato
Dpto. Inf. de Sistemas y Computadores
Universidad Politécnica de Valencia
46071 Valencia (Spain)

j duat o@ap. upv. es

Address In

MEMORY

CONTROLLER

21264 I
CORE #

SNANWvY

NETWORK
L2 INTERFACE/
CACHE ROUTER

smoz

5

Address Out

Figure 1. Alpha 21364 chip block diagram

line. However, the implementations of the shared-memory
paradigm have limited scalability, then becoming infeasi-
ble for very large-scale systems, which use the message-
passing paradigm. Examples of such machines are the
ASCI Red, the ASCI Blue Pacific and the ASCI White mul-
tiprocessors.

There are two main issues limiting the scalability of cc-
NUMA designs: the hardware overhead of using directo-
ries and the usually long L2 miss latencies. The most im-
portant component of the hardware overhead is the amount
of memory required to store the directory information, par-
ticularly the sharing code. An effective way to reduce this
overhead is by using sharing codes whose size (in bits)
is not a linear function of the number of nodes, unlike
the well-known bit-vector one [5]. Although the use of
these compressed directories significantly reduce the mem-
ory overhead, it has also negative consequences on perfor-
mance. These are caused by the appearance of unneces-
sary coherence messages, that is, coherence messages that
would not be sent if a precise sharing code such as bit-
vector were used. Organizing the directory as a two-level
architecture was proposed in our previous work as an ef-
fective way to significantly reducing the memory overhead
entailed by the directory information while achieving the
performance of a non-scalable bit-vector directory [1].

Long miss latencies of directory protocols are caused
by the inefficiencies that the distributed nature of the pro-
tocols and the underlying scalable network imply. One of
such inefficiencies is the indirection introduced by the di-
rectory access. The consequences of such indirection are
particularly serious for cache-to-cache transfers which, in
some cases, represent more than 60% of the misses [3].

Current technology improvements allow designers to
implement some key components of the system inside the
processor chip. For example, the Compaq Alpha 21364 [7]
includes on-chip memory controller, coherence hardware
and network interface and router (see Figure 1). Taking

$-to-$ Misses

Mem Misses

Inv Misses Inv+Mem Misses

O Directory

‘ O Misc
m Network

Normalized Latency

Radix

Figure 2. Normalized Average Latency for $t0-$ Mem, Inv and Inv+Mem misses

these system organizations as a starting point and consider-
ing the opportunities provided by current integration scale,
in this work we propose a novel node organization espe-
cially designed to reduce the usually long L2 miss latencies
and the memory overhead of using directories that char-
acterize cc-NUMA multiprocessors and limits their scala-
bility. Our proposal replaces the traditional directory with
a novel three-level directory architecture and adds a small
shared data cache to each of the nodes that form the mul-
tiprocessor. The first-level directory, which stores direc-
tory information for the most recently referenced mem-
ory lines, as well as the small shared data cache, which
contains those memory lines that are expected to be re-
quested in a near future, are integrated into the processor
chip in every node, whereas second- and third-level direc-
tories are placed outside the processor. The on-chip inte-
gration of the small first-level directory and the shared data
cache enhances performance whereas memory overhead is
significantly reduced by having a compressed third level.
Now, those cache misses that find their corresponding di-
rectory entry and memory line (when needed) in the first-
level directory and shared data cache, respectively, can be
directly served from the processor chip, significantly reduc-
ing the time needed by the home directory to satisfy them.
Note that, unlike the remote data caches (RDCs) used in
some systems (for example, in [11]) to cache lines that are
fetched to the node from remote memories, the shared data
cache proposed in our design tries to reduce the latency of
accessing main memory (when needed) by quickly provid-
ing data from the processor itself to the requesting node.
This is possible since coherence hardware, memory con-
troller and network router are also included inside the pro-
cessor die.

The rest of the paper is organized as follows. Section
2 presents a classification of the L2 misses found in cc-
NUMA systems. The new node architecture is proposed
and justified in Section 3. Section 4 discusses our evalua-
tion methodology. Section 5 shows a detailed performance
evaluation of our novel proposal. The related work is pre-
sented in Section 6 and Section 7 concludes the paper.

2 A Taxonomy of the L2 Misses

Each time an access to a certain memory line (i.e., a load
or a store) misses in the L2 cache, a request is addressed to
the home directory of the line. The actions to be undertaken
by the home directory depend on the coherence protocol,
the access type and the state of the memory line.

In this section we present a taxonomy of the L2 misses
found in cc-NUMA multiprocessors in terms of the actions
done by the directory. Assuming that an invalidation-based

four-state MESI coherence protocol is used, L2 misses can
be classified into the following four categories:

1. Cache-to-cache transfer misses ($-to-$): There is a
single processor caching the memory line. In this
case, the directory forwards the request to the owner
of the line. They are also known as 3-Hop misses.

2. Access to memory misses (Mem): They appear for
write accesses when there is not any processor caching
the requested line and for read accesses when the re-
quested line is cached by zero or more than one pro-
cessor. The home directory satisfies the miss by ac-
cessing main memory in order to provide the line.

3. Invalidate misses (Inv): A write access for a mem-
ory line comes to the directory, there are several nodes
holding a copy of the line and one of them is the pro-
cessor issuing the access. The directory must invali-
date all the copies of the memory line but the one held
by the requesting processor.

4. Invalidate and access to memory misses (Inv+Mem):
Caused by a write access for which there are several
nodes caching the line but none of them is the one
issuing the access. Now, the directory must first inval-
idate all copies of the line. Then, it sends a reply with
the memory line to the requesting processor.

Directory States
Private | Shared | Uncached
Load Miss | $to-$ Mem Mem
Store Miss | $to-$ Inv Inv+Mem Mem
(Upgrade)

Table 1. Directory actions to satisfy load/store misses

Table 1 shows the actions that the directory performs to
satisfy load and store misses. A load miss is either satisfied
by a cache-to-cache transfer or an access to memory. On
the other hand, any of the four actions could be used for
store misses. For each one of the former categories, Figure
2 presents the normalized average miss latency obtained
when running several applications on the base system as-
sumed in this work. Average miss latency is split into net-
work latency, directory latency and miscellaneous latency
(buses, cache accesses...). Further details about the eval-
uation methodology are included in Section 4. As can be
observed, the most important fraction of the average miss
latency is caused by the directory. This is true for all the ap-
plications in the Inv and Inv+Mem cases, whereas only two
and three applications found network latency to exceed di-
rectory one in the Mem and $-to-$ categories, respectively.

3 An Approach to Reduce L2 MissLatencies

Previous section classified L2 misses in terms of the ac-
tions carried out by home directories to satisfy them and
identified directory latency to constitute the most impor-
tant component of the L2 miss latency for the majority of
the applications. For $to-$ and Mem misses, directory la-
tency is caused by the access to main memory to obtain
the corresponding directory entry (for Mem misses, mem-
ory line lookup occurs in parallel with the access to the
directory information, as in [10]). For Inv and Inv+Mem
misses, directory latency comprises the cycles needed to
obtain directory information and to create and send invali-
dation messages as well as to receive the corresponding ac-
knowledgments (again, for a Inv+Mem miss the directory
entry and the requested line are simultaneously obtained).

Assuming that nodes similar to the one presented in Fig-
ure 1 are used to form a cc-NUMA multiprocessor (as de-
scribed in [7]), in this section we propose a novel node or-
ganization especially designed to reduce the latency of L2
misses by significantly decreasing the component of the la-
tency caused by the directory. Additionally, our proposal
minimizes the memory overhead caused by directory infor-
mation. For a detailed description refer to [2].

3.1 NodeArchitecture

The proposed node organization adds several elements
to the basic node architecture shown in Figure 1. In par-
ticular, the directory is organized as a three-level structure
and a shared cache for memory lines that are frequently
accessed by several nodes is included. The three-level di-
rectory architecture consists of;

1. First-level directory: This directory level is located
inside the processor chip, close to the directory con-
troller. It is managed as a cache and uses a small set
of entries, each one containing a precise sharing code
consisting of three pointers (of log, IV bits each one,
for a N-node system). Note that, as it is shown in [5],
a small number of pointers generally suffices to keep
track of the nodes caching a memory line.

2. Second-level Directory: It is located outside the pro-
cessor chip and also has a small number of entries. In
this case, a non-scalable but precise bit-vector sharing
code is employed. The second-level directory can be
seen as a victim cache of the fist level since it contains
those entries that have been evicted from the first-level
directory or do not fit there due to the total number of
sharers is larger than the available number of pointers
(three, in our case).

3. Third-level Directory: This level constitutes the com-
plete directory structure (i.e., an entry per memory
line) and it is located near main memory (it could be
included in main memory). Each entry in this level
uses a compressed sharing code to drastically reduce
memory requirements. In particular, we use the Bi-
nary Tree with Subtrees (BT-SuT) [1] sharing code,
which has space complexity O(log2(N)), for a N-
node system. Sharing information in this level is al-
ways updated when changes in the first- or second-
level directories are performed.

Accesses to the third-level directory imply main mem-
ory latency. First-level directory has the latency of a fast
on-chip cache whereas the second-level one provides data

TAG ‘ Slate‘ 3-Pointer Sharing Code > Controller TAG ‘State ‘ Cache Line

TAG | Stete | 3Poiter Sharing Code —
FIRST-LEVEL DIRECTORY

TAG ‘State ‘ Cache Line

Line Addr

SHARED DATA CACHE

ON PROCESSOR CHIP

[=

v
S

State | BT-SuT Sharing Code

State | BT-SuT Sharing Code

State | BT-SuT Sharing Code

BitVeclor Sharing Code State | BT-SuT Sharing Code
. State | BT-SuT Sharing Code

TAG ‘ Sla(e‘

TAG ‘ Sta‘e‘
SECOND-LEVEL DIRECTORY

Bit-Vector Sharing Code State | BT-SuT Sharing Code

State ‘ BT-SuT Sharing Code

OFF PROCESSOR CHIP THIRD-LEVEL DIRECTORY

Figure 3. Proposed node architecture

at the same speed as an off-chip cache. This way, $-to-
$, Inv and Inv+Mem misses would be significantly accel-
erated if their corresponding directory entry were found
at the first- or second-level directories, since the directory
controller could quickly service them. Due to the local-
ity exhibited by memory references, we expect the first-
and second-level directories to satisfy most of the requests,
even remote accesses to a home node. Thus, this will bring
important reductions in the component of the miss latency
owed to the directory.

On the contrary, Mem misses can not take full advan-
tage of finding directory information in the first- or second-
level directories. For this kind of misses, the directory con-
troller must directly provide the line from main memory. In
order to also accelerate Mem misses, our design includes
a small cache inside the processor chip, the shared data
cache. This cache stores a copy of those memory lines with
avalid copy in main memory (that is, they are in the Shared
or Uncached states) and that are expected to be accessed
in a near future. As coherence hardware, memory con-
troller and network router are already included inside the
processor chip, Mem misses can take significant advantage
of finding their corresponding memory line in the shared
data cache. State bits are also included in each entry of this
shared data cache. The reason for this will be explained in
next section.

Figure 3 summarizes the node architecture proposed in
this work. This node organization is divided into two dif-
ferent parts (on-chip and off-chip parts) according to their
location in the processor chip. The on-chip part includes
the first-level directory and the shared data cache. The off-
chip structure comprises the second- and third-level direc-
tories. Tag information is stored in the first- and second-
level directories as well as in the shared data cache in order
to determine whether there is a hit.

3.2 Directory Controller Operation

Each time a L2 miss for a certain memory line arrives at
the directory controller, the address of the line associated
with the request is sent to each one of the directory levels
as well as to the shared data cache and main memory. One
of the following situations can take place:

1. The directory entry is found in the first-level direc-
tory. In this case the directory controller obtains pre-
cise sharing information, ending the access to the sec-
ond and third levels. For Mem and Inv+Mem misses,

Directory information found in
Directory First-level directory Second-level directory Third-level directory Shared data cache
Receives (DC1) (DC2) (MEM) (SDC)
Miss Type
$to-$ Update entry Move entry to DC1 Allocate an entry in DC1 Not allowed
Update entry (sharers<3) Update entry (sharers>3) Allocate an entry in DC1 Allocate an entry in
Mem or move entry to DC2 or move entry to DC1 (if line state = Uncached) DC1 and extract line
L2 Insert linein SDC (if needed) Insert line in SDC (if needed) from SDC
Miss [Tnv Update entry and Move entry to DC1 and Allocate an entry in DC1 Not allowed
extract line from SDC extract line from SDC
Inv+ Mem (if found) (if found)
Write-back Free DC1 entry Free DC2 entry Insert linein SDC Not allowed
and insert linein SDC and insert linein SDC
$-to-$ Response Insert linein SDC Insert linein SDC Nothing Not allowed
(if load miss) (if load miss)

Table 2. Directory controller operation

the access to main memory is ended if the memory
line is found in the shared data cache. In all cases, the
directory controller properly updates sharing informa-
tion in the first- and third-level directories.

2. The directory entry is found in the second-level di-
rectory. Again, precise sharing information is ob-
tained. The directory controller ends the access to the
third-level directory whereas the access to the shared
data cache has already been completed. Now the acces
to main memory is canceled when the memory line
was obtained from the shared data cache or it is not
needed. Sharing information in the second and third
levels is also updated.

3. The directory entry is only found in the third-level
directory. The third-level directory provides impre-
cise but correct sharing information.

On a L2 miss for which an entry in the first-level direc-
tory was not found, an entry in this directory level is allo-
cated only when precise sharing information can be guar-
anteed. An entry in the shared data cache is allocated in
one of these three situations:

1. On a Mem miss for which an entry is present in the
first- or second-level directories.

2. On a write-back message from the owner node of the
line. This message is caused by a replacement from
the single L2 cache holding the memory line and al-
ways includes a copy of the linel. Since no sharing
code is necessary, the state bits of the associated entry
in the shared data cache are used to codify the state of
the line. This way an entry in the first- or second-level
directories will not be wasted.

3. On the response to a $to-$ miss indicating that a
cache-to-cache transfer was performed, when the miss
was caused by a load instruction. The state of the line
was changed from Private to Shared, and the acknowl-
edgment message contains a copy of the line!.

An entry in the first- and second-level directories is freed
each time a write-back message for a memory line in the
Private state is received. An entry in the shared data cache
is freed in two cases: first, when a processor obtains an
exclusive copy of the memory line, and, second, when its
associated directory entry is evicted from the second-level
directory.

Replacements from the second-level directory are dis-
carded, since correct information is ensured to be presentin

1The original coherence protocol did not include a copy of the line
neither in awrite-back message nor in a cache-to-cache transfer response
when the copy contained in main memory was valid.

the third-level directory. The same occurs for those mem-
ory lines that are evicted from the shared data cache, since
main memory contains a valid copy of them. Finally, re-
placements in the first- and second-level directories are not
allowed for entries associated to memory lines with pend-
ing coherence transactions. Table 2 summarizes the most
important issues described in this section.

3.3 Implementation | ssues

In this work we assume the organization of the first- and
second-level directory caches as well as of the shared data
cache to be fully associative, with a LRU replacement pol-
icy?. Each line in the first- and second-level directories
contains a single directory entry. Three states are possi-
ble for a line in the shared data cache: not present, present
in the Uncached state or present in the Shared state.

We assume the directory controller to provide write
buffers to update the three directory levels, the shared data
cache and main memory. Thus, writes to each one of the di-
rectory levels as well as to main memory and to the shared
data cache are assumed to occur immediately.

Finally, the first- and second-level directories are imple-
mented as directory caches, using the usual technologies
for on-chip and off-chip processor caches, respectively.
The small sharing code used for the third-level directory
would avoid the need of external storage for this directory
level since, as in [4], it could be directly stored in main
memory by computing ECC at a coarser granularity and
utilizing the unused bits.

4 Simulation Environment

We have used a modified version of Rice Simulator for
ILP Multiprocessors (RSIM), a detailed execution-driven
simulator [14]. The modeled system is a cc-NUMA with 64
uniprocessor nodes that implements an invalidation-based,
four-state MESI directory-based cache coherence protocol
and sequential consistency. Table 3 summarizes the param-
eters of the simulated system. These values have been cho-
sen to be similar to the parameters of current multiproces-
Sors.

In order to evaluate the benefits of our proposals,
we have selected several scientific applications covering
a variety of computation and communication patterns.
Barnes (8,192 Bodies,4 timesteps), FFT (256K complex
doubles), Ocean (258x258 grid), Radix (2M keys,1024
radix), Water-Spatial (512 molecules,4 timesteps) and
Water-Nsquared (512 molecules,4 timesteps) are from the
SPLASH-2 benchmark suite [16]. EM3D (38,400 nodes,

2Practical implementations can be set-associative, achieving similar
performance at lower cost [12].

64-Node System

ILP Processor Speed 1GHz
Cachelinesize 64 bytes

L1 cache WT Direct mapped, 32KB
L1 hittime 2 cycles

L2 cache WB 4-way associative, 512KB
L2 hittime 15 cycles, pipelined
Directory controller cycle (on-chip) 1cycle

1°*-level directory accesstime (on-chip) lcycle

2™<_level directory accesstime (off-chip) 10 cycles

374_|evel directory accesstime (off-chip) 70 cycles

Shared data cache accesstime (on-chip) 6 cycles

Memory accesstime 70 cycles (70 ns)

Bus speed/width 1 GHz/8 bytes
Network Topology 2-dimensional mesh
Flit size 8 bytes

Non-data message size 2 Flits

Router speed 250 MHz

Channel speed 500 MHz

Channel width 32 bits

Table 3. Base system parameters

25 time steps) is a shared-memory implementation of the
Split-C benchmark. All experimental results reported in
this paper are for the parallel phase of these applications.
Using these applications we compare, through extensive
simulation runs, three configurations: the Base system (di-
rectory information at main memory) and two configura-
tions using the node architecture presented in Section 3.
The first one (UC system), which gives us the potential of
our proposal, uses an unlimited number of entries in the
first- and second-level directories as well as in the shared
data cache. The second one (LC system) limits the number
of entries in these structures. The directory controller is as-
sumed to be included inside the processor chip as shown in
Table 3. Base system uses bit-vector as the sharing code
for its single level directory, which obtains the best results
since unnecessary coherence messages degrading perfor-
mance do not appear. As in [1], the coherence protocol
used in the UC and LC configurations has been extended to
support the use of a compressed third-level directory and
also to include always the memory line in write-back mes-
sages and in cache-to-cache transfer responses (which in-
creases the number of cycles needed by these messages to
reach the corresponding home directory). On the contrary,
the Base configuration does not include these overheads.

5 Simulation Resultsand Analysis

In this section we present and analyze simulation results
for the Base and UC systems as well as for two instances of
the LC configuration. The first one, LC-1, limits the num-
ber of entries used in the first- and second-level directories
and in the shared data cache to 512, 256, and 512, respec-
tively. This results in total sizes of less than 2 and 3 KB
for the first- and second-level directories, respectively, and
of 32 KB for the shared data cache. The other instance,
LC-2, increases the number of entries for all the compo-
nents to 1024, resulting in total sizes of 3 KB, 10 KB and
64 KB for the first-level directory, second-level directory
and shared data cache, respectively. In all cases, the sizes
of these components represent a small percentage of the L2
size (a 12.5% in the worst case).

5.1 Impact on L2 MissLatencies

This section analyzes how the node architecture pre-
sented in this work impacts on the latency of L2 misses.

Tables 4 to 7 show the directory structures involved
when satisfying each miss type for the LC-1, LC-2 and
UC configurations. The first and second columns (DC1

and DC2) present the percentage of misses for which direc-
tory information is obtained from the first- and second-level
directories, respectively (and, for Mem misses, the cache
line from the shared data cache (SDC)). Thus, these misses
would benefit from the novel node architecture proposed in
this work, contrary to the ones shown in the column MEM,
for which main memory must be accessed. Note that all the
accesses in the Base configuration are to the main memory.

Figures 4 to 7 illustrate the normalized average latency
for each miss type split into network latency, directory la-
tency and miscellaneous latency (buses, cache accesses...),
for the Base, UC, LC-1 and LC-2 configurations. Normal-
ized average latencies are computed dividing the average
latencies for each one of the configurations by the average
latencies for the Base case.

Impact on $to-$ Miss Latencies

As shown in Figure 4, the small number of entries used
in the LC-1 case for the directory caches as well as for
the shared data cache suffices to virtually reach the la-
tency reductions found in the UC case for Barnes (66%),
EM3D (25%), Ocean (42%), Water-nsq (62%) and Water-
sp (58%). As derived from Table 4, for FFT and Radix,
more than 80% of the misses requiring a cache-to-cache
transfer need the third-level directory to provide the shar-
ing information. The increased number of entries used in
the LC-2 case significantly reduces this percentage. Now,
only 18.10% for FFT and 36.88% for Radix of the $-to-
$ misses must wait during main memory latency to ob-
tain the sharing information and reductions of 14% for FFT
and 11% for Radix in average latency are observed. Note
that obtaining the directory information from the third-level
directory can entail two negative effects on performance:
first, the miss must wait until main memory provides the
corresponding directory entry and, second, in some situa-
tions unnecessary coherence messages could appear as a
consequence of the compressed nature of the third-level di-
rectory. This second effect can not actually take place for
$to-$ misses since the compressed sharing code used by
the third-level directory is wide enough to exactly codify
the identity of a single sharer.

Impact on Mem Miss Latencies

Figure 5 shows the normalized average latencies for
Mem misses. For this kind of misses unnecessary co-
herence messages can not appear. Latency reductions of
45% for Barnes, 26% for EM3D, 32% for Ocean, 37% for
Water-nsq and 40% for Water-sp are obtained for the LC-1
configuration. The reason for these significant reductions is
that a large number of the Mem misses found the memory
line in the shared data cache and the sharing information in
one of the two first directory levels, saving the access to the
slower main memory (see Table 5). Again, the former val-
ues are very similar to those reached with the UC configu-
ration. For FFT, the LC-1 configuration is unable to reduce
the latency of Mem misses since more than 93% of them
must obtain the data from main memory. When moving
to the LC-2 configuration, this percentage decreases and
a reduction of 28% is obtained. However, this reduction
still remains far from the potential found for the UC con-
figuration (52%). Finally, small latency reductions are ob-
tained for Radix when the UC configuration is used (only a
10%). As shown in Table 5, a large percentage of the Mem
misses suffered by this application (62.96%) are for lines
that are accessed for the first time, which prevents a shared
data cache with an unlimited number of entries from being
able to provide the memory line. The percentage of Mem

$-to-$ Misses

Water- Water-
Barnes sp
1.20 T

EM3D FFT Ocean Radix nsq
: : : : OMisc
O Directory

a7 H T B Network

1.00 1+ : : -

Mem Misses
Radix

Water- Water-

Barnes EM3D FFT Ocean nsq sp

1.20

OMisc
O Directory
= Network

1.00 1 H H H H H

Normalized Latency

0.80 -~

0.60 -~

0.40 +

0.20 1

0.00

Base

uc
LC1

LC-2
Base

LC1
LC-2
Base

uc
LCc1
Lc-2

Base
LC-1
LC-2
Base

uc
Lc-1
LC-2
Base

uc
LC1
LC-2
Base

uc
LC1
LC-2

0.80

0.60 +

Normalized Latency

0.40

0.20 +

0.00

Figure 4. Average $10-$ miss latency

Figure 5. Average Mem miss latency

LC-1 Configuration LC-2 Configuration UC Configuration
| Application | DC1 | DC2 | MEM DC1 | DC2 | MEM DC1 | DC2 | MEM |
Barnes-Hut 100.00% | 0.00% | 0.00% 100.00% | 0.00% 0.00% 100.00% | 0.00% | 0.00%
EM3D 100.00% | 0.00% | 0.00% 100.00% | 0.00% 0.00% 100.00% | 0.00% | 0.00%
FFT 11.11% 9.68% | 79.21% 35.70% 46.20% | 18.10% 100.00% | 0.00% | 0.00%
Ocean 81.66% 5.18% | 13.16% 95.60% 3.15% 1.25% 100.00% | 0.00% | 0.00%
Radix 10.65% 3.03% | 86.32% 17.86% 45.26% | 36.88% 100.00% | 0.00% | 0.00%
Water-nsq 100.00% | 0.00% 0.00% 100.00% 0.00% 0.00% 100.00% | 0.00% | 0.00%
Water-sp 100.00% | 0.00% 0.00% 100.00% 0.00% 0.00% 100.00% | 0.00% | 0.00%
Table 4. How $1t0-$ misses are satisfied
LC-1 Configuration LC-2 Configuration UC Configuration
Application DC1 DC2 DC1 DC2 DC1 DC2
+3DC +3DC MEM +3DC +3DC MEM +3DC +3DC MEM
Barnes-Hut 32.22% | 67.38% | 0.40% 32.22% | 67.38% | 0.40% 32.22% | 67.38% | 0.40%
EM3D 96.80% | 3.20% 0.00% 96.80% | 3.20% 0.00% 96.80% | 3.20% 0.00%
FFT 0.04% | 6.39% | 9357% || 0.04% | 33.20% | 66.76% | 0.08% | 99.92% | 0.00%
Ocean 32.35% | 48.26% | 19.39% || 32.66% | 48.51% | 18.83% | 34.06% | 50.43% | 1551%
Radix 2.04% 23.75% | 74.21% 2.05% 27.63% | 70.32% 3.26% 33.78% | 62.96%
Water-nsq 9.44% 90.52% 0.04% 9.44% 90.52% 0.04% 9.59% 90.37% 0.04%
Water-sp 10.39% | 89.58% 0.03% 10.39% | 89.58% 0.03% 10.39% | 89.58% 0.03%
Table 5. How Mem misses are satisfied
LC-1 Configuration LC-2 Configuration UC Configuration
| Application | DC1 | DC2 | MEM DC1 | DC2 | MEM DC1 | DC2 | MEM |
Barnes-Hut 64.85% | 35.15% 0.00% 64.85% | 35.15% 0.00% 64.85% 35.15% | 0.00%
EM3D 75.43% | 24.57% 0.00% 75.43% | 24.57% 0.00% 75.43% 24.57% | 0.00%
FFT 2255% | 12.20% | 65.25% || 47.47% | 52.08% | 0.45% 100.00% | 0.00% | 0.00%
Ocean 83.12% | 9.38% 7.50% 91.70% | 6.94% 1.36% 93.79% 6.21% | 0.00%
Radix 73.14% | 0.11% | 26.75% || 73.18% | 0.09% | 26.73% 92.57% 7.43% | 0.00%
Water-nsq 96.73% | 3.27% 0.00% 96.73% | 3.27% 0.00% 96.73% 3.27% | 0.00%
Water-sp 51.14% | 48.86% 0.00% 51.14% | 48.86% 0.00% 51.14% 48.86% | 0.00%
Table 6. How INV misses are satisfied
LC-1 Configuration LC-2 Configuration UC Configuration
| Application | DC1 | DC2 | MEM DC1 | DC2 | MEM DC1 | DC2 | MEM |
Barnes-Hut 52.80% | 47.20% 0.00% 52.80% | 47.20% 0.00% 52.80% 47.20% | 0.00%
EM3D 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
FFT 14.77% | 14.90% | 70.33% 44.93% | 54.79% 0.28% 100.00% 0.00% 0.00%
Ocean 56.69% | 39.97% 3.34% 59.27% | 40.00% 0.73% 60.49% 39.51% | 0.00%
Radix 3.18% 0.00% | 96.82% 3.18% 0.00% | 96.82% 79.24% | 20.76% | 0.00%
Water-nsq 54.99% | 45.01% | 0.00% 54.99% | 45.01% | 0.00% 57.06% | 42.94% | 0.00%
Water-sp 39.29% | 60.71% | 0.00% 39.29% | 60.71% | 0.00% 39.29% | 60.71% | 0.00%

Table 7. How Inv+Mem misses are satisfied

misses satisfied by main memory is even higher for LC-1
and LC-2 configurations, and latency reductions of 7% and
8%, respectively, are observed.

Impact on Inv and Inv+Mem Miss Latencies

Figure 6 shows the normalized average latency for Inv
misses. In this case, the directory must send invalidation

messages and receive their corresponding acks. Therefore,
the main component of the latency is caused by the di-
rectory. For Inv misses, LC-1 and UC configurations ob-
tain virtually identical latency reductions for Barnes (20%),
EM3D (26%), Water-nsq (15%) and Water-sp (45%). As
observed in Table 6, 26% of the Inv misses in the LC-1 and

Inv Misses
Barnes EM3D FFT

Water- Water-

Ocean Radix ns S|
1.60 T T T q T P

OMisc
1.40 Il O Directory
B Network

1.20

1.00 4 = = i -

0.80 H e+

0.60

Normalized Latency

0.40 1

0.20

0.00

Inv+Mem Misses | . \vaer-

Barnes EM3D FFT Ocean Radix nsq sp

1.60 -
OMisc
1.40 H O Directory
H H H H H H B Network

1.20

1.00

0.80

0.60

Normalized Latency

0.40

0.20

0.00

Figure 6. Average Inv miss latency

Figure 7. Average Inv+Mem miss latency

Average L2 Miss Latency

Water- Water-

Barnes EM3D FFT Ocean Radix nsq sp

OMisc
O Directory
B Network

1.00 = =

0.80 Frt HTH HHTHHH

0.60 S HHH A a

Normalized Latency

0.40 e I

0.20

0.00

uc
LC-1
LC-2
uc
uc
LC-1
LC-2
uc
uc

LC-1
LC-2.
LC-1
LC:
LC-1
LC-2
Base
LC-1
LC-2
Base
LC-1
LCc-2

Normalized Execution Times

u
mLC-1

1.10 goLc-2
]

1.00 o

0.90 -

0.80 -

0.70 -

0.60 -

0.50 -
Barnes EM3D FFT Ocean Radix Water- Water-Sp
Nsq

Applications

Figure 8. Average L2 miss latency

LC-2 configurations must obtain sharing information from
main memory for Radix application. In this case, the com-
pressed sharing code used in the third-level directory does
not increase the number of invalidation messages observed
for the Base case, which explains the small difference be-
tween the reduction obtained for the UC configuration and
the ones obtained for both the LC-1 and the LC-2 cases
(only 10%). For FFT, again, an important fraction of the
Inv misses found the directory information in main mem-
ory when the LC-1 configuration was used (65.25%). How-
ever, in this case, the compression of the third-level direc-
tory implies a loss of precision that increases the number
of invalidation messages for each invalidation event when
comparing with the Base system and, consequently, the av-
erage time needed to satisfy this kind of misses. This ex-
plains the significant latency increment (more than 40%)
shown in Figure 6. This degradation practically disappears
when the number of entries in the first- and second-level di-
rectories is increased and the LC-2 configuration can obtain
the latency reduction of 23% observed for the UC case. A
similar situation also appears for Ocean. In this case, the la-
tency reduction obtained with the UC configuration (26%)
can not be reached when using the LC-2 one (17%).

Figure 7 illustrates the normalized average latency for
Inv+Mem misses. When using the LC-1 configuration,
important latency reductions are also found for Inv+Mem
misses for Barnes (50%), Ocean (22%), Water-nsq (32%)
and Water-sp (55%), which coincide with the ones obtained
for the UC case. As shown in Table 7, this kind of miss was
not found in EM3D application. As in the Inv misses case,
the use of the imprecise third-level directory increases the
latency of Inv+Mem misses for FFT (more than 40%) and
Radix (20%) when the LC-1 configuration is used. This
degradation is completely eliminated in FFT with the use
of the LC-2 configuration and the performance of the UC
case is obtained. However, when moving to the LC-2 con-

Figure 9. Normalized execution time

figuration in Radix the situation does not improve and a
96.82% of the Inv+Mem misses must still obtain directory
information from main memory.

5.2 Impact on Execution Time

For the applications used in our study, Table 8 shows the
percentage of L2 misses belonging to each type, whereas
Figures 8 and 9 present the normalized average L2 miss
latency and execution time, respectively, for each one of
the configurations considered in this work.

[Application | $to-$ | Mem [Inv [InviMem |
Barnes-Hut | 26.43% | 55.04% | 17.02% 1.51%
EM3D 34.07% | 31.86% | 34.07% 0.00%
FFT 54.12% 0.74% 37.22% 7.92%
Ocean 42.54% | 23.39% | 33.65% 0.53%
Radix 40.81% | 57.14% 1.72% 0.33%
Water-nsqg 39.08% | 34.62% | 25.74% 0.57%
Water-sp 12.45% | 82.33% 3.64% 1.58%

Table 8. L2 misses according to directory actions

Important average L2 miss latency reductions are ob-
tained for those applications that can take significant advan-
tage of the on-chip integration of the first-level directory
and the shared date cache. L2 misses have been signifi-
cantly accelerated in Barnes, Ocean, Water-nsg and Water-
sp, which motivates the important reductions on the aver-
age L2 miss latency observed for these applications (56%
for Barnes, 36% for Ocean, 46% for Water-nsq and 47%
for Water-sp). These reductions finally translate into signif-
icant improvements in terms of execution time (reductions
of 34% for Barnes, 31% for Ocean, 22% for Water-nsq and
30% for Water-sp). More modest reductions on L2 miss
latencies were found for EM3D and a reduction of 25% on
average L2 miss latency is obtained, resulting in a reduction
of 11% on execution time. For FFT application, the perfor-
mance degradation observed for Inv and Inv+Mem misses

when using the LC-1 configuration disappears when mov-
ing to the LC-2 configuration and reductions on average
L2 miss latency and execution time close to those reached
with the UC configuration are obtained. Finally, only Inv
misses could be significantly accelerated for Radix appli-
cation. However, as shown in Table 8, only 1.72% of the
misses belong to this category.

6 Reated Work

In order to significantly reduce the memory overhead
entailed by the directory while achieving the same perfor-
mance as a non-scalable bit-vector directory, we proposed
in [1] a two-level directory architecture, which combined a
small first-level directory (a few bit-vector entries for the
most recently accessed lines) with a compressed second-
level directory, with one entry per memory line.

Some previously proposed designs, such as the Compaq
Alpha 21364 [7] or the Compaq Piranha CMP [4], already
include the coherence hardware inside the processor die.
However, in such designs, directory information is stored
in main memory, which puts main memory latency into the
critical path of L2 misses.

Caching directory information was originally proposed
in [6] and [13] as a means to reduce the memory over-
head entailed by directories. More recently, directory
caches have also been used to reduce directory access times
[9][12]. In addition, remote data caches (RDCs) have also
been used in several designs (as [11]) to accelerate the ac-
cess to remote data. A RDC caches remote data in lo-
cal memory resources acting as backup for the processor
caches. Multiprocessor-on-a-chip is emerging as an ac-
tive research topic nowadays. Examples of such architec-
tures can be found in [4][8]. Finally, Torrellas et al. [15]
explore how a cache-coherent DSM machine built around
Processor-In-Memory chips might be cost-effectively orga-
nized.

7 Conclusions

We take advantage of current technology trends propos-
ing and studying in this work a novel node architecture es-
pecially designed to reduce the long L2 miss latency by sig-
nificantly decreasing the component of the latency caused
by the directory. Additionally, our approach minimizes the
memory overhead caused by directory information.

Our proposal replaces the traditional directory with a
novel three-level directory architecture and adds a small
shared data cache to each one of the nodes that form the
multiprocessor. The first-level directory as well as the
small shared data cache are integrated into the processor
chip of every node, whereas the second- and third-level di-
rectories are placed outside the processor. The on-chip inte-
gration of the small first-level directory (which uses a lim-
ited number of pointers as sharing code) and the shared data
cache ensures performance. The third-level directory is a
complete directory structure (one entry per memory line)
that uses our BT-SUT compressed sharing code to drasti-
cally reduce memory requirements and the second-level di-
rectory is a small directory cache (using bit-vector sharing
code) that tries to minimize the negative effects of having
an imprecise third level as well as to quickly provide direc-
tory information when it is not present in the first level.

In order to better understand the reasons for perfor-
mance improvement, a taxonomy of the L2 misses, ac-
cording to the actions performed by the directory to sat-
isfy them, has been presented. Latency reductions up to

66% for $-to-$ misses, 45% for Mem misses, 45% for Inv
misses and 55% for Inv+Mem misses have been obtained.
These reductions translate into important improvements in
the application execution times (reductions up to 34%).

Acknowledgments

This research has been carried out using the resources of
the Centre de Computaci6é i Comunicacions de Catalunya
(CESCA—CEPBA? as well as the SGI Origin 2000 of the
Universitat de Valencia. This work has been supported in
part by the Spanish CICYT (grant TIC2000-1151-C07).

References

[1] M. E. Acacio, J. Gonzalez, J. M. Garcia and J. Duato. “A
New Scalable Directory Architecture for Large-Scale Mul-
tiprocessors”. 7th Int’l Symposium on High Performance
Computer Architecture, Jan. 2001.

[2] M. E. Acacio, J. Gonzalez, J. M. Garcia and J. Duato. “A
Novel Approach to Reduce L2 Miss Latency in Shared-
Memory Multiprocessors”. Tech. Report UM-DITEC-2002-
1, Computer Engineering Department, University of Mur-
cia, Jan. 2002.

[3] L. A. Barroso, K. Gharachorloo and E. Bugnion. “Memory
System Characterization of Commercial Workloads”. 25th
Int’l Symposium on Computer Architecture, June 1998.

[4] L. A. Barroso, K. Gharachorloo, R. McNamara,
A. Nowatzky, S. Qadeer, B. Sano, S. Smith, R. Stets
and B. Verghese. “Piranha: A Scalable Architecture Based
on Single-Chip Multiprocessing”. 27th Int’l Symposium on
Computer Architecture, June 2000.

[5] D.E. Culler, J. P. Singh and A. Gupta. “Parallel Computer
Architecture: A Hardware/Software Approach”. Morgan
Kaufmann Publishers, Inc., 1999.

[6] A. Gupta, W.-D. Weber and T. Mowry. “Reducing Mem-
ory and Traffic Requirements for Scalable Directory-Based
Cache Coherence Schemes”. Int’l Conference on Parallel
Processing, August 1990.

[7] L. Gwennap. “Alpha 21364 to Ease Memory Bottleneck”.
Microprocessor Report, pp. 12-15, October 1998.

[8] L. Hammond, M. Willey and K. Olukotun. “The Standford
Hydra CMP”. Proc. of Hot Chips 11, August 1999.

[9] J. Kuskin, D. Ofelt, M. Heinrich, J. Heinlein, R. Si-
moni, K. Gharachorloo, J. Chapin, D. Nakahira, J. Baxter,
M. Horowitz, A. Gupta, M. Rosenblum and J. Hennessy.
“The Stanford FLASH Multiprocessor”. 21st Int’l Sympo-
sium on Computer Architecture, Apr. 1994.

[10] J. Laudon and D. Lenoski. “The SGI Origin: A ccNUMA
Highly Scalable Server”. 24th Int’l Symposium on Com-
puter Architecture, June 1997.

[11] T. Lovett and R. Clapp. “STiNG: A CC-NUMA Computer
System for the Commercial Marketplace”. 23rd Int’l Sym-
posium on Computer Architecture, 1997.

[12] M. M. Michael and A. K. Nanda. “Design and Performance
of Directory Caches for Scalable Shared Memory Multipro-
cessors”. 5th Int’l Symposium on High Performance Com-
puter Architecture, Jan. 1999.

[13] B. O’Krafka and A. Newton. “An Empirical Evaluation of
Two Memory-Efficient Directory Methods”. 17th Int’l Sym-
posium on Computer Architecture, May 1990.

[14] V. Pai, P. Ranganathan and S. Adve. “RSIM Reference
Manual version 1.0”. Tech. Report 9705, Department
of Electrical and Computer Engineering, Rice University,
Aug. 1997.

[15] J. Torrellas, L. Yang and A. T. Nguyen. “Toward A
Cost-Effective DSM Organization That Exploits Processor-
Memory Integration”. 6th Int’l Symposium on High Perfor-
mance Computer Architecture, Jan. 2000.

[16] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh and A. Gupta.
“The SPLASH-2 Programs: Characterization and Method-
ological Considerations”. 22nd Int’l Symposium on Com-
puter Architecture, June 1995.

