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Abstract. The goal of a parallel program is statedt@seduce the execution time regarding the fastest
sequential program solving the same prohl@arallel programming is growing due to the widespread use of
network of workstations in high performance computing. MPI has become the standard for implementing
message-based parallel programs in distributed-memory computing environments. On the other side, visual
programming environments try to make easier the task of developing applications. Delphi constitutes one of
the most popular visual programming environments nowadays in the Windows operating system
environment. In this paper we present MPI-Delphi, an implementation of MPI for writing parallel
applications using Delphi. We explain how MPI-Delphi has been derived, how it has been used in a cluster of
workstations with a mixed of Windows and Linux operating systems, and what MPI-Delphi is suitable for.

1. Introduction

In recent years, parallel distributed systems and parallel programming is doing a growing use of message passing
paradigm for solving complex computational problems. Currently, networks of workstations (NOWSs) are being
considered as a good alternative to the use of expensive, dedicated high-performance systems. In fact, the
increasing performance and availability of general-purpose microprocessors has fostered the spread of NOWs,
either with shared or distributed memory, as an alternative to customized massively parallel systems (MPPs). So,
a cluster of powerful PCs interconnected with a fast network could be seen as a reasonable and cost-effective
alternative approach [1,10] for exploding parallelism.

Traditionally, Unix/Linux has been used as operating system in such clusters of PCs. However, Windows
95/98/NT is perhaps the most widely used operating system nowadays. Moreover, the Intel Pentium 11 (and 111
now), together with its Windows 98/NT operating system (the Wintel model), provides enough overall capacity
to displace also the RISC/UNIX workstation in the engineering and scientific marketplace. This fact causes that
each time more and more clusters of PCs exist with Windows 95/98/NT as operating systems. These operating
systems have the advantage over Linux on the number of developed applications for them and on the ease of use
that it offers. Among these applications, programming environments are not an exception. There is a great
variety of programming environments available for Windows. Visual programming environments constitute one
of the most interesting developing tools, because they make the creation of applications easier to the
programmer.

With the advent of the MPI [4] standard, parallel programming using the message-passing style has reached a
certain level of maturity. However, in terms of convenience and productivity, this programming model suffers
from low performance of the generated code, due to the lack of high-level development tools. Although in the
last years a large variety of this kind of tools has been developed, the situation is still not satisfactory for users,
since most of these tools can only be used in isolation and cannot work in heterogeneous environments. In
addition, parallelism in a cluster of workstations with Windows 95/98/NT is possible, as some MPI and PVM
versions for Windows have been implemented [9, 13].

Recently, several tools have been developed to improve the software development in high-performance
computing. In [14] is described a set of integrated tools destined to write parallel programs efficiently; [8]
describes another tool to manage the distributed resources in an heterogeneous NOW. Similarly, off-line tools
for performance analysis (monitoring, trace data, visualization) in NOWs have appeared, as it is described in [3].
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There also exist several visual parallel programming languages, such as HENCE 2.0 [2]. These languages are
more oriented to the representation of parallel programs like a directed graph, in which nodes with certain icons
represent sequential computations and the graph as a whole represents the parallel structure of the program.
However, our approach is more based on the visual programming of the user interface.

Nowadays, therefore, most programming projects are developed under visual environments. Delphi* constitutes
one important visual-programming environment. Unlike other visual programming environments, Delphi is a
real compiler, which generates very efficient executable code, with no need to distribute runtime additional files
with the application. So, we are very interested in implementing parallel applications with Delphi, in order to
take advantage of all these programming facilities.

The first and most obvious problem that we will find is that this environment uses Object Pascal (an object-
oriented version of Pascal) as its natlve programmmg language, while available Windows MPI/PVM versions
are accessible just from Visual C++" and Borland C++ .

Our work has centered in offering MPI functionality to this popular environment using one of these existing
Windows MPI implementations. So, it will be possible to develop parallel applications using Delphi and making
good use of the facilities that it supplies for applications with user interaction and/or complicated graphical
requirements.

It is an accepted fact that using Windows 95/98/NT the performance of parallel applications often decreases with
respect to workstations running UNIX/Linux. As a possible solution, we also propose an execution environment
that takes advantage of the benefits of both Unix/Linux and Windows operating systems.

We have structured this paper as follows: first, we introduce how MPI-Delphi has been created (what problems
we have found in its creation and how they have been solved), and then we describe the execution environment
that we propose. Next, we show two sample applications created using MPI-Delphi, along with the visual results
obtained for them. Finally, we expose the conclusions of the work.

2. The MPI-Delphi Visual Environment

MPI-Delphi is the name of the implementation of MPI for Delphi we have developed. We have tried to keep our
implementation as close to the C specification as possible, but some minimal modifications had to be introduced.
This section describes these modifications and the way we carried out the implementation.

Currently, several MPI implementations for Windows can be found. The main problem we have found is that the
language they have been created for is C, and the environments they can be used from, Visual C++ or Borland
C++.

We have used W32MPI v.0.9b [9] as the basis to develop a mechanism to provide MPI functionality to Delphi.
This implementation is freely available at the web pages of Coimbra University. W32MPI v.0.9b is a full MPI
standard implementation for Microsoft Win32 platforms. It is completely compatible with MPICH 1.0.13 (an
also freely MPI implementation of the Argonne National Laboratory) and it uses P4 message passing as its
underlying protocol. Connectivity between WMPI and other clusters running MPICH 1.0.13 with distinct
operating systems (several UNIX and Linux versions, as well as Windows 32 bits platforms) is accomplished
through a common TCP/IP network.

2.1 Some important aspects of the implementation of MPI-Delphi

In the implementation of MPI-Delphi, we had two main objectives:

1. To carry out an implementation in which the functionality of W32MPI were offered to Delphi in an easy
way. Delphi’s programmers should make use of the MPI functionality in a simple, transparent way, without
having to know the internal details of the implementation. Users should only know how to use the MPI
standard functions.

2. To carry out the necessary adaptation between C or Fortran and Pascal for the MPI functions, because MPI
has been defined for C and Fortran languages.

In order to cope the first objective, two solutions were analyzed:

* Delphi and Borland C++ are a trademark of Borland Corporation Inc.
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1. The use of DDE (Dynamic Data Exchange) to communicate W32MPI and Delphi. It would involve a server
application written in C++, offering MPI functionality to client applications written in Delphi. This server
application should run before Delphi’s parallel programs.

2. Creating a DLL (Dynamic Link Library) providing MPI functionality. This option also means using C++ in
order to create the DLL.

In both cases, a DCU (Delphi Compiled Unit) has to be used to access to the MPI functionality.

Our final choice is based in terms of viability, scalability and facility. Thus, we concluded that option 2

represented the most suitable solution, because the programmer would simply use the functions contained in the

DCU just the way he would do when using any other DCU. Figure 2 shows the elements implicated in the final

solution.
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Figure 1. Relation between elements of MPI-Delphi.

The other objective was related to the MPI specification. C programming language could be considered more

near to Pascal than FORTRAN, so we used MPI specification for C as our basis, but introducing two small

modifications:

1. MPIL_Init (int argc, char *argv): the argumemigc andargv are passed directly inside the DCU, so we free
the Delphi's programmer of this task.

2. Some modifications on the data types. Many MPI-C functions return a value representing a boolean as an
integer value (i.e. MPI_Test). In Object Pascal, boolean data type is available, so it was used as the returned
type in this kind of functions.

Besides, communicators have been omitted in this first version of MPI-Delphi. The reason was that the first goal

of this version was to determine the possibility of parallel programming in Delphi, more than to implement the

whole functionality of the standard. Therefore, and in the sake of simplicity, the communicator argument was

eliminated in the implemented functions in the DCU.

2.2 Our working environment

MPI-Delphi can be used in a cluster of workstations using Windows 95/98/NT in each PC of the cluster. But this

involves a loss of speed performance in communications, as Windows sockets usually are much slower than

TPC/IP sockets on Linux/UNIX environments [13].

W32MPI v.0.9b, and therefore MPI-Delphi, is compatible with MPICH v.1.0.13 for Linux/Unix, so it is possible

to combine processes in execution in all these operating systems. We propose a solution for taking advantage of

both aspects: speed performance of Linux/UNIX (in both communication and processing tasks), and

programming facilities of Windows.

This working environment uses two kinds of processes:

1. A unique Windows process constituting the user interface, and that would contain all the graphical part of
the parallel application. This process should be written using Delphi and MPI-Delphi.

2. Some Linux processes written in C language and used to effectuate the computations. They would have to
send periodically results of their computations to the Windows process.

Note that this way of developing applications involves using two different programming languages: Object

Pascal and C. However, observe that the proposals of both kind of processes are very different: The first one

(Delphi programmed) has to manage the graphical interface and the user interaction, while the rest of processes

(C programmed) manage the heaviest computational load (and therefore susceptible of parallelism) of the

concrete algorithm implemented. So, it is even appropriate to develop them in different languages, each one

suitable for each kind of task. Figure 2 shows the described working environment.
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Figure 2. The working environment

3. Using MPI-Delphi

This section presents two examples of use of MPI-Delphi. Firstly, we show an easy example: the implementation
of the well-known Jacobi’s relaxation method, applied to solve the problem of the heat diffusion in a body [5].
We called this program Visual Jacobi, as it incorporates a nice user interface, in which we can easily modify the
values of the input parameters, as well as observe the evolution of the state in the body. Secondly, we study the
use of MPI-Delphi to develop a scientific application: the parallel visual version of the EDR algorithm [6], a
new method for estimation of probability density functions from uncertain samples.

3.1 The visual Jacobi's relaxation method

Jacobi’s relaxation method is an iterative algorithm for solving differential equations. An example of the
application of this algorithm is to consider a body represented by a two-dimensional array of particles. This body
is in direct contact with a fixed value of temperature on the four boundaries; all four boundaries can have
different temperatures, and each particle in the body has an initial value of temperature. The algorithm is solved
by setting the temperature of each particle to be the mean of the temperatures of the four boundary particles. This
calculus is carried out for each one of the particles, until a stability situation is reached.

Visual Jacobi implements the classical parallel Jacobi’s relaxation algorithm (body division by rows, with these
groups of rows being calculated by different processes), but, besides, it also shows graphically the evolution of
the body. Figure 3 shows the two parts of the application code, both in MPI. On the left side, written in C
language, the main code to calculate in parallel the Jacobi’s relaxation algorithm, in a Unix environment. On the
right side, written in Pascal language, the code of the process that starts the parallel execution and shows
graphically the results.

The main advantage of the Delphi process is that it interacts with the user in a user-friendly fashion, allowing
him to observe the evolution of the partial results obtained through iteration of the algorithm when implemented
in parallel. In this way, we can debug the MPI parallel implementation easier. Moreover, the user can introduce
very kindly the values of the temperatures on the four boundaries, the initial temperature of the body and the
convergence factor. In several moments, the temperature of each internal point of the body will be displayed. To
manage it, we introduced a new parameter, A, that represents the number of iterations between two successive
intermediate results displaying. This parameter was used to avoid the displaying of the temperatures of the body
in each iteration, as doing it so would cause a great loss of performance: the iterative visualization of the results
implies an additional communication to send to the visual process the values of the temperatures that the rest of
the processes calculate. If we want to take a look at the partial results more frequently, then we will have to
decrement the value of A. If, on the other hand, we want the simulation to operate faster, then we can increment
this value, but then the graphical animation will contain less frames (intermediate images). Figure 4 illustrates
the first and last windows of the application. The higher values of the temperature, the brighter light intensity
values were displayed.
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MPI_Init(&arge,&argv); MPI_Init;
MPI_Comm_rank(MPI_COMM_WORLD,&myrank); MPI_Comm_rank(@myrank); (* myrank == 0 for the
MPI_Comm_size(MPI_COMM_WORLD,&size); Delphi process *)
RowsAsign(size,myrank,&nRows); MPI_Comm_size(@size);
createMatrix(& A, myrank,nRows); Matrix0 := FullMatrix.Create;
createMatrix(&B,myrank,nRows); /*Auxiliary matrix*/ | CreateConfiguration(confActual); (* confActual[6] ==
ConvergenceLimit*)
MPI_Bcast(confActual,7,MPI_FLOAT,0, MPI_Bcast(@confActual,7,MP1_FLOAT,0);

MPI COMM_WORLD); /% 1t receives | Numlterations := 0;
configuration from Delphi*/ | InitPicture;
While (allConverged = 0) do Begin

initMatrix(A,myrank,nRows,size,confActual); Inc(numlterations);
initMatrix(B,myrank,nRows,size,confActual); AllConverged:= 1
allConverged = 0; /*until all processes converge*/ MPI_Allreduce(@allConverged,@ConvAux, 1,
numlterations = 0; MPIL_INT,MPI_LAND);
AllConverged:= ConvAux;
while (lallConverged) { Matrix0.ReceiveMatrixs;
numlterations++; PrintPicture(Matrix0);

dolteration(A, B, nRows); /*Calculate temperatures*/ | End;
allConverged = converge(A,B,nRows,confActual[6]); | Matrix0.Free;
comunicateSharedRowUp(myrank,A); MPI_Finalize;
comunicateSharedRowDown(myrank,A);
MPI_Allreduce(&allConverged,&convAux,1,MPI_INT,
MPI_LAND,MPI COMM_ WORLD);
allConverged = convAux;
sendMatrix(A,nRows); /*It sends submatrix calculated
to Delphi in order to print*/

}
freeMatrix(&B,nRows);

freeMatrix(&A,nRows);
MPI_Finalize();

Figure 3. The parallel Jacobi’s relaxation algorithm coded in our MPI-Delphi interface

3.2. Visual P-EDR: Using MPI-Delphi in a scientific application

EDR algorithm is a recent result of our Research Group [12]. This algorithm has also an iterative nature, as the
Jacobi method described before, though its theoretical foundations are very different.

Firstly, we are going to introduce the utility of EDR. It was designed to solve a classical statistical problem, that
of density estimation from samples, but with an important extension: the treatment of uncertainty. With this
algorithm, traditional kernel density estimation methods are extended to accept uncertain observations modeled
by likelihood functions. A variable kernel approximation scheme is derived, where the locations and widths of
the components are obtained from the likelihood functions of the samples in an iterative procedure. Our
algorithm can be considered as an improvement of the classical rectification method proposed by Lucy [7] using
a well-known regularization tool, Parzen’s method.

Visual P-EDR is an implementation in parallel of the EDR algorithm with a graphical interface, used to show
how the algorithm converges more a more within each iteration, and to supervise when the solution has reached
a fixed (stable) point. One interesting use of this graphical version was to refine the algorithm’s heuristics
quickly, with the help of the graphical interface (we could see when we obtain a right solution, in order to
establish a stop condition).
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Figure 4. Initial (left) and final (right) windows of the visual Jacobi's algorithm

Figure 5 illustrates the first and last windows of the application. True (original unknown density) and P-EDR’s
estimated probability densities are showed. As we show in the figure, the proposed method was able to
efficiently recover the true density of moderately degraded data with a remarkably fast convergence rate [6]. The
details of the parallel implementation are exhaustively described in [6], but they are out of the scope of this
article. Our interest is just to show how MPI-Delphi has been used in the solution of a real and computationally
expensive problem, in which graphical user interaction was needed.
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Figure 5. Initial (left) and final (right) windows of the visual P-EDR algorithm

3.3 Our hardware and software environment

Our research group has a cluster of PCs with a mixture of Linux and Windows NT operating systems. We
carried out these experiments in a cluster of Intel Pentium 200 MHz processors with 32 MB main memory and
256 KB cache memory. We used a Fast Ethernet 3Com 905-network adapter as the communication channel.
Windows NT v.4.0 was used as the operating system in one of the PC’s. The rest of them used Linux 2.0.32
operating system.

Delphi programs were compiled with the best optimization options provided by the IDE (Integrated
Development Environment), while C programs were compiled using the GNU gcc compiler with —O2
optimization option.

4. Conclusions

With the increasing popularity of distributed systems as a cost-effective means for high-performance computing,
efficient and portable visual programming interfaces become increasingly important. Our work has focused on
offering the possibility of programming parallel applications with a graphical interface in a fast way. In this way,

the programmer saves effort and time costs when implements a parallel algorithm. Delphi visual programming



environment provides this possibility, but the main problem is related with the possibility of creating parallel
applications within this environment as, until now, there was no implementation of standard (PVM, MPI)
parallel programming libraries for Delphi.

MPI-Delphi constitutes, therefore, a first approach for Delphi’s programmers to parallel programming within a
message-passing paradigm. Extending the parallel programming to a visual programming environment entails

many advantages, such as high level debugging tools or automatic user’s interface creation.

MPI-Delphi interface is more suitable to some specific kind of problems, such as monitoring long execution time

parallel programs or computationally intensive graphical simulations. Currently, we are working in the
application of MPI-Delphi interface in several fields, such as medium and high level computer vision, memory

and calculus intensive machine learning algorithms and several classical statistical problems [11]. Besides, MPI-

Delphi has revealed as a good tool for research, because the development of new algorithms can be done quickly

and, therefore, time inverted in the debugging of such algorithms is reduced. The P-EDR algorithm constitutes a

nice example of this last affirmation.
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