
A proposal of metaheuristics to schedule independent
tasks in heterogeneous memory-constrained systems

Javier Cuenca1, Domingo Giménez1, José-Juan López-Esṕın2 and Juan-Pedro Mart́ınez-Gallar2

1Universidad de Murcia, Spain, javiercm@dtic.um.es, domingo@dif.um.es
2Universidad Miguel Hernández de Elche, Spain, jlopez@uhm.es, jp.martinez@uhm.es

The problem

Mapping independent tasks to the processors in a het-
erogeneous system.
A master-slave scheme is used.

The system has p processors, with:
speeds s = (s0, s1, . . . , sp−1),
available memory m = (m0, m1, . . . , mp−1),

start-up ts =
(

ts0,0
, ts0,1

, . . . , tsp−1,p−1

)

and word-sending time tw =
(

tw0,0
, tw0,1

, . . . , twp−1,p−1

)

.
The cost of a basic arithmetic operation in each pro-
cessors: a = (a0, a1, . . . , ap−1).

t tasks, with:
volume of data i = (i0, i1, . . . , it−1),
arithmetic cost c = (c0, c1, . . . , ct−1),
and the size of the solutions o = (o0, o1, . . . , ot−1).

Real problems:
triatomic molecules simulation,
solution of simultaneous equation models...

Different problem configurations

Fixed arithmetic costs and no communications:
From all the mappings which fulfil the memory restric-
tions, minimize the maximum of the costs of the tasks
assigned to the processors multiplied by the processor
arithmetic cost:

min
{d/ ik≤mdk

∀k=0,1,...,t−1}
max

j=0,1,...,p−1







1

sj

t−1
∑

l=0/ dl=j

cl







(1)

A maximum of pt assignations.

Variable arithmetic costs and no communication:
The costs of basic operations depend on the problem
size (a = (a0(x), a1(x), . . . , ap−1(x))).
Equation 1 with the cost of a task aj (il) cl.

Fixed arithmetic and communication costs:
The order in which tasks are assigned to processors
must also be determined.
The execution time must be simulated.
Number of configurations t!pt.

Variable arithmetic and communication costs:
The costs are functions of the problem size.
The execution time is simulated.

Problems with slave multiprocessors:
Each task can be assigned to a group of processors
which solves the task in parallel, with a memory limit,
which could be the sum of the local memories of each
processor.
All the mappings of tasks to sets of processors are con-
sidered.
Total number of configurations t!2pt.

Other possibilities

Dynamic assignation of tasks: it does not get an opti-
mum mapping, due to memory restrictions.

Our approach: use metaheuristics. At running time
low mapping time is necessary.

Adaptative metaheuristics: an initial mapping with a
metaheuristic which runs only a low number of iter-
ations. While the slaves work on the solution of the
tasks, the master improves the initial solution.

Metaheuristics

The methods considered are:
genetic algorithms (GA),
scatter search (SS),
tabu search (TS),
GRASP (GR).

The metaheuristics are analysed by identifying com-
mon routines and element representations.

General metaheuristic scheme:

Inicialice(S)
while not EndCondition(S)

SS=ObtainSubset(S)
if(|SS| > 1)

SS1=Combine(SS)
else

SS1 = SS
SS2=Improve(SS1)
S=IncludeSolutions(SS2)

For each metaheuristic:
identify how the functions work,
tune the functions and parameters to the different

mapping problems.

Initialice: assignes tasks to processors with the prob-
ability proportional to the processor speed.
GA: large population.
SS: S with few elements. An improvement method is
used.
TS: S with one element.
GR: works by multiple iterations.

ObtainSubset: some of the individuals are selected
randomly.

GA: more probability to configurations with better
value.

SS: to select all the elements, or to select the best
elements to be combined with the worst ones.

TS, GR: not necessary.

Combine: the selected individuals are crossed and
SS1 is obtained.

GA, SS: i.e. to exchange half of the mappings.

TS, GR: not necessary.

Improve:

GA: mutation operand. To generate a permutation of
p elements. To modify the mapping according to the
permutation.

SS: A greedy method which works evaluating the fit-
ness value of the elements obtained with the p posible
values (with memory constraints) in each component.

TS: some elements in the neighbourhood of the actual
element are analysed, excluding those in a list of tabu
elements previously analysed.

GR: local search (greedy).

IncludeSolutions: select elements of SS2 to be in-
cluded en S.

GA: the best ones.

SS: the best ones and the most scattered.

TS, GR: the best one.

EndCondition:

GA, SS, TS: that the best fitness value from the in-
dividuals in the population does not change over a
number of iterations.
GR: multiple iterations.

Preliminary experimental results

Preliminary results for the simplest problem: the size
of each task randomly generated between 1000 and
2000; the arithmetic cost is n3, and the memory re-
quirement n2; the number of processors coincides with
the number of tasks; the costs of basic arithmetic oper-
ations between 0.1 and 0.2 µsecs; the memory of each
processor is between half the memory needed by the
bigest task and one and a half times this memory. The
methods have been tested with different values of the
parameters and different versions of the basic routines.
Satisfactory results are obtained when:
GA: the population has 80 elements; the maximum
number of iterations is 800, and the maximum num-
ber of iterations without improving the solution is 80;
each pair of elements is combined with half of the com-
ponents of each parent; the probability of mutation is
1/5.
SS: S has 20 elements; the maximum number of iter-
ations is 400, and the maximum number of iterations
without improving the solution is 40; the combination
is that in GA; each element is improved with a greedy
method, which works by selecting for the processor
with highest execution time a task which could be as-
signed to another processor; the elements with lowest
cost function and those more scattered with respect to
the best ones (using a 1-norm) are included in the set.
TS: the neighbourhood has 10 elements, obtained by
assigning tasks assigned to the processor with most
cost to different processors; the maximum number of
iterations is 200, and the maximum number of itera-
tions without improving the solution is 20; the tabu
search has 10 elements.
GR: the initial set has 20 elements; the number of
iterations is 20; the element selected from S is chosen
randomly, with more probability for the elements with
better objective function; the element is improved with
the method used in SS.
In all the cases the elements in S are initially generated
randomly assigning the tasks to the processors, with
the probability proportional to the processor speed.
The table compares the mapping time and the sim-
ulated obtained with each one of the heuristics and
those with a backtracking.

Back GA SS TS GR

tasks map. simul. map. simul. map. simul. map. simul. map. simul.

4 0.025 3132 0.051 3132 0.065 3132 0.010 3132 0.019 3132

8 0.034 4731 0.028 4731 0.132 4731 0.015 4731 0.024 4731

12 0.058 1923 0.021 1923 0.158 1923 0.016 2256 0.029 1923

13 0.132 1278 0.055 1278 0.159 1278 0.016 1376 0.024 1278

14 0.791 1124 0.081 1124 0.192 1124 0.017 1124 0.027 1135

For big systems and using the different heuristics sat-
isfactory mappings are obtained in a reduced time. In
the table the mapping and the simulated times for big-
ger systems are shown.

GA SS TS GR

tasks map. simul. map. simul. map. simul. map. simul.

25 0.139 1484 0.259 1450 0.010 1450 0.045 1450

50 0.413 1566 0.429 1900 0.015 1757 0.078 1524

100 0.592 1903 0.834 1961 0.022 3018 0.158 1460

200 0.825 3452 1.540 3452 0.079 3452 0.293 3452

400 3.203 3069 2.682 3910 0.375 3069 0.698 3069

Future work

Tune the parameters of the heuristics.
Apply them to the other possible configurations.
Apply to other mapping problems.

Acknowledgments. This work has been partially supported by the Consejeŕıa de Educación de la Región de Murcia, Fundación Séneca 02973/PI/05.

