Jincluding Imponovememt of the Execuiton

'Timne ifn a. Sofiwase Aschitecime of Jilouatiec

wiviln Selfifoppifionicanion

Luis-Pedro García
Javier Cuenca
Domingo Giménez

University of Murcia SPAIN

Outiline

- Introduction
- Self-Optimised Linear Algebra Routine Samples
- Experimental Results
- Conclusions

Outione

- Introduction
- Self-Optimised Linear Algebra Routine Samples
- Experimental Results
- Conclusions

Jonoifoduction

- Our goal: to obtain linear algebra parallel routines with autooptimization capacity.
- The approach: model the execution time of the routine to tune, taking advantage of the natural hierarchy existing in linear algebra programs.
- The basic idea is to start from lower level routines (multiplication, addition, etc.) To model the higher level ones (Strassen multiplication, parallel multiplication, LU, QR, Cholesky, etc).
- In this talk:
- A remodelling stage is proposed if the information at one level is not accurate enough.
- This new model will be built using polynomial regression.

Inturaduction

Theoretical and experimental study of the algorithm.

An analytical model of the execution time

$$
T(n)=f(n, A P, S P)=2 n^{3} k_{3}(\text { dgermm })
$$

In linear algebra parallel routines, typical SP are:

$$
k_{1,}, k_{2}, k_{3,}, t_{5} \text { and } t_{17}
$$

...and AP are:

$$
\text { b, } p=r \times c \text { and the basic library }
$$

Jonotioduction

- Theoretical and experimental study of the algorithm
- An analy OCULTA ne
- $T(n)=f(n, A P, S P)=2 n^{3} k 3$ (dgemm)
- In linear algebra parallel routines, typical $A P$ are:
$\square b, p=r \times c$ and the basic library
- ...and SP are:
- $k_{1}, k_{2}, k_{3}, t_{s}$ and t_{w}

T'esting the model:

Remodelling de Linear Algebra Routine (LAR)

Designing a polynomial scheme from the original model for different combinations of n and $A P$.
$T(n, A P)=a_{0} n^{3} / p+a_{1} n^{3} p+a_{2} n^{3}+a_{3} n^{2} / p+a_{4} n^{2} p+a_{5} n^{2}+\ldots$
The coefficients $a_{0,}, a_{1}, a_{2}, \ldots$ must be calculated

Jonotioduction

- Remodelling de Linear Algebra Routine (LAR)
- Designino nonlunaminl coheme from the original model OCULTA IAP:

$$
\begin{aligned}
& T(n, A P)=a_{0} n^{3} / p+a_{1} n^{3} * p+a_{2} n^{3}+a_{3} n^{2} / p+a_{4} n^{2} * p \\
& \quad+a_{5} n^{2}+\ldots
\end{aligned}
$$

- The coefficients $a_{0}, a_{1}, a_{2}, \ldots$ must be calculated

Jintionoduction

- In order to determine these coefficients, four different methode are nronosed.

OCULTA

- FI-ME: FIxed Minimal Executions
- VA-ME: VAriable Minimal Executions
- FI-LS: FIxed Least Square
- VA-LS: VAriable Least Square

Outione

- Introduction
- Self-Optimised Linear Algebra Routine Samples
- Experimental Results
- Conclusions
Self-Opoimised IAR.
- Strassen Matrix-Matrix multiplication

$$
T=7^{l} t_{\text {mult }}\left(\frac{n}{2^{l}}\right)+18 \sum_{i=1}^{l} 7^{i-1} t_{\text {add }}\left(\frac{n}{2^{i}}\right)
$$

- $\mathrm{t}_{\text {mult }}(\mathrm{n} / 2)$: Theoretical execution time for matrix multiplication. BLAS3 function DGEMM
- $\mathrm{t}_{\text {add }}\left(\mathrm{n} / 2^{\mathrm{i}}\right)$: Theoretical execution time for matrix addition. BLAS1 function DAXPY

Outione

- Introduction
- Self-Optimised Linear Algebra Routine Samples
- Experimental Results
- Conclusions

Exiperimental. Reculte: Stirascen

- Systems:

Xeon: Linux Intel Xeon 3.0 GHz workstation Alpha: Unix HP-Alpha 1.0 GHz workstation

- Models for DGEMM and DAXPY
- DGEMM: Third order polynomial (20 samples)
$\square n_{-} \min =500, n_{-} \max =10000$, $n_{-} i n c=500$
- DAXPY: Sixth order polynomial (31 samples)

$$
\text { - } n _\min =64, n _ \text {max }=2000, n _i n c=64
$$

Experionental. Recultis: Stinascen

- Testing de Model in Xeon.
(Time in seconds)

n	l	Mod.	Exp.	Dev.(\%)
3072	1	11.75	12.86	8.58
3072	2	13.90	13.63	1.99
3072	3	37.04	15.76	135.06
4096	1	27.21	29.71	8.41
4096	2	28.59	30.10	5.02
4096	3	48.76	33.34	46.26
5120	1	53.14	56.83	6.51
5120	2	53.53	56.43	5.13
5120	3	71.08	60.19	18.09
6144	1	96.48	96.32	0.17
6144	2	95.39	93.69	1.82
6144	3	110.40	98.39	12.21

- Testing de Model in Alpha.
(Time in seconds)

n	l	Mod.	Exp.	Dev. (\%)
3072	1	29.96	29.70	0.89
3072	2	28.54	27.82	2.57
3072	3	17.55	27.61	36.46
4096	1	69.85	70.85	1.43
4096	2	66.04	64.55	2.30
4096	3	57.82	62.56	7.58
5120	1	135.03	134.67	0.26
5120	2	125.76	123.38	1.92
5120	3	118.12	118.45	0.28
6144	1	229.79	232.27	1.07
6144	2	211.10	210.88	0.11
6144	3	201.15	199.33	0.92

Experionemial. Recultas Strascen

- The optimal value of $A P$ vary for different systems and problem sizes.
- In Xeon and for $n=5120$ the model make a wrong prediction, but the execution time is only 0.71% higher.
- However, in Xeon, the deviation ranged from 0.17% to 135.06% :

IT IS NECESSARY TO BUILD AN IMPROVED MODEL

Remodeliong Stirascein.

- The scheme consists of defining a set of third grade polynomial functions from the theoretical model:

$$
T(n, l)=2 \times 7^{l}\left(\frac{n}{2^{l}}\right)^{3} M(l)+\frac{18}{4} n^{2} A(l) \sum_{i=1}^{l}\left(\frac{7}{4}\right)^{i-1}
$$

- $M(l)$ and $A(l)$ must be calculated.
- For each l, n varies and the values of $M(l)$ and $A(l)$ are obtained by least squares.

Remodelling Strassen

The sd	l	$M(l)$	$A(l)$
defini	1	2.22×10^{-10}	3.89×10^{-08}
grade	2	2.24×10^{-10}	3.03×10^{-08}
functi	3	1.99×10^{-10}	3.03×10^{-08}
theore	4	3.48×10^{-10}	1.53×10^{-08}

- $M(l)$ and $A(l)$ must be calculated.
- For each l, n varies and the values of $M(l)$ and $A(l)$ are obtained by least squares.

Remodeljug Stiassein

- Now the set of values for $M(l)$ and $A(l)$ can be approximated by a polynomial in l and thus we have a single model for any combination of n and l.
- $M(l)$ is approximated by a second grade polynomial

$$
M(l)=m_{0}+m_{1} l+m_{2} l
$$

- A(l) is approximated by a first grade polynomial

$$
A(l)=a_{0}+a_{1} l
$$

$$
\begin{gathered}
M(l)=1.9 \times 10^{-10}+4.58 \times 10^{-11} \times l-1.45 \times 10^{-11} \times R \\
A(l)=4.38 \times 10^{-08}-5.131 \times 10^{-09} \times l
\end{gathered}
$$

- $M(()$ is approximated by a second grade polynomial

$$
M(l)=m_{0}+m_{1} l+m_{2} l^{2}
$$

- $A(()$ is approximated by a first grade polynomial

$$
A(l)=a_{0}+a_{i} l
$$

Remodelling Strassen

n	l	Mod.	Exp.	Dev. (\%)
2688	1	7.87	8.80	11.92
2688	2	8.40	9.67	15.23
2688	3	10.28	10.52	2.38
3200	1	13.02	14.51	11.92
3200	2	13.56	15.51	14.38
3200	3	16.00	16.30	1.87
5120	1	56.80	56.71	0.17
5120	2	56.44	57.01	1.00
5120	3	60.04	55.09	8.25
5632	1	75.78	74.92	1.12
5632	2	73.50	74.56	1.45
5632	3	71.70	70.97	1.03

Remodelling Stiansen

n	l	Mod.	Exp.	Dev. (\%)
2688	1	7.87	8.80	11.92
2688	2	8.40	9.67	15.23

- In Xeon and for $n=5120$ the model make a wrong prediction, but the execution time is only 3.49% higher.
- Now, with remodelling, the deviation is smaller and ranged from 0.17% to 15.23%

Outiline

- Introduction
- Self-Optimised Linear Algebra Routine Samples
- Experimental Results
- Conclusions

Coinclusions

- The use of modelling techniques can contribute to reduce the execution time of the routines.
- The modelling time must be small:
-Reduce the number of samples.
- Use small problem sizes for modelling.
- The method has been applied successfully to the Strassen Matrix-Matrix multiplication and can be applied to other linear algebra routines.

